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Abstract: Software Design Patterns have an important role for software development and reuse within the object 
oriented design paradigm. But the commonly used set of design patterns has remained arbitrary and lacking 
a well-founded theoretical basis. This work offers algebraic Vector Spaces for software design patterns as a 
theoretical framework based on Linear Software Models.  It starts with modularity matrices of design 
patterns made of software modules additively composed. The elements of the Vector Space are exactly the 
pattern modules, upon which operates a direct sum operator. Design pattern modularity matrices are used to 
extract typical modules, frequently used and often found in more than a single pattern. This leads to the 
ultimate goal of sets of generic pattern modules serving as bases for the vector space. Design patterns and 
larger sub-systems are additively built from the bases modules. Software design patterns’ case studies are 
carefully analysed to demonstrate the approach. 

1 INTRODUCTION 

Software Design Patterns – see e.g. the well-known 
GoF book (Gamma et al., 1995) – attained along the 
years the status of a standard starting point to 
approach software development problems. But since 
their introduction there has not been a systematic 
effort to give design patterns a theoretical basis. 
They still are an ad hoc, more or less frequently 
used, set of patterns. 

This work offers the heretofore lacking 
theoretical basis: Vector Spaces. We wish to obtain a 
set of design pattern modules having properties of 
necessity and sufficiency. To this end we base 
ourselves on Linear Software Models. This work is 
an application of these models to software Design 
Patterns. 

1.1 Linear Software Models 

Linear Software Models were proposed as a theory 
of software system composition from COTS 
(Commercial Off-The-Shelf) components. Linear 
Software Models, based on plain Linear Algebra, are 
shortly reviewed here. For the detailed theory, please 
see the original reference (Exman, 2012a), and 
(Exman, 2012b). 

In Linear Software Models, the architecture of a 
software system is expressed by two kinds of basic 
entities: structors and functionals.   

Structors – which remind us of vectors – are 
architectural units, from the structural viewpoint. 
Structors generalize structural units to a diversity of 
types (e.g. structs, classes, interfaces, aspects) and 
collections (sets of classes, as design patterns). 

Functionals are architectural system units from a 
behavioral viewpoint. These are potential functions 
that may be, but are not necessarily invoked. 
Typically these are, Java methods, function families 
(e.g. hyperbolic functions) or roles which define the 
functionality of a design pattern (Riehle, 1996). 

Modules are architectural units in a higher 
hierarchical level of a system. Modules are 
composed of grouped structors and their 
corresponding functionals. 

Linear models are usually formulated in terms of 
matrices. The Modularity Matrix is a Boolean matrix 
with columns standing for structors and rows for 
functionals. A matrix element is 1-valued for a 
functional-structor link and 0-valued for no link. 

A central concept in Linear Software Models is 
linear independence. Linear independence is the 
formal algebraic equivalent to the informal software 
engineering concept of uncoupling. 
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A software structor is defined to be independent 
of other structors in the system, if it provides a non-
empty proper sub-set of functionals of the system, 
given by the links in the respective column, and is 
linearly independent of other columns in the 
Modularity Matrix. A similar statement is true for 
independent functionals. 

It has been demonstrated – see ref. (Exman, 
2012) – that if all structors and all functionals of a 
Modularity Matrix are respectively linearly 
independent, the matrix is square. Moreover, if a 
given functionals’ subset is disjoint to other subsets, 
the matrix can be put in a block-diagonal form. 

Therefore, if software design patterns are indeed 
canonical building blocks for larger software 
systems, we expect their Modularity Matrix to obey 
the Linear Software Models. Thus, their modularity 
matrices should be square and block-diagonal. 

1.2 Mediator Modularity Matrix: 
An Introductory Example 

For design patterns the modularity matrix structor 
columns refer to classes, while the matrix functional 
rows refer to the respective class methods. 

An example modularity matrix for the Mediator 
design pattern is seen in Fig. 1. It contains the 
generic pattern classes – Abstract and Concrete 
mediator, Abstract and Concrete colleague. Here we 
disregard any specific application classes.  

The respective functionals – WidgetChanged, 
Maintain Widgets, Changed and 
SetActionByMediator – fit the list of participants 
and sample code for the pattern in the GoF book 
(Gamma et al., 1995). The functionals' names, 
referring to Widget, hint to a GUI – graphical user 
interface – application in the sample code. 

