
Spatial Connector
Loosely Binding Contextual Changes and Non-Context-Aware Services

Ichiro Satoh
National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku Tokyo, 101-8430, Japan

Keywords: Context-awareness, Software Reusability, Ubiquitous Computing, Separation of Concerns.

Abstract: A framework for providing context-aware services is presented. Context-aware services tends to depend on
context but software for defining the services should be independent on context so that it can be reused in other
contexts. However, software for many context-aware services in existing approaches has been constructed in
an ad-hoc manner. The approach, calledSpatial Connector, enables software for context-aware services to
be defined independently of any contextual information so that it can be reused in other context. It enables
non-context-aware services to be used as context-aware services by deploying services according to contextual
changes and transforming such changes into non-context-aware functions, so that software for context-aware
services to be defined independently on any contextual information. Our early experiments proved that it
enabled us to reuse JavaBeans components as context-aware services without having to modify the components
themselves.

1 INTRODUCTION

Context-aware computing means that application-
specific services are aware of and depend on the un-
derlying runtime contexts and context changes. Here
contexts can be generally defined as external varying
environments that affect or determine the computa-
tion of an application. Examples of such environ-
ments or contexts include time, location, situation,
and users. By being aware of the context, a system
can be proactive or reactive towards users by provid-
ing information or services the user needs in a par-
ticular context. Instead of a tool, technologies evolve
into pragmatic systems which support our daily lives.
Software for context-aware services directly or in-
directly specify how computations or behaviors of
context-aware services depend on or vary in under-
lying contexts.

Context-aware services often result in software
engineering problems. Context-aware services them-
selves must depend on particular context. How-
ever, software for context-aware services often tends
to have been developed dependently on such con-
text. This prevents context-aware services from be-
ing reused for other context. In fact, some software
for location-aware annotation services may include
information about the locations that the services are
provided. This is because it is difficult to abstract con-

textual information from software in comparison with
other information.

Furthermore, software for most context-aware ser-
vices has been developed independently of those for
web services and enterprise-services, although the
former services are similar to the latter services.
Therefore, we cannot reuse software for web services
and enterprise-services as context-aware services.

We need a software engineering approach, called
Spatial Connector, to reuse software for context-
aware services. This paper proposes a mechanism for
loosely coupling between software for (non-context-
aware) services and contexts. The key idea behind our
mechanism is to define contextual information out-
side software for services and loosely link between
services and contextual information measured by the
underlying sensing systems. In fact, the approach en-
abled us to reuse JavaBeans components for Web ser-
vices as context-aware services without modifying the
components themselves.

2 RELATED WORK

Since the termcontext-aware computing was intro-
duced by Schilit and Theimer (Schilit and Theimer,
1994), context-aware computing received a lot of at-
tention from researchers. Many researches have stud-

50 Satoh I..
Spatial Connector - Loosely Binding Contextual Changes and Non-Context-Aware Services.
DOI: 10.5220/0004494500500057
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 50-57
ISBN: 978-989-8565-68-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

ied software engineering for context-aware services.
The Context toolkit was a pioneer work of software
engineering issues in context-aware services (Abowd,
1999; Salber et al., 1999). It aimed at allowing pro-
grammers to leverage off existing building blocks to
build interactive systems more easily. It was con-
structed as libraries as widgets for GUI. However,
since it was designed only for context-aware ser-
vices, it did not support the reuse of software for non-
context-aware services.

Ubiquitous computing defines a new domain in
which large collections of heterogeneous devices are
available to support the execution of applications.
These applications become dynamic entities with
multiple input and output alternatives. As a result,
it is difficult to predict in advance the most appro-
priate application configuration as discussed by sev-
eral researchers (Roman et al., 2003; Scholtz et al.,
2004). There have been many attempts to construct
software component technology for ubiquitous com-
puting (Flissi et al., 2005; Modahl et al., 2005). Sev-
eral researchers have studies modeling of context-
awareness in the literature of software engineering
(Henricksen and Indulska, 2005). However, there
have been no silver bullet as other systems so far.

