
Software Requirements Parts for Construction of Software
Requirements Specifications

Yoshitaka Iyoda1 and Atsushi Ohnishi2

1Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu 525-8577, Japan
(Currently, Mr. Iyoda is at Hitachi Ltd., Japan)

2Department of Computer Science, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu 525-8577, Japan

Keywords: Software Requirements Parts, Software Requirements Specification (SRS), Construction of Software
Requirements Specification.

Abstract: In software developments, a software requirements specification (SRS) must be correctly specified. An SRS
becomes large and complicated when system to be developed become large. It takes a lot of efforts and
costs to newly specify a correct SRS. The authors propose a method for generating SRS parts. Using SRS
parts an SRS can be easily constructed. First a domain expert decomposes an SRS into functional
requirements, and then he/she derives parts of functional requirements from them SRS. In order to improve
the reusability, derived SRS parts will be abstracted using a thesaurus. The authors have been developed a
prototype system for abstracting SRS parts. The proposed method will be illustrated with examples and
evaluated through an experiment.

1 INTRODUCTION

A software requirements specification (SRS) is a
final product of software requirements definition
process and will be referred in later phases of
software development. SRS can be used for users’
validation of elicited and specified requirements and
for developers’ review of SRS. So an SRS should be
correct. However, construction of an SRS and
guarantee of its correctness need a lot of labours and
cost.

A solution of the above problem is reusing
existing SRS, but if there exists an SRS database, it
is difficult to effectively retrieve a similar SRS from
the database. Even if a similar SRS can be detected,
some requirements may not be necessary and some
should be reviesed, and some should be newly added.
In other words, it is not so easy to make a new SRS
by reusing an existing SRS.

In this paper, we propose a generation method of
SRS parts. In other words, we propose a method of
deriving SRS parts from an SRS. Each SRS part
represents a functional requirements of a sub-system.
In such a way, SRS parts should be highly reusable.
We also propose an abstraction method of derived
SRS parts. Abstracted SRS parts will be stored into a

SRS parts database. In the second process, we will
construct an SRS with the SRS parts. In this paper,
we focus on the generation of SRS parts.

The paper is organized as follows. The next
section will briefly introduce a requirements
language named X-JRDL. In section 3, we will
describe a generation method of SRS parts. Section
4 presents an experiment for evaluation of the
proposed method. In section 5, we will discuss
related works. In the last section, we will give
concluding remarks.

2 REQUIREMENTS LANGUAGE

We developed requirements model named
Requirements Frame and a text-base requirements
language named X-JRDL based on the model
(Ohnishi and Agusa, 1991). In this research we
adopt X-JRDL as a requirements language, since it
is quite easy to transform SRSs with X-JRDL
organized differently.

Since X-JRDL aims to specify requirements of
file-oriented applications, this language provides 6
noun types (human, function, file, data, control, and
device) and 16 concepts including data flow, control

147Iyoda Y. and Ohnishi A..
Software Requirements Parts for Construction of Software Requirements Specifications.
DOI: 10.5220/0004479901470153
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-EA-2013), pages 147-153
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

flow, data creation, file manipulation, data
comparison, and structure of data/file/function. The
16 concepts (10 verb type concepts and 6 adjective
type concepts) are shown in Table 1.

Table 1: Concepts provided by X-JRDL.

Concept Meaning
DFLOW Data flow
CFLOW Control flow

ANDSUB And-tree structure
ORSUB Or-tree structure

GEN Data creation
RET Retrieve a record in a file

UPDATE Update a record in a file
DEL Delete a record in file
INS Insert a record in a file

MANIP File manipulation
EQ, NE, LT, GT,

LE, GE
Logical operators

There are several verbs to represent one of these
concepts. For example, to specify a concept data
flow, we can use input, output, print out, display,
and send, and so on. Each concept has its own case
structure. The “cases” (Fillmore, 1968) mean
concept about agents, objects, goals of the
operations (Shank 1977). For example, the data flow
(DFLOW) concept has object, source, goal, and
instrument cases. The object case object corresponds
to a data which is transferred from the source case
object to the goal case object. So, a noun assigned to
the object case should be a data type noun. A noun
in the source or goal cases should be either a human
or a function type noun. If and only if a human type
noun is assigned to source or goal cases, some
device type noun should be specified as an
instrument case. These are illustrated in Figure 1.