The two diagonal blocks correspond to the 
mediator  module  (upper-left) and  to  the  colleague 

 
Figure 1: Mediator Modularity Matrix – shows structor 
columns and functional rows. Zero values are left blank, 
while those within diagonal blocks are hashed. 

module (lower-right). Even though one could have 
several colleagues in the system only one is 
represented in the matrix. 

In Fig. 1 and all subsequent figures, 1-valued 
matrix elements are explicit (orange colored), while 
0-valued elements are omitted for simplicity. 0-
valued elements within blocks are hashed. 0-valued 
elements outside blocks are left blank. 

1.3 The Goal: Pattern Module Bases 
for Vector Spaces 

The goal of this work is a basis of design patterns in 
which the different patterns are equally important 
and cover the entire vector space of software design 
patterns in a uniform way.  

Design patterns not in the basis should be easily 
expressed in term of one or more patterns belonging 
to the basis. 

Here we introduce the big idea: instead of 
directly using design patterns in the basis, one 
should use design pattern modules as the basis. 

Different pattern modules are selected to be in 
the vector space basis in order to not overlap in a 
trivial way, i.e. they should be orthogonal. 

The remaining of the paper is organized as 
follows. Section 2 introduces vector spaces for 
design pattern modules. Section 3 deals with the 
choice of pattern modules for vector space bases. 
Section 4 describes design pattern composition from 
basis pattern modules. Section 5 concludes with a 
discussion. 

2 VECTOR SPACES FOR DESIGN 
PATTERN MODULES 

The aim of this section is to describe Vector Spaces 
for design pattern modules. We propose here a three-
valued Vector Space.  

2.1 Three-valued Vector Space 
with Direct Sum 

A vector space – see e.g. (Lang, 2002) – is defined 
by a set of elements, together with two operations, 
an addition and a multiplication by a scalar, obeying 
a specified set of algebraic properties. 

The elements in the set are square matrices – the 
module sub-matrices of the modularity matrix – 
defined for software design patterns as seen in the 
introduction. 

The addition operation is chosen to be the matrix 
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direct sum – see e.g. (Weisstein, 2006) – which 
constructs a block diagonal matrix from a set of 
square matrices. In general, for i=1,…,n square 
matrices Ai the direct sum is written 

⊕n
i=1 Ai = diag(A1, A2, … , An) (1)

where ⊕ stands for direct sum, and diag means 
block diagonal. 

The choice of the matrix direct sum is motivated 
by its ability to construct standard modularity 
matrices from existing modules. Thus a modularity 
matrix is viewed as a vector in terms of the defined 
vector space. 

The multiplication by a scalar operation is just 
plain number multiplication, but the scalars in this 
case are three-valued, i.e. only 1, 0 and -1. Three-
valued scalars imply respectively addition/no-
change/subtraction of given modules to/from a 
modularity matrix. 

The direct sum is easily shown to obey the 
required associative and commutative properties. 
The zero element and an inverse operation must be 
defined and added to these properties.  

The zero element for the direct sum, denoted by 
(), the matrix with an empty set of elements, has 
the property: 

Ai ⊕ () = Ai (2)

The inverse operation for the direct sum is the 
matrix direct subtraction, denoted by ⊖,	defined as: 

Ai ⊖ Ai = () (3)

The meaning of the direct subtraction A1	⊖ A2 is a 
binary operation used to remove the square matrix 
A2 (the second argument of the binary operator ⊖ 	
from the preceding block diagonal matrix A1 (the 
first argument of the binary operator). 

The multiplication by a scalar also obeys the 
required simple properties, viz. distributive 
regarding square matrices, distributive regarding the 
scalar coefficient and associative regarding scalar 
coefficients. The identity scalar coefficient has value 
1. 

Simple consequences of the above properties are: 

0 * Ai = () (4)

 * () = () (5)

where Ai is any square matrix and  is any scalar 
coefficient. Finally, with the same conventions, one 
formally has 

 * Ai = ⊖	 *Ai 

meaning that multiplying by -1 is equivalent to the 
creation of a 2nd argument of the matrix direct 

subtraction. These formal properties are needed for 
the complete characterization of the vector space. 

3 A BASIS FOR THE PATTERN 
MODULES VECTOR SPACE 

In this section we propose a basis for the GoF 
pattern modules vector space.  

We first propose selection criteria. Then use the 
criteria to make an actual basis proposal. Finally we 
ask about the dimension of this basis. 

3.1 Vector Space Basis Selection 
Criteria 

Based upon the design pattern statistics of usage, not 
all patterns have equal importance. This seems to 
imply that we should not expect that all the design 
pattern modules will appear in the vector space 
bases. 

