
Computational Experience in Solving Continuous-time Algebraic Riccati
Equations using Standard and Modified Newton’s Method

Vasile Sima
Advanced Research, National Institute for Research & Development in Informatics,

Bd. Mareşal Averescu, Nr. 8–10, Bucharest, Romania

Keywords: Algebraic Riccati Equation, Numerical Methods, Optimal Control, Optimal Estimation.

Abstract: Improved algorithms for solving continuous-time algebraic Riccati equations using Newton’s method with or
without line search are discussed. The basic theory and Newton’s algorithms are briefly presented. Algorith-
mic details the developed solvers are based on, the main computational steps (finding the Newton direction,
finding the Newton step size), and convergence tests are described. The main results of an extensive perfor-
mance investigation of the solvers based on Newton’s method are compared with those obtained using the
widely-used MATLAB solver. Randomly generated systems with orders till 2000, as well as the systems from
a large collection of examples, are considered. The numerical results often show significantly improved accu-
racy, measured in terms of normalized and relative residuals, and greater efficiency than the MATLAB solver.
The results strongly recommend the use of such algorithms, especially for improving the solutions computed
by other solvers.

1 INTRODUCTION

The numerical solution of algebraic Riccati equations
(AREs) is an essential step in many computational
methods for model reduction, filtering, and controller
design for linear control systems. LetA, E ∈ Rn×n,
B∈Rn×m, andQ andRbe symmetric matrices of suit-
able dimensions. In a compact notation, the general-
ized continuous-time AREs (CAREs), with unknown
X = XT ∈ Rn×n, are defined by

0 = Q+ op(A)TX op(E) + op(E)TX op(A) (1)

−L(X)R−1L(X)T =: R (X),

whereE andRare assumed to be nonsingular, and

L(X):=L+ op(E)TXB ,

with L of suitable size. The operator op(M) repre-
sents eitherM or MT . Define alsoG := BR−1BT . An
optimal regulator problem involves the solution of an
ARE with op(M) = M; an optimal estimator problem
involves the solution of an ARE with op(M) = MT ,
input matrix Breplaced (by duality) by the transpose
of the output matrix C∈ Rp×n, andm replaced by
p. (This means thatL should ben× p in this case.)
In practice, oftenQ and L are given asCTQ̄C and
L = CT L̄, respectively. The solutions of an ARE are
the matricesX = XT for which R (X) = 0. Usually,

what is needed is astabilizing solution, Xs, for which
the matrix pair(op(A− BK(Xs)) , op(E)) is stable
(in a continuous-time sense), where op(K(Xs)) is the
gain matrix of the optimal regulator or estimator, and

K(X) := R−1L(X)T (2)

(with X replaced byXs).
There is a vast literature concerning AREs and

their use for solving optimal control and estimation
problems; see, e.g., the monographs (Anderson and
Moore, 1971; Mehrmann, 1991; Lancaster and Rod-
man, 1995) for many theoretical results. The op-
timization criterion for linear control systems is a
quadratic performance index in terms of the system
state and control input. By minimizing this criterion,
a solution to the optimal systems stabilization and
control is obtained, expressed as a state-feedback con-
trol law. Briefly speaking, this control law achieves a
trade-off between the regulation error and the control
effort. The optimal estimation or filtering problem,
for systems with Gaussian noise disturbances, can be
solved as a dual of an optimal control problem, and its
solution gives the minimum variance state estimate,
based on the system output. It is worth to say that the
results of an optimal design are often better suited in
practice than those found by other approaches. For
instance, pole assignment may deliver too large gain

5Sima V..
Computational Experience in Solving Continuous-time Algebraic Riccati Equations using Standard and Modified Newton’s Method.
DOI: 10.5220/0004482500050016
In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 5-16
ISBN: 978-989-8565-70-9
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



matrices, producing high-magnitude inputs, which
might not be acceptable. In both control and estima-
tion problems, including those stated in theH∞ theory
(e.g., (Francis, 1987)), a major computational step is
the solution of an ARE. Due to their importance, nu-
merous numerical methods have been proposed for
solving AREs; see, for instance, (Mehrmann, 1991;
Sima, 1996). There are also several highly-used soft-
ware implementation, e.g., in MATLAB (MATLAB,
2011), or in the SLICOT Library (Benner et al., 1999;
Benner and Sima, 2003; Van Huffel et al., 2004; Ben-
ner et al., 2010).

Newton’s method for solving AREs has been con-
sidered by many authors, for instance, (Kleinman,
1968; Mehrmann, 1991; Lancaster and Rodman,
1995; Sima, 1996; Benner, 1997; Benner, 1998; Ben-
ner and Byers, 1998). Actually, the matrix sign func-
tion method for solving AREs, e.g., (Roberts, 1980;
Gardiner and Laub, 1986; Byers, 1987; Sima and
Benner, 2008), uses a specialized Newton’s method
to compute the square root of the identity matrix of
order 2n. This paper merely reports on implementa-
tion details and numerical results. In addition, there
are contributions compared to (Benner, 1998; Ben-
ner and Byers, 1998): improved stopping criteria, im-
proved functionality (regarding generality in the co-
efficient matrices and options), a better routine for
computing the roots of a third order polynomial, etc.
The paper extends the results of (Sima and Benner,
2006) in some details, and by investigating the nu-
merical behavior of the current Newton-based ARE
solvers for high-order random systems, and for sys-
tems from the COMPleib collection (Leibfritz and
Lipinski, 2003; Leibfritz and Lipinski, 2004). (The
previous paper (Sima and Benner, 2006) used ran-
domly generated systems withn ≤ 40, and systems
from the CAREX benchmark collection (Abels and
Benner, 1999), where most problems have small size,
but may be very ill-conditioned.) It is worth mention-
ing that Newton’s method has been applied in (Penzl,
2000) for solving special classes of large-order AREs,
using low rank Cholesky factors of the solutions of
the Lyapunov equations built during the iterative pro-
cess (Penzl, 1998). Additional numerical results, for
randomly generated systems withn≤ 600, and com-
parison with MATLAB and SLICOT solvers are pre-
sented in (Sima, 2005). However, contrary to stan-
dard solvers, the specialized solvers used (lp lrnm
andlp lrnm i) are not general solvers. In order to
use them advantageously, the following main assump-
tions must be fulfilled: 1) the matrixA is structured or
sparse; 2) the solutionX has a small rank in compar-
ison with n. (These solvers use the possibly sparse
structure of the matrixA and operations of the form

Ab or A−1b, whereb is a vector.) The solvers dis-
cusssed in this paper are general, and can be used to
solve large dense problems.