Several researchers focuses on high-level analy-
sis on context-aware services. For example, A com-
parable model, which specify context-aware behav-
ior in only one diagram, the context-oriented domain
analysis diagram was explored (Desmet et al., 2007).
There have been several attempts to specify context-
aware services (Henricksen et al., 2002). However,
they cannot solve problems in software-level depen-
dencies with contexts.

We developed a mobile agent-based emulator to
emulate the physical mobility of its target terminal by
using the logical mobility of the emulator. It could
provide application-level software with the runtime
environment compatible to its target device and carry
it between computers through networks. However, it
intends to make it easy to test context-aware software
rather to develop such software.

Modern enterprise architectures, e.g., Enterprise
JavaBeans (EJB), (Kassem, 2000) and .Net architec-
ture (Szyperski, 1998), have employed the notion of
container to separate the business components from
the system components. The original notion has en-
abled key functionality such as transactions, persis-
tence, or security to be transparently added to the ap-
plication at deployment time rather than having to
implement it as part of the application. The notion
leads to increased reusability and interoperability of
business components. We use the notion to reuse
non-context-aware business software components in

context-aware ones. Non-context-aware components
are not designed to be used in ubiquitous computing
environments, where services appear and disappear
arbitrarily and nodes cannot possibly know in advance
with which other nodes they will interact.

3 APPROACH

This section outlines our approach.

3.1 Example Scenario

To enable services that enhance user interaction with
his/her current environment, we need to enrich his/her
physical surrounding, e.g., shopping malls, museums,
and trade fares, with dedicated computing resources
that enable service to be provided. One example sce-
nario is a shopping mall that offers ambient services
to customers, enabling them to navigate through the
mall and find certain products quickly. Users moving
from shop to shop should have their services deployed
and executed at stationary terminals close to them
to support them. Annotation services on appliances,
e.g., electric lights, may be provided in shops. Such
services depend on context. For example, they present
digital signage for sales promotions while their tar-
get appliances are displayed on shelves. For example,
shops frequently replace and relocate their products
inside them. The services need to follow the move-
ment of their targets. Annotation services in appli-
ances are needed not only at shops to explain what
the appliances are but at users’ homes to explain how
they are to be used. Furthermore, such annotation ser-
vices may depend on users. Some may want audio
annotations but others may want visual annotations.

3.2 Design Principles

The Spatial Connector approach introduces the fol-
lowing three novel elements:

• Container is introduced to reuse existing non-
context-aware software components, e.g., Jav-
aBeans, as components for providing context-
aware service. Each service container is a run-
time environment that manages the execution of at
most one component and invokes specified meth-
ods defined in the component according contex-
tual changes in the real world by using sensing
systems.

• Counterpart is a reference to its target, e.g., a user,
physical entity, or computing device and contains
profiles about the target, e.g., the name of the user,

Spatial�Connector�-�Loosely�Binding�Contextual�Changes�and�Non-Context-Aware�Services

51

the attributes of the entity and the network ad-
dress of the device. It always deploys at comput-
ers close to the the current location of its target by
using location-sensing systems.

• Connector is used to enable services to be dynam-
ically deployed at computers according to contex-
tual changes, e.g., the movements of users, phys-
ical entities, and devices. It defines a spatial rela-
tionship between containers and the counterparts
of the targets that the services should be provided
for. When a counterpart is deployed at another
computer, it dynamically deploys one or more
containers to certain computers, e.g., computers
that contains the counterpart.

Like container technologies for enterprise comput-
ing, the first supports transformations that extend the
functionality provided by the components in isola-
tion. While a container may impose architectural con-
straints on the components it hosts, the functional-
ity extensions provided by the container can often be
achieved without the hosted components having been
explicitly designed to support them. The first sup-
ports separation of concerns in the functions of com-
ponents, the second abstracts away the underlying lo-
cation sensing systems, and the third supports separa-
tion of concerns in the locations of components.