Thus, reasonable selection criteria for pattern 
modules to appear in vector space bases should 
include: 
 Relative usage – modules in widely used patterns 

should be included, in contrast to scarcely used or 
too specific patterns; 

 Role uniqueness – include pattern modules with a 
unique role, do not include modules with similar 
roles; 

The overall idea is to attain a representative and 
orthogonal basis set. Relative usage discards 
irrelevant patterns. Role uniqueness contributes to 
orthogonality. 

If one looks for usage statistics of the GoF patterns, 
one finds a significant variance. For instance in 
reference (Shi and Olsson, 2006) a tool was applied 
to recover pattern instances from several large 
software packages written in the Java language. 

Results show that in four software packages 
certain patterns were very frequent (Mediator up to 
500 instances, Bridge more than 100 instances, 
Façade close to 100 instances), while other patterns 
were not frequent (Abstract Factory around 30 
instances, Strategy around 60 instances) and still 
others totally negligible (Singleton, Template 
Method, Visitor). This means that in terms of usage 
frequency the proposed design patterns are very non-
uniform, in other words with very unequal relative 
importance. 

The GoF book itself – in the Guide to Readers – 
proposes a selection of most common patterns, 
which differs from the above results. 
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A truly representative statistics may not be easy 
to obtain. 

3.2 A Basis Set of Design Pattern 
Modules 

The Vector Space in this work is intended to cover 
only Design Pattern modules. But, often these 
modules are composed with classes of other 
modules. These are either supplementary classes 
needed for the design pattern execution – typically a 
client – or just application classes. 

Therefore, pattern modules can be classified as: 

a- Essential – modules with an essential role 
defining the design pattern; 

b- Accessory – modules with an accessory role 
needed to execute the design pattern. 

We have analysed the GoF patterns to extract a basis 
set for the Vector Space, according to the criteria in 
the previous sub-section. The proposed basis set is 
seen in Table 1. 

Table 1 displays the chosen 16 essential modules 
and their semantics. 

A list of most common accessory modules in 
GoF Design Patterns includes: Client, Target, 
Abstraction, Implementor, Sub-system, Invoker, 
Receiver, Originator, Context, Element, Class, 
Expression and Aggregate. These can be seen to 
have a quite generic character, not defining a 
specific Design Pattern. 

Table 1: GoF Pattern Modules Basis Set. 

# 
Module 
Name 

Module Semantics 

1 Factory Constructs instances of another class 

2 Product Class that may be repeatedly constructed 

3 Director Construction Recipe 

4 Prototype Construction Clone to be copied 

5 
Numbered 
Factory Factory with Predefined Instances’ number 

6 Adapter Interface converter into another interface, 

7 Adaptee Interface being converted 

8 Component Part from Hierarchy 

9 Mediator Unifying point of Abstraction 

10 Colleague End-point of Abstraction 

11 Handler Intermediate point of Abstraction 

12 Subject Unifying source of communication 

13 Observer End-point of communication 

14 Strategy Dynamic Alternative role 

15 Command Action that may be repeatedly invoked 

16 State State worth signalling by means of a class 

An example of an essential module occurring in two 
different design patterns is Numbered Factory. It 

occurs in the Singleton pattern, with at most one 
instance, and in the Flyweight Factory with maximal 
instances number being application dependent. 

3.3 Dimension of Pattern Module 
Vector Spaces 

An important issue concerning the Vector Space for 
GoF design pattern modules is its dimension, in 
other words what is the size of its bases. The 
following Lemma aims at providing an upper bound 
to the space dimension. 

 

A proof sketch is as follows. An upper bound to the 
space dimension is given by two conditions: 

 The number of essential pattern modules – this is a 
small constant m that was proposed  above to be 
16 modules; 

 The number of accessory modules needed per 
essential module – assumed to be k; 

The sought dimension upper bound is D=m*k. 
Is the assumption that k is a small constant 

reasonable? By empirical observation, the maximal 
overall number of classes in design pattern class 
diagrams in the GoF book is of the order of ten. 
Specifically, the Abstract Factory pattern has 10 
classes and the Façade pattern has 15 classes. 

4 ADDITIVE COMPOSITION 
FROM BASIS MODULES 

Here we describe case studies of design pattern 
composition from basis modules. This also 
illustrates the additive composition above the level 
of individual patterns. 

4.1 Single GoF Patterns 

Frequently used behavioral design patterns include, 
e.g. the Mediator and the Observer. 