When a user wants to write requirements of
another application domain, he may need a verb not
categorized into these 16 concepts. In such a case, he
can use a new verb if he defines its case structure. In
this sense, X-JRDL is extensible.

Since a newly defined verb, its concept, and its
case structure can be registered in the verb
dictionary, he can use his own verbs as well as
provided verbs.

The case structure of each verb enables to detect
illegal usages of data and lack of cases. Suppose a
requirement sentence, "A user enters a retrieval
command with a terminal." Since the objective is “a
retrieval command” that is data type noun, “enters”
should be categorized into the DFLOW concept.
With the case structure of the DFLOW, this sentence
will be analyzed as shown in Table 2.

Figure 1: Case structure of data flow (DFLOW).

Table 2: Analysis of a requirement sentence "A user enters
a retrieval command with a terminal."

Concept: DFLOW
object source goal instrument

retrieval
command user NOT

specified terminal

In this sentence the goal case noun is not specified.
If indispensable case is not specified, previously
specified nouns of the same type become candidates
of the omitted case. In this way, a requirement
sentence is transformed into an internal
representation named CRD (Conceptual
Requirements Description). CRD is exactly based on
the case structures.

X-JRDL provides to use pronouns and omission
of nouns. We frequently come across such features
in Japanese sentences. The X-JRDL analyzer
automatically assigns a concrete word into a
pronoun or a lacked case.

The X-JRDL analyzer has a dictionary of nouns,
verbs and adjectives. When a requirements definer
uses a word which is not appeared in the dictionary,
the analyzer guesses a type of new noun and a
concept of new verb and adjective with the
Requirements Frame (Ohnishi, 1996).

3 GENERATION
OF REQUIREMENTS PARTS

3.1 Outline

The outline of a generation method of software parts
is illustrated in Figure 2. The first step is deriving a
functional requirement from requirements
specifications. The second step is generating an SRS
part from a functional requirement. The third step is
storing SRS parts into SRS parts database. These

DFLOW

object

instrument

source
goal

deviceinstrument

function,
human

goal

function,
human

source

dataobject

noun typecase

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

148

three steps are shown in Figure 2. The second
process is making SRS using SRS parts as shown in
Figure 3. In this paper, we focus on the first process
only.

Since an existing SRS as is may include
unnecessary requirements or customizable
requirements, we cannot easily reuse it. In order to
improve the reusability, we divide an SRS into
single functional requirements and replace concrete
nouns in the SRS with abstract nouns. We call a
single functional requirement using abstract nouns
“a requirements part.”

Figure 2: Generation of SRS parts.

Figure 3: Construction of an SRS.

Requirements parts can be categorized into two
types. One is domain dependent parts and the other
is domain independent parts. Requirements parts are
stored into database in accordance with their types
as shown in Figure 2.

3.2 Functional Requirement Parts

A functional requirement part can be generated by
decomposing an SRS into functional requirements
and by replacing concrete nouns with abstract nouns.
We do not replace verbs with more abstract verbs,
because we keep a certain abstraction level of SRS

by specifying it with a controlled language, X-JRDL.
Both decomposition and abstraction contribute to

improve the reusability. For example, an SRS of
library system may not be reused for an SRS of CD
rental system. However, some functions are similar
between two systems. Registration of new books and
registration of new CDs are similar each other.
Retrieving a book with some keywords is similar
with retrieving a CD with some keywords. These
functions are included in the SRS of library system.
So, decomposing an SRS and deriving a functional
requirement from the SRS is a key to improve the
reusability.

Books and CDs are different, but they have a
common role, that is, rental object. So, we can
replace “book” in functions of library system with
“rental object” in order to easily reuse the functions.
In making an SRS of CD rental system with such
functions, we have to replace “rental object” with
“CD.”