The paper compares the performance of the New-
ton solver with or without line search with the per-
formance of the state-of-the-art commercial solver
care from MATLAB Control System Toolbox. The
MATLAB solver uses a different, eigenvalue ap-
proach, based on the results in, e.g., (Laub, 1979;
Van Dooren, 1981; Arnold and Laub, 1984). Rela-
tively recent research, including both theoretical and
numerical investigation, has been directed to exploit
the Hamiltonian-symplectic structure of the eigen-
problem associated to the ARE (Raines and Watkins,
1992; Benner et al., 2002; Benner et al., 2007; Sima,
2010; Sima, 2011).

A recursive method for computing the positive
definite stabilizing solution of an ARE with an in-
definite quadratic term has been recently proposed
in (Lanzon et al., 2008).

One drawback of the Newton’s method is its de-
pendence on an initialization,X0. When searching for
a stabilizing solutionXs, the initializationX0 should
also be stabilizing, i.e.,(op(A− BK(X0)) , op(E))
should be stable. Except for stable systems, finding a
suitable initialization can be a difficult task. Stabiliz-
ing algorithms have been proposed, mainly for stan-
dard systems, e.g., in (Kleinman, 1968; Varga, 1981;
Sima, 1981; Hammarling, 1982). However, often
these algorithms produce a matrixX0 and/or the fol-
lowing several matricesXi , i = 1,2, . . . (computed by
the Newton method), with very large norms, and the
solver may encounter severe numerical difficulties.
For this reason, Newton’s method is best used for it-
erative improvement of a solution or as defect correc-
tion method (Mehrmann and Tan, 1988), delivering
the maximal possible accuracy when starting from a
good approximate solution. Moreover, it is preferred
in implementing certain fault-tolerant systems, which
require controller updating, see, e.g. (Ciubotaru and
Staroswiecki, 2009) and the references therein.

The organization of the paper is as follows. Sec-
tion 2 starts by summarizing the basic theory and
Newton’s algorithms for AREs. Algorithmic details,
computation of the Newton direction, computation of
the Newton step size, and convergence tests are dis-
cussed in separate subsections. Section 3 presents the
main results of an extensive performance investiga-
tion of the solvers based on Newton’s method, in com-
parison with the MATLAB solvercare. Randomly
generated systems with order till 1000 (but also a sys-
tem with order 2000), as well as systems from the
COMPleib collection (Leibfritz and Lipinski, 2003;
Leibfritz and Lipinski, 2004), are considered in the

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

6



two subsections. Section 4 summarizes the conclu-
sions.

2 BASIC THEORY AND
NEWTON’S ALGORITHMS

The following assumptions are made.

Assumptions A:

• Matrix E is nonsingular.

• Matrix pair (op(E)−1op(A) , op(E)−1B) is stabi-
lizable.

• Matrix R= RT is positive definite (R> 0).

• A stabilizing solutionXs exists and it is unique.

The algorithms considered in the sequel are enhance-
ments of Newton’s method, which employ aline
searchprocedure to minimize the residual along the
Newton direction.

The conceptual algorithm can be stated in the fol-
lowing form:

Algorithm N: Newton’s method with line search
for CARE

Input: The coefficient matricesE, A, B, Q, R, andL,
and an initial matrixX0 = XT

0 .
Output: The approximate solutionXk of CARE.

FORk= 0,1, . . . ,kmax, DO

1. If convergence or non-convergence is detected, re-
turnXk and/or a warning or error indicator value.

2. ComputeKk :=K(Xk) with (2) and op(Ak) , where
Ak = op(A) −BKk.

3. Solve inNk the continuous-time generalized (or
standard, ifE = In) Lyapunov equation

op(Ak)
TNk op(E) + op(E)TNk op(Ak) =−R (Xk) .

4. Find a step sizetk which minimizes the squared
Frobenius norm‖R (Xk+ tNk)‖2

F (with respect to
t).

5. UpdateXk+1 = Xk+ tkNk.

END

Standard Newton’s algorithms are obtained by taking
tk = 1 at Step 4 at each iteration. When the initial
matrix X0 is far from a Riccati equation solution, the
Newton’s method with line search often outperforms
the standard Newton’s method.

Basic properties for the standard and modified
Newton’s algorithms for CAREs can be stated as fol-
lows (Benner, 1997):

Theorem 2.1(Convergence of Algorithm N, standard
case). If the Assumptions A hold, and X0 is stabiliz-
ing, then the iterates of the Algorithm N with tk = 1
satisfy

(a) All matrices Xk are stabilizing.
(b) Xs ≤ ·· · ≤ Xk+1 ≤ Xk ≤ ·· · ≤ X1.
(c) limk→∞ Xk = Xs.
(d) Global quadratic convergence: There is a con-
stantγ > 0 such that

‖Xk+1−Xs‖ ≤ γ‖Xk−Xs‖2, k≥ 1.

Theorem 2.2(Convergence of Algorithm N). If the
Assumptions A hold, X0 is stabilizing, and, in addi-
tion, (op(E)−1op(A) , op(E)−1B) is controllable and
tk ≥ tL > 0, for all k≥ 0, then the iterates of the Algo-
rithm N satisfy

(a) All iterates Xk are stabilizing.
(b) ‖R (Xk+1)‖F ≤ ‖R (Xk)‖F and equality holds
if and only ifR (Xk) = 0.

(c) limk→∞ R (Xk) = 0.
(d) limk→∞ Xk = Xs.
(e) In a neighbourhood of Xs, the convergence is
quadratic.

(f) limk→∞ tk = 1.

Theorem 2.2 does not ensure monotonic convergence
of the iteratesXk in terms of definiteness, contrary
to the standard case (Theorem 2.1, item (b)). On
the other hand, under the specified conditions, The-
orem 2.2 states the monotonic convergence of the
residuals to 0, which is not true for the standard algo-
rithms. It is conjectured that Theorem 2.2 also holds
under the weaker assumption of stabilizability instead
of controllability. This is supported by the numerical
experiments.

2.1 Algorithmic Details

The essential steps of Algorithm N will be detailed
below.

Continuous-time AREs can be put in a simpler
form, which is more convenient for Newton’s algo-
rithms. Specifically, setting

Ã = A−BR−1LT ,

Q̃ = Q−LR−1LT , (3)

after redefiningA and Q as Ã and Q̃, respectively,
equation (1) reduces to

0 = op(A)TX op(E) + op(E)TX op(A)

− op(E)TXGXop(E) +Q=: R (X), (4)

or, in the standard case (E = In), to

0= op(A)TX+X op(A) −XGX+Q=: R (X). (5)

Computational�Experience�in�Solving�Continuous-time�Algebraic�Riccati�Equations�using�Standard�and�Modified�Newton's
Method

7



The transformations in (3) eliminate the matrixL
from the formulas to be used. It is more economical
to solve the equations (4) or (5), since otherwise the
calculations involvingL must be performed at each
iteration. In this case, the matrixKk is no longer
computed in Step 2, andAk = op(A)−GXk op(E) (or
Ak = op(A) −DDTXk op(E) ).