We here explain the reason why services need to
be dynamically deployed. Computing devices in am-
bient computing environments may only have limited
resources, such as restricted levels of CPU power and
amounts of memory. They cannot support all the ser-
vices that may be needed. We therefore have to de-
ploy software that can define services at computers
only while those services are needed. The deploy-
ment of services at computing devices does not only
depend on the requirements of the services. For ex-
ample, if a user has a portable computer, his/her ser-
vices should be provided from the portable computer.
Otherwise, such services should be provided from sta-
tionary computers close to him/her, even when the
services may be initially designed to run on portable
computers.

4 DESIGN AND
IMPLEMENTATION

Our user/location-aware system to guide visitors is
managed in a non-centralized manner. It consists of
four subsystems: 1) location-aware directory servers,
called LDSs, 2) service runtime systems, 3)coun-
terparts, and 4)containers. The first is responsible
for reflecting changes in the real world and the loca-

tions of users when services are deployed at appropri-
ate computers. The second runs on stationary com-
puters located at specified spots close to exhibits in
a museum. It can execute application-specific com-
ponents via containers, where we have assumed that
the computers are located at specified spots in pub-
lic spaces and are equipped with user-interface de-
vices, e.g., display screens and loudspeakers. It is
also responsible for managingconnectors. The third
is managed by the first and deployed at a service run-
time system running on a computer close to its target,
e.g., person, physical entity, or space. The fourth is
implemented as a mobile agent. Each mobile agent
is a self-contained autonomous programming entity.
Application-specific services are encapsulated within
the fourth.

The system has the three unique functions as fol-
lows:

• The counterpart is a digital representation of a
user, physical entity, or computing device. When
its target moves to another location, it is automat-
ically deployed at a computer close to the current
location of the target by using location-sensing
systems.

• Thecontainer is a customizable wrapper for (non-
context-aware) software components, e.g., Jav-
aBeans, for defining application-specific services
to use them as context-aware services.

• The connector is a relationship between the lo-
cations of at least one counterpart and service-
providers. It enables services to be dynami-
cally deployed at computers according to spatial
changes in their targets.

The counterpart is responsible for abstracting away
differences between the underlying location sensing
systems. Each container can contain at most one
application-specific component, e.g., JavaBeans com-
ponent. It is responsible for its inner component with
its favorite runtime environment. Therefore, such a
component can be executed in our system without
modifying it. Each container can explicitly specify
at most oneconnector. The current implementation
provides two types ofconnectors, as shown in Figure
1.

• If a container declares afollow connector for at
most one counterpart, when the latter migrates to a
computer in another location, the former migrates
to the same or another computer in the latter’s des-
tination location.

• If a container declares ashift connector for at
most one counterpart, when the latter migrates to a
computer in another location, the former migrates

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

52

Container

Computer 2 Computer 3Computer 1

User movement

Computer 2 Computer 3Computer 1

Container

Computer 2 Computer 3Computer 1

Counterpart
deployment

Computer 1 Computer 2

User movement

Computer 1 Computer 2

VC

Computer 1 Computer 2

Counterpart
deployment

Container
deployment
with
service

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Location
Sensor

Shfit
connector

Follow
connector

CounterpartCounterpartCounterpartCounterpartCounterpartCounterpart

Container
deployment
with
service

Shfit
connector

Shfit
connector

Follow
connector

Step 1

Step 2

Step 3

Step 1

Step 2

Step 3

Service

Counterpart

Container

Counterpart

Container

Service

Counterpart

Figure 1: Spatial coupling between counterparts and con-
tainers.

to the latter’s source or another computer in the
latter’s source location.