The Mediator pattern, shown in Fig. 1 is 
represented in terms of the matrix direct sum, by the 
following equation: 

Lemma 1 – Dimension of Pattern Modules 
Vector Space 

Assuming that the number of the accessory 
modules needed by each essential module is at 
most a constant k, the dimension of the vector 
space of GoF design pattern modules is finite 
and bounded. 
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AMediator-Pattern  = Amediator ⊕ Acolleague (7)

This equation makes explicit that the block diagonal 
modularity matrix of the Mediator pattern is 
composed of a mediator module and a colleague 
module, by means of the matrix direct sum. The 
equation also reflects the intuition that modules in 
Linear Software Modules are additively composed. 

The order of the modules in equation (7) is 
arbitrary. This arbitrariness is a consequence of the 
way of computation of diagonality, i.e. only the 
distance of a module matrix element from the 
diagonal is important, not its specific position. It 
does not matter whether the mediator module is the 
upper-left block and the colleague is the lower-right 
block in the matrix or vice-versa. 

 
Figure 2: Observer Modularity Matrix – the same 
conventions used in Fig.1 and in all subsequent figures 
containing modularity matrices for a given pattern. 

Thus, although the matrix direct sum in general is 
not commutative, for the particular case of module 
composition we use a commutative version and 
therefore it is a true vector space. 

For details about the choice of functionals in the 
Observer pattern see ref. (Exman, 2012). The 
Observer pattern, shown in Fig. 2 is represented 
similarly, by the following equation: 

AObserver-Pattern  = Asubject ⊕ Aobserver (8)

4.2 Pairs of Patterns 

The first example of composition of a couple of 
design patterns is found in the GoF book (Gamma et 
al., 1995) itself, viz Observer and Mediator. 

The original purpose of this composition is to 
encapsulate in the mediator a complex graph of 
dependencies – a DAG, Directed Acyclic Graph – of 
large numbers of observer instances possibly 
connected to more than a single subject. 

The Observer-Mediator composition of patterns 
is represented in terms of the matrix direct sum of 
modules, by the following equation: 

AObs-Med-Composition= Asubject ⊕ Amediator ⊕ Aobserver (9)

The direct sum terms are in the same order as the 
modules in the modularity matrix shown in Fig. 3. 
Note that the composition does not include the 
colleague module, since this is the role of the subject 
and the observer in this composition. 

The composition clear additivity justifies well 
the choice of the direct sum as the operation of the 
Vector Space. 

 
Figure 3: Observer-Mediator Composed Modularity 
Matrix – the mediator is the central module between the 
upper-left subject and the bottom-right observer. 

4.3 Triplets of Patterns 

The next example adds to the previous composition 
the Singleton pattern – also suggested in the GoF 
book – since it is reasonable to expect the Mediator 
to behave as a Singleton for this kind of system. 

 

Here we do not use fully expanded modules as in 
Fig 3, since their classes are already known. We 
collapse each of the Observer-Mediator modules 
into upper level black-boxes leaving one matrix 
element per module, as seen in Fig. 4. The resulting 
modularity matrix is strictly diagonal. 

The added Singleton pattern is a special case 
containing just one class. Thus, its expanded and 
collapsed square matrices coincide. 

The Observer-Mediator-Singleton composition 
of patterns is represented by the following equation: 

AObs-Med-Singlet  = Asubject ⊕ Amediator ⊕ Asingleton	
⊕ Aobserver 

(10)

The modules’ order in this equation is the same as in 
the matrix in Fig. 4. The Singleton module is close 
to the Mediator since its purpose is to add the single 
instance property to the Mediator module. 
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Figure 4: Observer-Mediator-Singleton Modularity Matrix 
– this is a strictly diagonal matrix, as each module is 
collapsed into an upper-level black-box. Expanded white-
boxes would recover classes with additional 1-values per 
module as seen in Fig. 3. 

4.4 Expressing Any Pattern in Terms 
of Basis Modules 

The current example shows how to derive one 
pattern from another one. In particular we obtain the 
Multicast (Vlissides, 1997) pattern from the 
Observer pattern. 

The derivation implies that Observer modules are 
in the basis of GoF pattern modules. On the other 
hand the Multicast pattern is viewed as a derived 
pattern. 

 

Figure 5: Multicast derived pattern Modularity Matrix – 
this pattern is derived from the Observer pattern modules, 
with the addition of the Message module. 