Algorithm N was implemented in a Fortran
77 subroutineSG02CD following the SLICOT Li-
brary (Benner et al., 1999; Van Huffel and Sima,
2002; Van Huffel et al., 2004) implementation and
documentation standards1. The implementation deals
with generalized algebraic Riccati equations, possibly
for the discrete-time case, without inverting the ma-
trix E. This is very important for numerical reasons,
especially whenE is ill-conditioned with respect to
inversion. Standard algebraic Riccati equations (in-
cluding the case whenE is specified asIn, or even[]
in MATLAB), are solved with the maximal possible
efficiency. Moreover, both control and filter algebraic
Riccati equations can be solved by the same routine,
using an option (“mode”) parameter, which specifies
the op operator. The matricesA andE are not trans-
posed. It it possible to also avoid the transposition for
C andL, for the filter equation, but this is less impor-
tant and more difficult to implement. (Some existing
lower-level routines do not cover the transposed case.)

The implemented algorithm solves either the gen-
eralized CARE (4) or standard CARE (5) using New-
ton’s method with or without line search. The selec-
tion is made using another option. There is an op-
tion for solving related AREs with the minus sign re-
placed by a plus sign in front of the quadratic term.
Moreover, instead of the symmetric matrixG, G =
BR−1BT , then-by-mmatrixB and the symmetric and
invertible m-by-m matrix R, or its Cholesky factor,
may also be given. The iteration is started by an ini-
tial (stabilizing) matrixX0, which can be omitted, if
the zero matrix can be used. IfX0 is not stabilizing,
and findingXs is not required, Algorithm N will con-
verge to another solution of CARE. Either the upper,
or lower triangles, not both, of the symmetric matrices
Q, G (or R), andX0 need to be stored. Since the so-
lution computed by a Newton algorithm generally de-
pends on initialization, another option specifies if the
stabilizing solutionXs is to be found. In this case, the
initial matrix X0 must be stabilizing, and a warning is
issued if this property does not hold; moreover, if the
computedX is not stabilizing, an error is issued. An-
other option specifies whether to use standard Newton
method, or the modified Newton method, with line
search. The optimal size of the real working array
can be queried, by setting its length to−1. Then, the

1Seehttp://www.slicot.org

solver returns immediately, with the first entry of that
array set to the optimal size.

A maximum allowed number of iteration steps,
kmax, is specified on input, and the number of itera-
tion steps performed,ks, is returned on exit.

If m≤ n/3, the algorithm is faster if a factoriza-
tion G= DDT is used instead ofG itself. Usually, the
routine uses the Cholesky factorization of the matrix
R, R= LT

r Lr , and computesD = BL−1
r . The standard

theory assumes thatR is positive definite. But the rou-
tine works also if this assumption does not hold nu-
merically, by using theUDUT or LDLT factorization
of R. In that case, the current implementation usesG,
and not its factors, even ifm≤ n/3.

The arrays holding the data matricesA andE are
unchanged on exit. ArrayB stores eitherB or G. On
exit, if B was given, andm≤ n/3, B returns the ma-
trix D = BL−1

r , if the Cholesky factorLr can be com-
puted. Otherwise, arrayB is unchanged on exit. Array
Q stores matrixQ on entry and the computed solution
X on exit. If matrixR or its Cholesky factor is given,
it is stored in arrayR. On exit,R contains either the
Cholesky factor, or the factors of theUDUT or LDLT

factorization ofR, if R is found to be numerically in-
definite. In that case, the interchanges performed for
theUDUT or LDLT factorization are stored in an aux-
iliary integer array.

The basic stopping criterion for the iterative pro-
cess is stated in terms of a normalized residual,rk, and
a toleranceτ. If

rk := r(Xk) := ‖R (Xk)‖F/max(1,‖Xk‖F)≤ τ, (6)

whereXk is the currently computed approximate so-
lution (at iterationk), the iterative process is success-
fully terminated. Ifτ ≤ 0, a default tolerance is used,
defined in terms of the Frobenius norms of the given
matrices, and relative machine precision,εM . Specif-
ically, for givenG, τ is computed by the formula

τ = min(εM
√

n
(

‖E‖F (2‖A‖F

+ ‖G‖F‖E‖F)+ ‖Q‖F
)

,
√

εM ). (7)

WhenG is given in factorized form (see above), then
‖G‖F in (7) is replaced by‖D‖2

F . WhenE is identity,
the factors involving its norm are omitted. The sec-
ond operand of min in (7) was introduced to prevent
deciding convergence too early for systems with very
large norms forA, E, G, and/orQ.

The finally computed normalized residual is also
returned. Moreover, approximate closed-loop system
poles, as well as min(ks, 50 )+1 values of the resid-
uals, normalized residuals, and Newton steps are re-
turned in a working array, whereks is the iteration
number when Newton’s process stopped.

Several approaches have been tried in order to re-
duce the number of iterations. One of them was to

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

8



settk = 1 whenevertk ≤
√

εM. Often, but especially
in the first iterations, the computed optimal stepstk
are too small, and the residual decreases too slowly.
This is calledstagnation, and remedies are used to
escape stagnation, as described below. The finally
chosen strategy was to settk = 1 when stagnation is

detected, but also whentk < 0.5, ε1/4
M < rk < 1, and

‖R̂ (Xk+ tkNk)‖F ≤ 10, if this happens during the first
10 iterations; here,̂R (Xk+ tkNk) is an estimate of the
residual obtained using the formula (10).

In order to observe stagnation, the last computed
kB residuals are stored in the firstkB entries of an array
RES. If ‖R̂ (Xk+ tkNk)‖F > τs‖R (Xk−kB)‖F > 0, then
tk = 1 is used instead. The current implementation
usesτs = 0.9 and setskB = 2, but values as large as
kB = 10 can be used by changing this parameter. The
first kB entries of arrayRES are reset to 0 whenever a
standard Newton step is applied.

Pairs of symmetric matrices are stored economi-
cally, to reduce the workspace requirements, but pre-
serving the two-dimensional array indexing, for ef-
ficiency. Specifically, the upper (or lower) trian-
gle of Xk and the lower (upper) triangle ofR (Xk)
are concatenated along the main diagonals in a two-
dimensionaln(n+1) array, and similarly forG and a
copy of the matrixQ, if G is used. ArrayQ itself is
also used for (temporarily) storing the residual matrix
R (Xk), as well as the intermediate matricesXk and
the final solution.