These can be dynamically bound between counter-
parts and service-providers. By using these rela-
tions, containers are independent of their locations
and their deployment policies. When a user is in
front of a product, his/her counterpart is deployed at a
computer close to his/her current location by using a
location-sensing system. Containers that declare fol-
low policies for the counterpart are deployed at the

computer. That is, our containers should accompany
their users and annotate exhibits in front of them in
the real-world. Nevertheless, users and containers are
loosely coupled, because the containers are dynami-
cally linked to the counterparts corresponding to the
users.

4.1 Context Management

Each counterpart is attached to at most one target,
e.g., a user, physical entity, or space. Each counter-
part keeps the identifier of its target or RFID tag at-
tached to the target. Each LDS is responsible for mon-
itoring location-sensing systems and spatially bind-
ing more than one counterpart to each user or phys-
ical entity (Fig. 2). It maintains two databases. The
first stores information about all the service runtime
systems and the second stores all the containers at-
tached to users or physical entities. It can exchange
this information with other LDSs in a peer-to-peer
manner. Each LDS only maintains up-to-date infor-
mation on partial contextual information instead of
on tags in the whole space. All LDSs and service
runtime systems periodically multicast their network
addresses to other LDSs and service runtime systems
through UDP-multicasting. Therefore, when a new
LDS or service runtime system is dynamically added
to or removed from the whole system, other systems
are aware of changes in their network domains.

Location-sensing systems can be classified into
two types: proximity and lateration. The first ap-
proach detects the presence of objects within known
spots or close to known points, and the second es-
timates the positions of objects from multiple mea-
surements of the distance between known points. The
current implementation assumes that museums have
provided visitors with tags. These tags are small RF
transmitters that periodically broadcast beacons, in-
cluding the identifiers of the tags, to receivers located
in exhibition spaces. The receivers locate the pres-
ence or positions of the tags. To abstract away dif-
ferences between the underlying location-sensing sys-
tems, the LDSs map geometric information measured
by the sensing systems to specified areas, calledspots,
where the exhibits and the computers that play the an-
notations are located.

4.2 Counterpart

Each counterpart is automatically deployed at a ser-
vice runtime system running on a computer in a spot
that contains its target by LDSs. We explain how
to deploy counterparts according to changes in the
real world. When the underlying sensing system de-

Spatial�Connector�-�Loosely�Binding�Contextual�Changes�and�Non-Context-Aware�Services

53

Location-aware Directory Server A Location-aware Directory Server B

directory

database
directory

database

Context

manager

Context

manager

event handlerevent handler

abstraction

layer

abstraction

layer
abstraction

layer

Computer Computer Computer

tagtag tag

tag

tag

Space 3Space 1 Space 2

User migration

tag

tag

Desklamp-bound

counterpart
User-bound

virutal counterpart

Runtime System Runtime System

peer-to-peer

communication

Migration
Locating sensor Locating sensor Locating sensor

Container

Counter-
partpartpart

Runtime System

Service

Figure 2: Location-aware directory server.

tects the presence (or absence) of a tag in a spot, the
LDS that manages the system attempts to query the
locations of the counterpart tied to the tag from its
database. If the database does not contain any infor-
mation about the identifier of the tag, it multicasts a
query message that contains the identity of the new
tag to other LDSs through UDP multicasting. It then
waits for reply messages from the other LDSs. Next,
if the LDS knows the location of the counterpart tied
to the newly visiting tag, it deploys the counterpart at
a computer close to the spot that contains the tag.

4.3 Service Runtime System

Each service runtime system is responsible for exe-
cuting and migrating application-specific components
with containers to other service runtime systems run-
ning on different computers through a TCP chan-
nel using mobile-agent technology. It is built on the
Java virtual machine (Java VM version 1.5 or later),
which conceals differences between the platform ar-
chitectures of the source and destination computers.
It governs all the containers inside it and maintains
the life-cycle state of each application-specific com-
ponent via its container. When the life-cycle state
of an application-specific component changes, e.g.,
when it is created, terminates, or migrates to another
runtime system, its current runtime system issues spe-
cific events to the component via its container, where
the container may mask some events or issue other
events.