We disregard the renaming issues – say attach 
instead of register – and other specific structural 
differences, as long as the pattern desired behavior is 
attained. 

The essential difference between the Multicast 
and the Observer is the additional module with a 
Message class. This enables more specific 
characterization of message instances as deemed 
necessary. 

It should be clear that the Message module is an 
accessory module, in the sense of sub-section 3.2. 
This is justifiable since messages are ubiquitous in 
software systems. Whether the Message is part of 
another pattern and not just an independent module, 
is a decision that could be taken, but is out of the 
scope of this paper. 

The Multicast pattern in terms of the Observer 
pattern modules is represented by the following 
equation: 

AMulticast = Asubject ⊕ Amessage	⊕ Aobserver (12)

The Multicast derived pattern modularity matrix is 
seen in Fig. 5. 

4.5 Multi-pattern Composition 

The above examples give a flavour of pattern 
composition by means of the direct sum operator in 
the Vector Space. They also clarify the potential 
meaning of bases for this kind of vector space. 

Additional multi-pattern composition can be 
done in similar ways. 

Nonetheless, it should be clarified that such 
matrices are only relevant for cases of actual 
interaction among the respective design patterns. 

Design patterns may occur in disjoint parts of 
large systems. In such cases there is no sense in 
depicting them in a common modularity matrix 
independent of the other modules of the large 
system. 

5 DISCUSSION 

5.1 Vector Spaces 

Vector spaces have linear independence as a 
fundamental concept. This is a formal concept 
corresponding to the informal notion of decoupling 
in Software Engineering. Therefore, vector spaces 
are perfectly suitable to deal with design patterns, 
where decoupling is a main purpose. 

The matrix direct sum operation is neatly defined 
and suitable for additive pattern composition. Some 
minor additions and modifications needed for this 
operation were introduced, such as the inverse 
operation matrix direct subtraction. 

The vector space is the central algebraic structure 
proposed in this work as a theoretical base for GoF 
design pattern modules. 

The issue of bases for this vector space was dealt 
with. Lemma 1 stated that the vector space is finite 
and bounded. On the other hand, no specific sizes or 
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very tight bounds for the vector space size were 
offered yet. 

Modules are preferable to whole patterns as the 
bases elements, since various modules appear as 
common units in several patterns, obtaining a 
desirable uniformity at the module level. This 
uniformity facilitates understanding and additive 
usability of pattern composition. 

5.2 Related Work 

Patterns were first proposed by Beck and 
Cunningham – see ref. (Beck and Cunningham, 
1987).  

After the publication of the GoF design patterns, 
many other compilations of design patterns 
appeared, some of them specialized for specific 
purposes, among them for Networks (Buschmann et 
al., 1996) and J2EE (Alur et al., 2003). 

Different formal approaches were proposed to 
deal theoretically with design patterns. To our best 
knowledge none of them pursues an algebraic 
structure approach similar to ours. 

Mikkonen (Mikkonen, 1998) used high-level 
abstractions of communications combined with a 
Temporal Logic of actions. 

Yehudai and collaborators (Eden et al., 1998, 
1999) proposed LePUS a system based on predicate 
logic, also displaying a readable diagrammatic 
representation. 

Cechich and Moore (Cechich and Moore, 1999) 
use RSL a specification language to formally decide 
whether a given design conforms to an intended 
design pattern. 

Wang and Huang (Wang and Huang, 2008) use 
RTPA – real-time process algebra – as a 
specification of design patterns. Despite the 
algebraic name, it is a formal language oriented 
approach. 

Most of these approaches solve particular 
problems. Our approach is generic, and displays the 
power and clarity of an algebraic structure. 

5.3 Future Work 

The Three-valued Vector Space can certainly be 
extended to more general spaces, say real vector 
spaces. This will allow, among other possibilities, 
consistent treatment of expanded and collapsed 
modules in equal foot.  

For instance, in ref. (Exman, 2012) collapsed 
modules were marked with the trace and diagonality 
integers – instead of just Boolean values – to provide 
information about the underlying collapsed modules 

and to enable their recovery. 
The current Linear Software Model and its 

vector space may possibly be refined to deal not 
only with functionals, but also in a finer scale with 
attributes. 

5.4 Main Contribution 

The main contribution of this paper is the use of 
Vector Spaces as a formal tool for analysis of GoF 
Design Patterns, based upon Linear Software 
Models, a generic theoretical framework for 
software composition.  

Its practical application is additive composition 
of software sub-systems, design patterns and 
upwards, from the basis modules. 
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