If G is to be used (sincem> n/3), but the norm of
G is too large, then its factorD is used thereafter, in
order to enhance the numerical accuracy, even if the
efficiency somewhat diminishes.

2.2 Computation of the Newton
Direction

The algorithm computes the initial residual matrix
R (X0) and the matrix op(A0) , whereA0 := op(A) ±
GX0op(E) . If no initial matrix X0 is given, we set
X0 = 0, R (X0) = Q and op(A0) = A.

At the beginning of the iterationk, 0≤ k ≤ kmax,
the algorithm decides to terminate or continue the
computations, based on the current normalized resid-
ual r(Xk). If r(Xk) > τ, a standard (ifE = In) or gen-
eralized (otherwise) Lyapunov equation

op(Ak)
TNk op(E) + op(E)TNk op(Ak) =−σR (Xk),

(8)
is solved inNk (the Newton direction), using SLICOT
subroutines. The scalarσ ≤ 1 is set by the Lyapunov
solver in order to prevent solution overflowing. Nor-
mally, σ = 1.

Another option is to scale the matricesAk and
E (if E is general) for solving the Lyapunov equa-
tions, and suitably update their solutions. Note that
the LAPACK subroutinesDGEES andDGGES, (Ander-
son et al., 1999) which are called by the SLICOT
standard and generalized Lyapunov solvers, respec-
tively, to compute the real Schur(-triangular) form,
do not scale the cefficient matrices. Just column and
row permutations are performed, to separate isolated
eigenvalues. For some examples, this fact created
troubles: the convergence was not achieved in a rea-
sonable number of iterations. This difficulty was re-
moved by the scaling included in the Newton code.

2.3 Computation of the Newton Step
Size

The next step is the computation of the optimal size
of the Newton step (line search). The procedure mini-
mizes the Frobenius norm of the residual matrix along
the Newton direction,Nk. Specifically, the optimal
step sizetk is given by

tk = argmin
t

‖R (Xk+ tNk)‖2
F . (9)

It is proved (Benner, 1997) that, in certain standard
conditions, an optimaltk exists, and it is in the “canon-
ical” interval [0,2]. Computationally,tk is found as
the argument of the minimal value in [0,2] of a poly-
nomial of order 4. Indeed,

R (Xk+ tNk) = (1− t)R (Xk)− t2Vk, (10)

where Vk = op(E)TNkGNk op(E) . Therefore, the
minimization problem (9) reduces to the minimiza-
tion of the quartic polynomial (Benner, 1997)

fk(t) = trace(R (Xk+ tNk)
2)

= αk(1− t)2−2βk(1− t)t2+ γkt
4, (11)

where αk = trace(R (Xk)
2), βk = trace(R (Xk)Vk),

γk = trace(V2
k ).

In order to solve the minimization problem (9), a
cubic polynomial (the derivative offk(t)) is set up,
whose roots in [0,2], if any, are candidates for the so-
lution of the minimum residual problem. The roots
of this cubic polynomial are computed by solving an
equivalent 4-by-4 standard or generalized eigenprob-
lem, following (Jónsson and Vavasis, 2004). Specifi-
cally, let the cubic polynomial be defined by

p(t) = a+bt+ ct2+dt3.

Normally, a matrix pencil is built, whose eigenvalues
are the roots of the given polynomial, and they are
computed using the QR and QZ algorithms, depend-
ing on the magnitude of the polynomial coefficients.

Computational�Experience�in�Solving�Continuous-time�Algebraic�Riccati�Equations�using�Standard�and�Modified�Newton's
Method

9



A candidate solution should satisfy the following
requirements: (i) it is real; (ii) it is in the interval [0,2];
(iii) the second derivative of the cubic polynomial is
positive. If no solution is found, thentk is set equal to
1. If two solutions are found, thentk is set to the value
corresponding to the minimum residual.

2.4 Convergence Tests and Updating the
Current Iterate

The next action is to check if the line search stagnates
and/or the standard Newton step is to be preferred. If

n> 1, k ≤ 10, tk < 0.5, ε1/4
M < rk < 1, and‖R̂ (Xk+

tkNk)‖F ≤ 10, or‖R̂ (Xk+ tkNk)‖F > τs‖R (Xk−kB)‖F
(i.e., stagnation is detected), then a standard Newton
step (tk = 1) is used.

Another test is to check if updatingXk is mean-
ingful. The updating is done iftk‖Nk‖F > εM‖Xk‖F .
If this is the case, setXk+1 = Xk+ tkNk, and compute
the updated matrices op(Ak+1) andR (Xk+1). Other-
wise, the iterative process is terminated and a warn-
ing value is set, since no further improvement can be
expected. Although the computation of the residual
R (Xk + tkNk) can be efficiently performed by updat-
ing the residualR (Xk), the original data is used, since
the updating formula (10) could suffer from severe
numerical cancellation, and hence it could compro-
mise the accuracy of the intermediate results.

Then,‖Xk+1‖F and rk+1 are computed, andk =
k+1 is set. If the chosen step was not a Newton step,
but the residual norm increased compared to the pre-
vious iteration, i.e.,‖R (Xk+1)‖F ≥ ‖R (Xk)‖F , but
it is less than 1, and the normalized residual is less
thanε1/4

M , then the iterative process is terminated and
a warning value is set. Otherwise, the iteration con-
tinues.

3 NUMERICAL RESULTS

This section presents some results of an extensive per-
formance investigation of the solvers based on New-
ton’s method. The numerical results have been ob-
tained on an Intel Core i7-3820QM portable computer
at 2.7 GHz, with 16 GB RAM, with the relative ma-
chine precisionεM ≈ 2.22×10−16, using Windows 7
Professional (Service Pack 1) operating system (64
bit), Intel Visual Fortran Composer XE 2011 and
MATLAB 8.0.0.783 (R2012b). The SLICOT-based
MATLAB executable MEX-functions have been built
using MATLAB-provided optimized LAPACK and
BLAS subroutines.