4.4 Container

Each container is an autonomous programmable en-
tity implemented as a mobile agent. Containers can
provide application-specific components with their

favorite runtime environments and carry them be-
tween computers. They are defined according to types
of application-specific components. Each container in
the current implementation is a collection of Java ob-
jects and support Java-based components, e.g., Jav-
aBeans and Java Applets. It can migrate from com-
puter to computer and duplicate itself by using mobile
agent technology.1 When a component is transferred
over the network, not only the code of the agent but
also its state is transformed into a bitstream by us-
ing Java’s object serialization package and then the
bit stream is transferred to the destination. Since
the package does not support the capturing of stack
frames of threads, when an agent is deployed at an-
other computer, its runtime system propagates certain
events to instruct it to stop its active threads. The
runtime system on the receiving side receives and un-
marshals the bit stream. Arriving agents may explic-
itly have to acquire various resources, e.g., video and
sound, or release previously acquired resources.

4.5 Connector

TheSpatial Connector approach enables users to ex-
plicitly assign aconnector to each container through
its management GUI, even while the container and its
inner component are running. Each connector is acti-
vated when its target counterpart migrates to a com-
puter in another cell due to the movement of the coun-
terpart’s target in the physical world. We will explain
how to deploy containers, including its inner compo-
nents with connectors according to the deployment
of the counterparts that are specified in the connec-
tors as their targets. The deployment of each con-
tainer is specified in its connector and is managed by

1JavaBeans can easily be translated into agents in this
platform.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

54

runtime systems without any centralized management
system. Each runtime system periodically advertises
its address to the others through UDP multicasting,
and these runtime systems then return their addresses
and capabilities to the runtime system through a TCP
channel. The procedure involves four steps. 1) When
a counterpart migrates to another runtime system (in a
different cell), 2) The destination sends a query mes-
sage to the source of the visiting counterpart. 3) The
source multicasts a query message within current or
neighboring sub-networks. If a runtime system has a
container whose connector specifies the visiting coun-
terpart, it sends the destination information about it-
self and its neighboring runtime systems. 4) The des-
tination next instructs the container to migrate to one
of the candidate destinations recommended by the tar-
get, because this platform treats every container as an
autonomous entity.

5 CURRENT STATUS

A prototype implementation of this approach was
constructed with Sun’s Java Developer Kit, version
1.5 or later version. Although the current implemen-
tation was not constructed for performance, we evalu-
ated the migration of a container based on connectors.
When a container declares afollow or shift connec-
tor for a counterpart, the cost of migrating the for-
mer to the destination or the source of the latter after
the latter has begun to migrate is 88 ms or 85 ms,
where three computers over a TCP connection is 32
ms.2 This experiment was done with three comput-
ers (Intel Core 2 Duo 2 GHz with MacOS X 10.6 and
Java Development Kit ver.6) connected through a Fast
Ethernet network. Migrating containers included the
cost of opening a TCP-transmission, marshalling the
agents, migrating them from their source computers
to their destination computers, unmarshaling them,
and verifying security.

Support for location-sensing systems: The cur-
rent implementation supports two commercial track-
ing systems. The first is the Spider active RFID
tag system, which is a typical example of proximity-
based tracking. It provides active RF-tags to users.
Each tag has a unique identifier that periodically emits
an RF-beacon (every second) that conveys an identi-
fier within a range of 1-20 meters. The second system
is the Aeroscout positioning system, which consists of
four or more readers located in a room. These read-
ers can measure differences in the arrival timings of

2The size of each counterpart was about 8 KB in size.

WiFi-based RF-pulses emitted from tags and estimate
the positions of the tags from multiple measurements
of the distance between the readers and tags; these
measurement units correspond to about two meters.