3.1 Randomly Generated Systems

A first set of tests refer to CAREs (4) with initial
matricesE, A, B, L, Q, andR randomly generated
from a uniform distribution in the (0,1) interval, with
n andmset asn= 200 : 200 : 1000,m= 200 : 200 :n
(in MATLAB notation). The generated matrixE was
stabilized by subtracting 100·norm(E) from the diag-
onal. The generated matricesQ and R were modi-
fied by addingn andm, respectively, to the diagonal
entries, and then each of them was symmetrized, by
adding its transpose. The generated matrixL was di-
vided by 100. We then used the MATLAB function
care from the Control System Toolbox (MATLAB,
2011) with inputsA, B, Q, R, L, andE, and stabilized
A usingA := A−BF, whereF is the feedback gain
matrix returned bycare. A new Riccati solution was
computed bycare using the modifiedA and the other
matrices. This allowed us to set to zero the initial ma-
trix X0. For the Newton solver, we removed the effect
of L using the formulas (3). Fifteen CARE problems
have been generated. For each CARE, various options
have been tried (e.g., use either the upper or lower part
of symmetric matrices, use the two values of op(M) ,
use either the matricesB andR, or the matrixG). The
default tolerance, computed by the solver when the
input value is non-positive, has been used.

Fig. 1 presents the normalized residuals for the
random examples solved using Newton solver with
line search, andcare. Fig. 2 presents the CPU times
(computed using the MATLAB pair functionstic
and toc). The y-axis is scaled logarithmically, for
better clarity, since the CPU times vary significantly.
For the largest example, the run time for the Newton
solver and op(M) = M is about half the run time for
care.

0 5 10 15
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Example #

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals

 

 
Newton, op(M) = M

Newton, op(M) = MT

care, op(M) = M

care, op(M) = MT

Figure 1: The normalized residuals for random examples
using Newton solver with line search andcare; n = 200 :
200 : 1000, m = 200 : 200 : n.

Similarly, Fig. 3 and Fig. 4 present the normalized

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

10



0 5 10 15
10

−1

10
0

10
1

10
2

10
3

Example #

C
P

U
 ti

m
e

Elapsed CPU time

 

 

Newton, op(M) = M

Newton, op(M) = MT

care, op(M) = M

care, op(M) = MT

Figure 2: The CPU times for random examples using New-
ton solver with line search andcare; n = 200 : 200 : 1000,
m = 200 : 200 : n.

residuals and the CPU times, respectively, when using
standard Newton solver andcare. The large error for
an example withn = 600, m= 200 (and op(M) =
MT ) is not typical.

0 5 10 15
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Example #

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals

 

 
Newton, op(M) = M

Newton, op(M) = MT

care, op(M) = M

care, op(M) = MT

Figure 3: The normalized residuals for random examples
using standard Newton solver andcare; n = 200 : 200 :
1000, m = 200 : 200 : n.

For both variants, the Newton solver was almost
always faster thancare. It was also (with one excep-
tion) significantly more accurate. Note that for this set
of tests, the problems with op(M) =MT needed more
iterations and CPU time for Newton solver than those
with op(M) = M, especially for the standard Newton
solver. Indeed, the standard Newton solver was most
often over 50% faster thancare for op(M) = M, but
often over 20% slower thancare for op(M) = MT .

The Euclidean norm of the vectors of normalized
residuals (one normalized residual for each example)
and the mean number of iterations are shown in Ta-
ble 1 for the case op(M) = M.

We have also solved a problem withn = m =
2000, built as above. Newton solver with line search
needed 4 iterations when op(M) = M, and 7 iter-

0 5 10 15
10

−1

10
0

10
1

10
2

10
3

Example #

C
P

U
 ti

m
e

Elapsed CPU time

 

 

Newton, op(M) = M

Newton, op(M) = MT

care, op(M) = M

care, op(M) = MT

Figure 4: The CPU times for random examples using stan-
dard Newton solver andcare; n = 200 : 200 : 1000, m =
200 : 200 : n.

Table 1: Normalized residuals 2-norms and mean number
of iterations for random examples.

L. search Standard care
‖r1:15‖2 2.98·10−8 3.01·10−8 1.55·10−4

1
15 ∑15

1 ki
s 5.6 5.33 −

ations when op(M) = MT . The CPU times were
about 793 and 1360 seconds, and the normalized
residuals were 8.41·10−9 and 4.4·10−9, respectively.
MATLAB care needed about 1350 and 1530 sec-
onds, and the normalized residuals were 2.31· 10−7

and 3.66· 10−7, respectively. Similarly, whenE =
In, the results for the Newton solver were: 4 and
9 iterations, 68 and 469 seconds, and normalized
residuals 1.69· 10−10 and 3.22· 10−13, respectively.
MATLAB care needed 99.4 and 100 seconds, and
the normalized residuals were 1.61·10−11 and 1.01·
10−11, respectively.

3.2 Systems from the COMPleib
Collection

Other tests have been performed for linear systems
from the COMPleib collection (Leibfritz and Lipin-
ski, 2003; Leibfritz and Lipinski, 2004). This collec-
tion contains 124 standard continuous-time examples
(with E = In), with several variations, giving a total of
168 problems. All but 16 problems (for systems of or-
der larger than 2000, with matrices in sparse format)
have been tried. The performance index matricesQ
andR have been chosen as identity matrices of suit-
able sizes. The matrixL was always zero. Most often
we used the default tolerance.

In a series of tests, we usedX0 set to a zero ma-
trix, if A is stable; otherwise, we tried to initialize the
Newton solver with a matrix computed using the al-
gorithm in (Hammarling, 1982), and when this algo-

Computational�Experience�in�Solving�Continuous-time�Algebraic�Riccati�Equations�using�Standard�and�Modified�Newton's
Method

11



rithm failed to deliver a stabilizing initialization, we
used the solution provided by the MATLAB function
care. A zero initialization was used for 44 stable ex-
amples. Stabilization algorithm was tried on 107 un-
stable systems, and succeeded for 91 examples. Fail-
ures occurred for 16 examples. With default toler-
ance, the implementation of the Newton solver used
in the preliminary version of this paper did not im-
prove thecare solution, returning with 0 iterations.
But, modifying the test at Step 1 of Algorithm N, in
order to continue the calculations at iterationk = 0,
enabled to improve the accuracy ofcare solution for
15 examples. (Only the solution for example ROC5
could not be improved.) The functioncare failed to
solve the Riccati equation for example REA4, with
the error message “There is no finite stabilizing solu-
tion”. This unstable example has been excluded from
our tests, because it could not be stabilized.

We tried both standard and modified Newton’s
method, with or without balancing the coefficient ma-
trices of the Lyapunov equations. The modified solver
needed more iterations than the standard solver for
10 examples only. The cumulative number of itera-
tions with modified and standard solver for all 150
examples was 1654 and 2289, respectively. With bal-
ancing, the total number of iterations was 1657 and
2279, respectively. The mean number of iterations
was about 11, for the modified solver, and 15.2, for
the standard solver. We tried also to use the stabiliza-
tion algorithm whenever possible, including for stable
A matrices. Doing so, the total number of iterations
without balancing was 1796 and 2208, respectively
(1784 and 2207, with balancing).

Fig. 5 shows the normalized residuals for the
COMPleib examples. For clarity, only the results for
Newton solver with line search without balancing and
for care are plotted. Note that the normalized resid-
ual is higher than 1 for the TL example when using
care. (Its value is 2.13·103 for care, but 1.09·10−3

for the Newton solver, and 1.32·10−3, using a stabi-
lizing X0 6= 0.) The matricesA andB of this example
have norms of order 1014 and are poorly scaled (the
minimum magnitude inA is of order 10−4). Omitting
example TL, the maximum normalized residual was
of order 10−6 for the standard Newton solver, and of
order 10−9 (10−10 with balancing) for the modified
solver andcare.

Similarly, Fig. 6 shows the relative residuals, com-
puted in a similar manner with that used incare. The
maximum value of these residuals is 8.98· 10−9 for
the modified Newton solver (for example ROC5), and
3.16·10−5 for care (for example TL) . (Its value was
1 for the standard Newton solver and example TL!)
Omitting example TL, the maximum relative residual

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Example #

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals

 

 

Newton
care

Figure 5: The normalized residuals for examples from the
COMPleib collection, using Newton solver with line search
without balancing andcare.

was of order 10−7 for the standard Newton solver and
of order 10−6 for care.

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

Example #

R
el

at
iv

e 
re

si
du

al
s

Relative residuals

 

 

Newton
care

Figure 6: The relative residuals for examples from the
COMPleib collection, using Newton solver with line search
andcare.

Figure 7 shows the number of iterations of the
Newton solver with line search for the COMPleib ex-
amples. The largest number, 34, was applied for ex-
ample CM5IS, with ordern= 480, andm= 1.

Similarly, Fig. 8 shows the elapsed CPU times.
Although the modified Newton method was faster
thancare for 100 examples, out of 150, the sum of
the CPU times was about 64% larger than forcare.
This is mainly due to the fact that, with the chosen
initialization, some large examples (mainly, 15 exam-
ples in the HF2D class) required at least 19 iterations.
The standard Newton solver was globally over 25%
slower than the solver with line search. The balanc-
ing option increased the CPU times by less than 4%
in both cases. When using stabilizingX0 6= 0, the
speed-up of the modified Newton solver increased by
about 30%; the main contribution came from solving
the ARE for example CM6 (n = 960,m= 1) in just

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

12



0 50 100 150
0

5

10

15

20

25

30

35

Example #

N
um

be
r o

f i
te

ra
tio

ns

Number of iterations (Newton with line search)

Figure 7: The number of iterations performed by the New-
ton solver with line search for examples from the COMPleib
collection.

one iteration, compared to 19 iterations needed when
X0 = 0 was used. (Note that the stabilization algo-
rithm did not work for example CM6, soX0 was set
to thecare solution.) Clearly, a good initialization
could significantly reduce the number of iterations.

0 50 100 150
10

−4

10
−2

10
0

10
2

Example #

C
P

U
 ti

m
e

Elapsed CPU time

 

 

Newton
care

Figure 8: The elapsed CPU time needed by the Newton
solver with line search and MATLABcare for examples
from the COMPleib collection.

When the solution returned bycare was used to
initialize the Newton solver variants for all COMPleib
examples, with default tolerance and without the
modification, mentioned before, of the test at Step 1,
the total number of iterations was 69, namely 50 it-
erations for TL, and one iteration for other 19 ex-
amples. The remaining examples were solved with-
out any iterations, sincecare results were accurate
enough with the default tolerance. The sum of the
CPU times for Newton solver was about 2.4 seconds,
compared to about 53.8 seconds forcare. The nor-
malized residual decreased to 1.05· 10−3 for exam-
ple TL, but the relative residual slightly increased to
9.76·10−6. Omitting the example TL, the maximum
normalized residual decreased to 9.17·10−10 (for ex-

ample EB6, withn= 160,m= 1), and the maximum
relative residual was 3.85·10−10 (for example ISS2,
with n= 270,m= 3).

After modifying the test at Step 1 to force the
solver to try at least an update, and after adding a
test of relative residual, the total number of itera-
tions increased to 159, namely 11 iterations for ex-
ample TL, zero iterations for ROC5, and one itera-
tions for the other examples. The sum of the CPU
times for Newton solver was then about 8.3 sec-
onds. The normalized residual for example TL var-
ied in between 9.3 · 10−4 and 1.3 · 10−3 for the four
variants (with/without line search and with/without
balancing), and the relative residual varied between
1.61· 10−11 and 2.05· 10−11. Omitting the example
TL, the maximum normalized residual decreased to
6.9·10−13 for Newton solver, and 3.6·10−9 for care
(for example HF2DIS5, withn= 5, m= 2), and the
maximum relative residual was 8.42· 10−13 (for ex-
ample CBM, withn= 348,m= 1). The decision to
keep this modification of the tests was based on these
improved results.

We used the same initialization provided bycare
with values for the tolerance parameterτ set to 10−12,
10−14, and relative machine precision,εM.

Forτ=10−12, the behavior was identical with that
for the defaultτ. Forτ = 10−14, example TL needed
50 iterations without convergence (the tolerance be-
ing too small), one example needed 6 iterations, 2 ex-
amples needed 5 iterations, 3 examples needed 4 iter-
ations, 14 examples needed 3 iterations, 9 examples
needed 2 iterations, 119 examples needed one itera-
tion, and ROC5 needed no iteration. The repartition
of the number of iterations forτ = εM is shown in
the bar graph from Fig. 9, where TL example was ex-
cluded, for clarity. Only for ROC5 example, the New-
ton solver returned before finishing the first iteration
(reporting 0 iterations); it found that no improvement
of X0 is numerically possible, since the norm of the
correctiont0N0, 3.07·10−14, was too small compared
to the norm ofX0, which is 1.41·104. (The normal-
ized residual value forX0 was 4.88· 10−18.) Omit-
ting TL, the maximum normalized residual reduced
to 6.9 ·10−13 for τ = 10−12, and to about 3.5 ·10−13

for smaller values ofτ. Performance results are sum-
marized in Table 2.

Table 2: Summary of performance results for small toler-
anceτ and initialization by MATLABcare.

τ Total iterations Sum of CPU times
10−12 198 10.83
10−14 257 23.79

εM 344 26.23

Computational�Experience�in�Solving�Continuous-time�Algebraic�Riccati�Equations�using�Standard�and�Modified�Newton's
Method

13



0 1 2 3 4 5 6
0

10

20

30

40

50

60

70
Repartition of the number of iterations

N
um

be
r o

f e
xa

m
pl

es

Number of iterations

Figure 9: Bar graph showing the repartition of the num-
ber of iterations for examples from the COMPleib collec-
tion, using Newton solver with line search without balanc-
ing, initialization usingcare and tolerance relative machine
precision.