Security To prevent malicious containers or
application-specific components from being passed
between computers, each runtime system supports a
Kerberos-based authentication mechanism for agent
migration. It authenticates users without exposing
their passwords on the network and generates se-
cret encryption keys that can be selectively shared
between parties that are mutually suspicious. Since
it can inherit the security mechanisms provided
in the Java language environment, the Java VM
explicitly restricts containers so that they can only
access specified resources to protect computers from
malicious containers or components.

6 APPLICATION: SUPPORT TO
LIFECYCLE SUPPORT OF
PRODUCTS

We experimented on and evaluated a context-aware
annotation service for appliances, e.g., electric lights.
This is unique to other existing active content for dig-
ital signage because it does not support advertising of
its target appliance but assists users with controlling
and disposing of the appliance. We attached an RFID
tag to an electric light and provided a counterpart and
connected the counterpart and containers for the tar-
get by usingconnectors according the locations of the
light, e.g., a warehouse, store, and home. These con-
tainers had JavaBean objects as application-specific
services inside them. They supported the lifecycle of
the light from shipment, showcasing, assembly, us-
age, and disposal.

In warehouse

While the light was in the warehouse, its counter-
part was automatically deployed at a portable terminal
close to the light. Two kinds of application-specific
components were provided for the experiment. The
first was attached to the counterpart through thefollow
connector. This notified a server in the warehouse of
its specification, e.g., its product number, serial num-
ber, and date of manufacture, size, weight, serial num-
ber, the date of manufacture. The second was attached
to the counterpart through theshift connector and or-
dered more lights. The both two application-specific
components themselves were not context-aware, be-
cause they were implemented as JavaBean objects. In

Spatial�Connector�-�Loosely�Binding�Contextual�Changes�and�Non-Context-Aware�Services

55

fact, we could reuse JavaBean objects running on a
server with Java 2 Enterprise Edition to advertise the
light from Web without modifying the objects them-
selves.

In store
While the light was being showcased in a store, we
assumed that it had two application-specific compo-
nents. The first declared thefollow connector and
was deployed at a computer close to its target object
so that it displayed advertising content to attract pur-
chases by customers who visited the store. Figures 3
a) and b) have two images maintained in the compo-
nent that display the price, product number, and man-
ufacture’s name on the current computer. The second
declared theshift connector. When the light was sold,
it notified the warehouse server that the light was out
of stock.

In house
When the light was bought and transferred to buyer’s
house, a container, which was attached to the coun-
terpart through thefollow connector and had an
application-specific component inside it, migrated to
a computer in the house and provided instructions on
how it should be assembled. Figure 3 c) has the active
content for advice on assembly. The component also
advised how it was to be used as shown in Fig. 3 d).
When it was disposed of, the component presented its
active content to give advice on disposal. Figure 3 e)
illustrates how the appliance was to be disposed of.

a) In-store poster advertising

c) In-house content on assembly guide d) In-house content on using guide

e) In-house content on disposal guide

b) In-store content on specification

Figure 3: Digital signage for supporting appliance.

These application-specific components could be
defined independently of any locations. This is useful
to separate services in developing application-specific
services.

We can provide application-specific component in
buyers’ houses that controls appliances, which may
not have any network interfaces. The component al-
lows us to use a PDA to remotely control nearby lights
to use them as place-bound controller services. The
services can communicate with X10-base servers to
switch lights on or off and are indirectly attached to
places with room lights in this system through their
containers. Each user has a tagged PDA, which sup-
ports the runtime system with a wireless LAN inter-
face. When a user with a PDA visits a spot that con-
tains a light, the approach moves a controller compo-
nent with its container to the runtime system of the
visiting PDA. The component, now running on the
PDA, displays a graphical user interface to control
the light. When the user leaves that location, its con-
tainer carried the component automatically closes its
user interface and returns to its home runtime system.