Fig. 10 shows the normalized residuals for the New-
ton solver with line search, initialized bycare, and
with toleranceτ = εM . Clearly, Newton solver re-
duces the residuals by several orders of magnitude,
compared tocare.

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Example #

N
or

m
al

iz
ed

 re
si

du
al

s

Normalized residuals

 

 

Newton
care

Figure 10: The normalized residuals for examples from the
COMPleib collection, using Newton solver with line search
without balancing, initialization usingcare and tolerance
relative machine precision.

Fig. 11 shows similarly the relative residuals. Ex-
cept for ROC5, Newton solver always reduces the
residuals, often by several orders of magnitude, com-
pared tocare. Fig. 12 shows by a bar graph the size
of this improvement. Specifically, the improvement is
of seven orders of magnitude for one example, six or-
ders for three examples, four orders for five examples,
etc. For 114 examples, the improvement is between
one and three (inclusive) orders of magnitude.

0 50 100 150
10

−20

10
−15

10
−10

10
−5

10
0

Example #

R
el

at
iv

e 
re

si
du

al
s

Relative residuals

 

 

Newton
care

Figure 11: The relative residuals for examples from the
COMPleib collection, using Newton solver with line search
without balancing, initialization usingcare and tolerance
relative machine precision.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60
Improvement of relative residuals

N
um

be
r o

f e
xa

m
pl

es

i

Figure 12: Bar graph showing the improvement of the rela-
tive residuals for examples from the COMPleib collection,
using Newton solver with line search without balancing, ini-
tialization usingcare and tolerance relative machine preci-
sion. The height of the i-th vertical bar indicates the num-
ber of examples for which the improvement was between
i-1 and i orders of magnitude.

4 CONCLUSIONS

Basic theory and improved algorithms for solving
continuous-time algebraic Riccati equations using
Newton’s method with or without line search have
been presented. Algorithmic details for the devel-
oped solvers, the main computational steps (finding
the Newton direction, finding the Newton step size),
and convergence tests are described. The usefulness
of such solvers is demonstrated by the results of an
extensive performance investigation of their numeri-
cal behavior, in comparison with the results obtained
using the widely-used MATLAB functioncare. Ran-
domly generated systems with orders till 1000 (and
even a system with order 2000), as well as the systems

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

14



from the large COMPleib collection, are considered.
The numerical results most often show significantly
improved accuracy (measured in terms of normalized
and relative residuals), and greater efficiency. The re-
sults strongly recommend the use of such algorithms,
especially for improving, with little additional com-
puting effort, the solutions computed by other solvers.

ACKNOWLEDGEMENTS

Part of this work was done many years ago in a
research stay at the Technical University Chemnitz,
Germany, during November 1 – December 20, 2005,
with the financial support from the German Science
Foundation. The long cooperation with Peter Benner
from Technical University Chemnitz and Max Planck
Institute for Dynamics of Complex Technical Sys-
tems, Magdeburg, Germany, is much acknowledged.
Thanks are also addressed to Martin Slowik from In-
stitut für Mathematik, Technical University Berlin,
who worked out (till 2005) a preliminary version of
the SLICOT codes for continuous-time algebraic Ric-
cati equations. The work has been recently resumed
by the author. Finally, the continuing support from
the NICONET e.V. is warmly acknowledged.

REFERENCES

Abels, J. and Benner, P. (1999). CAREX—A collec-
tion of benchmark examples for continuous-time al-
gebraic Riccati equations (Version 2.0). SLICOT
Working Note 1999-14, Katholieke Universiteit Leu-
ven, ESAT/SISTA, Leuven, Belgium. Available from
http://www.slicot.org.

Anderson, B. D. O. and Moore, J. B. (1971).Linear
Optimal Control. Prentice-Hall, Englewood Cliffs,
New Jersey.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Ham-
marling, S., McKenney, A., and Sorensen, D. (1999).
LAPACK Users’ Guide: Third Edition. Software· En-
vironments· Tools. SIAM, Philadelphia.

Arnold, III, W. F. and Laub, A. J. (1984). Generalized
eigenproblem algorithms and software for algebraic
Riccati equations.Proc. IEEE, 72(12):1746–1754.

Benner, P. (1997). Contributions to the Numerical So-
lution of Algebraic Riccati Equations and Related
Eigenvalue Problems. Dissertation, Fakultät für Math-
ematik, Technische Universität Chemnitz–Zwickau,
D–09107 Chemnitz, Germany.

Benner, P. (1998). Accelerating Newton’s method for
discrete-time algebraic Riccati equations. In Beghi,
A., Finesso, L., and Picci, G., editors,Mathemati-
cal Theory of Networks and Systems, Proceedings of

the MTNS-98 Symposium held in Padova, Italy, July,
1998, pages 569–572. Il Poligrafo, Padova, Italy.

Benner, P. and Byers, R. (1998). An exact line search
method for solving generalized continuous-time alge-
braic Riccati equations.IEEE Trans. Automat. Contr.,
43(1):101–107.

Benner, P., Byers, R., Losse, P., Mehrmann, V., and
Xu, H. (2007). Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems. Technical
report, Technische Universität Chemnitz, Chemnitz.

Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002).
Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils.SIAM J. Ma-
trix Anal. Appl., 24(1):165–190.

Benner, P., Kressner, D., Sima, V., and Varga, A.
(2010). Die SLICOT-Toolboxen für Matlab.at—
Automatisierungstechnik, 58(1):15–25.

Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
Varga, A. (1999). SLICOT — A subroutine library
in systems and control theory. In Datta, B. N., ed-
itor, Applied and Computational Control, Signals,
and Circuits, volume 1, chapter 10, pages 499–539.
Birkhäuser, Boston.

Benner, P. and Sima, V. (2003). Solving algebraic Riccati
equations with SLICOT. InCD-ROM Proceedings
of The 11th Mediterranean Conference on Control
and Automation MED’03, June 18–20 2003, Rhodes,
Greece. Invited session IV01, “Computational Tool-
boxes in Control Design”, Paper IV01-01, 6 pages.

Byers, R. (1987). Solving the algebraic Riccati equa-
tion with the matrix sign function.Lin. Alg. Appl.,
85(1):267–279.

Ciubotaru, B. and Staroswiecki, M. (2009). Comparative
study of matrix Riccati equation solvers for paramet-
ric faults accommodation. InProceedings of the 10th
European Control Conference, Budapest, Hungary,
pages 1371–1376.

Francis, B. A. (1987). A Course in H∞ Control Theory,
volume 88 ofLect. Notes in Control and Information
Sciences. Springer-Verlag, New York.

Gardiner, J. D. and Laub, A. J. (1986). A generalization of
the matrix sign function solution for algebraic Riccati
equations.Int. J. Control, 44:823–832.

Hammarling, S. J. (1982). Newton’s method for solving the
algebraic Riccati equation. NPC Report DIIC 12/82,
National Physics Laboratory, Teddington, Middlesex
TW11 OLW, U.K.

Jónsson, G. F. and Vavasis, S. (2004). Solving polynomials
with small leading coefficients.SIAM J. Matrix Anal.
Appl., 26(2):400–414.

Kleinman, D. L. (1968). On an iterative technique for Ric-
cati equation computations.IEEE Trans. Automat.
Contr., AC–13:114–115.

Lancaster, P. and Rodman, L. (1995).The Algebraic Riccati
Equation. Oxford University Press, Oxford.

Lanzon, A., Feng, Y., Anderson, B. D. O., and Rotkowitz,
M. (2008). Computing the positive stabilizing solu-
tion to algebraic Riccati equations with an indefinite
quadratic term via a recursive method.IEEE Trans.
Automat. Contr., AC–50(10):2280–2291.

Computational�Experience�in�Solving�Continuous-time�Algebraic�Riccati�Equations�using�Standard�and�Modified�Newton's
Method

15



Laub, A. J. (1979). A Schur method for solving algebraic
Riccati equations.IEEE Trans. Automat. Contr., AC–
24(6):913–921.

Leibfritz, F. and Lipinski, W. (2003). Description of the
benchmark examples inCOMPleib. Technical report,
Department of Mathematics, University of Trier, D–
54286 Trier, Germany.

Leibfritz, F. and Lipinski, W. (2004).COMPleib 1.0 – User
manual and quick reference. Technical report, Depart-
ment of Mathematics, University of Trier, D–54286
Trier, Germany.

MATLAB (2011). Control System Toolbox User’s Guide.
Version 9.

Mehrmann, V. (1991).The Autonomous Linear Quadratic
Control Problem. Theory and Numerical Solution,
volume 163 of Lect. Notes in Control and Infor-
mation Sciences(M. Thoma and A. Wyner, eds.).
Springer-Verlag, Berlin.

Mehrmann, V. and Tan, E. (1988). Defect correction meth-
ods for the solution of algebraic Riccati equations.
IEEE Trans. Automat. Contr., AC–33(7):695–698.

Penzl, T. (1998). Numerical solution of generalized Lya-
punov equations.Advances in Comp. Math., 8:33–48.

Penzl, T. (2000). LYAPACK Users Guide. Technical Report
SFB393/00–33, Technische Universität Chemnitz,
Sonderforschungsbereich 393, “Numerische Simula-
tion auf massiv parallelen Rechnern”, Chemnitz.

Raines, III, A. C. and Watkins, D. S. (1992). A class of
Hamiltonian-symplectic methods for solving the alge-
braic Riccati equation. Technical report, Washington
State University, Pullman, WA.

Roberts, J. (1980). Linear model reduction and solution of
the algebraic Riccati equation by the use of the sign
function. Int. J. Control, 32:667–687.

Sima, V. (1981). An efficient Schur method to solve the sta-
bilizing problem. IEEE Trans. Automat. Contr., AC–
26(3):724–725.

Sima, V. (1996). Algorithms for Linear-Quadratic Opti-
mization, volume 200 ofPure and Applied Mathemat-
ics: A Series of Monographs and Textbooks. Marcel
Dekker, Inc., New York.

Sima, V. (2005). Computational experience in solving
algebraic Riccati equations. InProceedings of the
44th IEEE Conference on Decision and Control and
European Control Conference ECC’ 05, 12–15 De-
cember 2005, Seville, Spain, pages 7982–7987. Om-
nipress.

Sima, V. (2010). Structure-preserving computation of
stable deflating subspaces. In Kayacan, E., editor,
Proceedings of the 10th IFAC Workshop “Adapta-
tion and Learning in Control and Signal Process-
ing” (ALCOSP 2010), Antalya, Turkey, 26–28 Au-
gust 2010 (CD-ROM), 6 pages. IFAC-PapersOnLine,
Volume 10, Part 1, http://www.ifac-papersonline.net/
Detailed/46793.html.

Sima, V. (2011). Computational experience with structure-
preserving Hamiltonian solvers in optimal control. In
Ferrier, J.-L., Bernard, A., Gusikhin, O., and Madani,
K., editors, Proceedings of the “8th International
Conference on Informatics in Control, Automation
and Robotics” (ICINCO 2011), Noordwijkerhout, The

Netherlands, 28–31 July, 2011 (CD-ROM), volume 1,
pages 91–96. SciTePress—Science and Technology
Publications.

Sima, V. and Benner, P. (2006). A SLICOT imple-
mentation of a modified Newton’s method for alge-
braic Riccati equations. InProceedings of the 14th
Mediterranean Conference on Control and Automa-
tion MED’06, June 28-30 2006, Ancona, Italy (CD-
ROM). Omnipress. Session FEA2:Control Systems
5, Paper FEA2-3.

Sima, V. and Benner, P. (2008). Experimental evaluation
of new SLICOT solvers for linear matrix equations
based on the matrix sign function. InProceedings
of 2008 IEEE Multi-conference on Systems and Con-
trol. 9th IEEE International Symposium on Computer-
Aided Control Systems Design (CACSD), Hilton Pala-
cio del Rio Hotel, San Antonio, Texas, U.S.A., Septem-
ber 3–5, 2008, pages 601–606. Omnipress.

Van Dooren, P. (1981). A generalized eigenvalue approach
for solving Riccati equations.SIAM J. Sci. Stat. Com-
put., 2(2):121–135.

Van Huffel, S. and Sima, V. (2002). SLICOT and con-
trol systems numerical software packages. InPro-
ceedings of the 2002 IEEE International Conference
on Control Applications and IEEE International Sym-
posium on Computer Aided Control System Design,
CCA/CACSD 2002, September 18–20, 2002, Scottish
Exhibition and Conference Centre, Glasgow, Scot-
land, U.K., pages 39–44. Omnipress.

Van Huffel, S., Sima, V., Varga, A., Hammarling, S., and
Delebecque, F. (2004). High-performance numeri-
cal software for control. IEEE Control Syst. Mag.,
24(1):60–76.

Varga, A. (1981b). A Schur method for pole assignment.
IEEE Trans. Automat. Contr., AC–26(2):517–519.

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

16