7 CONCLUSIONS

We constructed an approach, calledSpatial Connec-
tor, for binding non-context aware services with con-
texts. It supported the separation of services and con-
text, so that application-specific services could be de-
fined independently of any contextual information. It
also provides three elements, calledcontainer, coun-
terpart, andconnector. The first supports separation
of concerns in the functions of components, the sec-
ond abstracts away the underlying location sensing
systems, and the third supports separation of concerns
in the locations of components. The approach enabled
non-context-aware services to be used as context-
aware services to be used as context-aware services. It
enabled us to dynamically modify where, when, what,
and how services should be activated.

The example presented in this paper was not ex-
pressively large-scale spaces and consequently did
not have as many users as cities. Our final goal is a
city-wide ubiquitous computing environment, which
will provide a variety of services to massive num-
bers of users from numerous heterogenous comput-
ers. Therefore, our system itself is designed for a
city-wide context-aware system.3 In fact, Since the
approach had no centralized management system, we
believe that it was useful in city-wide context-aware
services.

3It is almost impossible to experiment academic systems
in city-wide spaces without any pre-evaluation in small-
spaces.

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

56

REFERENCES

Abowd, G. D. (1999). Software engineering issues
for ubiquitous compuitng. InProceedings of In-
ternational Conference on Software Engineering
(ICSE’99), pages 75–84. ACM Press.

Desmet, B., Vallejos, J., Costanza, P., De Meuter, W., and
D’Hondt, T. (2007). Context-oriented domain analy-
sis. InProceedings of the 6th international and inter-
disciplinary conference on Modeling and using con-
text, CONTEXT’07, pages 178–191. Springer-Verlag.

Flissi, A., Gransart, C., and Merle, P. (2005). A component-
based software infrastructure for ubiquitous comput-
ing. In Proceedings of the The 4th International Sym-
posium on Parallel and Distributed Computing, pages
183–190. IEEE Computer Society.

Henricksen, K. and Indulska, J. (2005). Develop-
ing context-aware pervasive computing applications:
Models and approach.Pervasive and Mobile Comput-
ing, In, 2:2005.

Henricksen, K., Indulska, J., and Rakotonirainy, A. (2002).
Modeling context information in pervasive comput-
ing systems. InProceedings of the First International
Conference on Pervasive Computing, Pervasive ’02,
pages 167–180. Springer-Verlag.

Kassem, N. (2000). Designing enterprise applica-
tions with the java 2 plaform. Technical re-
port, Sun Microsystems. Sun J2EE Blueprints,
http://java.sun.com/j2ee/download.html.

Modahl, M., Agarwalla, B., Saponas, S., Abowd, G., and
Ramachandran, U. (2005). Ubiqstack: a taxonomy
for a ubiquitous computing software stack.Personal
Ubiquitous Computing., 10:21–27.

Roman, M., Al-muhtadi, J., Ziebart, B., Campbell, R., and
Mickunas, M. D. (2003). System support for rapid
ubiquitous computing application development and
evaluation. InProceedings of Workshop on System
Support for Ubiquitous Computing (UbiSys’03),5th
International Conference on Ubiquitous Computing
(UbiComp 2003.

Salber, D., Dey, A. K., and Abowd, G. D. (1999). The
context toolkit: Aiding the development of context-
enabled applications. InProceedings of Interna-
tional Conference on Computer-Human Interaction
(CHI’99), pages 15–20. ACM Press.

Schilit, B. and Theimer, M. (1994). Disseminating active
map information to mobile hosts.Network, IEEE,
8(5):22–32.

Scholtz, J., Consolvo, S., Scholtz, J., and Consolvo,
S. (2004). Towards a discipline for evaluating
ubiquitous computing applications. Technical re-
port, National Institute of Standards and Tech-
nology. [Online]. Available: http://www.itl.nist.gov/
iad/vvrg/newweb/ubiq/docs/1 scholtz modified.pdf.

Szyperski, C. (1998). Component Software: Beyond
Object-Oriented Programming. Addison-Wesley.

Spatial�Connector�-�Loosely�Binding�Contextual�Changes�and�Non-Context-Aware�Services

57