In this way, we can get functional requirement
parts by decomposing an SRS into functional
requirements and by replacing concrete nouns with
more abstract nouns.

Functional requirement parts can be categorized
into domain-specific parts and domain-independent
parts. Domain-specific parts can be reused for
constructing SRS of a certain domain, while
domain-independent parts can be reused for
constructing SRS of any domain.

3.2.1 Decomposing SRS

Functional requirement parts creator can decompose
an SRS into functional requirements by hand.
Usually an SRS of a software system consists of
several functions. If an SRS is organized by features
or sub-systems (IEEE std830 1998), he can easily
decompose it into functional requirements.

Figure 4: Decomposition of an SRS of library system into
11 functional requirements.

Software�Requirements�Parts�for�Construction�of�Software�Requirements�Specifications

149

For example, an SRS of library system can be
decomposed into eleven functional requirements as
shown in Figure 4. A creator of functional
requirements parts decompose the SRS by hand.

A functional requirement of “retrieve a book” is
shown in Figure 5 and data flow diagram of the
same function is shown in Figure 6.

A library retrieval system receives

book information from a library
information center, searches library data
from book database with the book
retrieval keywords, receives book id if
book data is equal to book retrieval
keywords, and passes a copy of a book to
a library information center.

Figure 5: A functional requirement of “retrieving a book.”

Figure 6: Data flow diagram (DFD) of “retrieving a book.”

3.2.2 Replacing Concrete Nouns
with Abstract Nouns

The procedure of abstraction of nouns is as follows.
1. Select the most important action. Then concrete

nouns corresponding cases of the action can be
replaced to the cases name and the action. For
example, in case of “retrieving a book,” the most
important action is “retrieval.” “Book” is an
object case of retrieval, so “book” can be
replaced to “retrieval object.” “Library
information center” is a user of retrieval, so
“library information center” can be replaced to
“user.”

2. Select a noun. If a selected noun is a compound
noun, reduce to essential noun(s). For example,
“library retrieval system” is a compound noun,
and can be reduced to “retrieval system.” If a
selected noun is a simple and concrete noun,
replace it with abstract noun using thesaurus
(Yamaguchi 2006). If a selected noun is abstract,

do not replace it. This thesaurus is originally in
Japanese, but for readers’ convenience we
translated in English.

This thesaurus provides 300,000 nouns of different
abstraction levels and a hierarchical structure of
nouns. By using thesaurus, we can easily get
more abstract nouns for a given noun and select
an adequate and abstract noun. We can avoid
synonyms in abstraction by using a thesaurus.

3. Repeat the above until all of the nouns will be
selected.

4. User can modify the results of abstraction if
necessary.

Figure 7 shows a part of thesaurus. “Noun” is the
most abstract noun in the thesaurus. There exists a
structural hierarchy, that is, “noun”-“concrete
noun”-“active noun”-“human”-“person (position)”-
“staff”-“library staff.” If a concrete noun “library
staff” appears in a functional requirement, then we
can replace it with a more abstract noun, such as
“staff.”

Figure 8 shows a functional requirement part of
retrieving an object. This part is generated by
abstracting the functional requirement shown in
Figure 5. The underlined nouns are replaced with
abstract nouns in Figure 8.

We have developed a supporting system of
generating abstracted functional requirements parts
with C#. This system supports replacing concrete
nouns with abstract nouns. In other words, this
system supports to make abstracted functional
requirements parts from functional requirements.

1 noun
 2 concrete noun
 3 active noun

 4 human
 318 person (position)

 319 royalty
 320 king
 321 noble
 322 cabinet
 323 chief
 324 vice-chief
 325 director
 326 staff
 assistant, new employee, station employee,

policeman, diplomat, officer, professor,
library staff, guard, technical staff,
teacher, lecturer, detective, ….

Figure 7: A part of thesaurus taken from (Yamaguchi
2006).

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

150

The number of source code is about 3,000 lines. This
system is a 3-person-month product.

A retrieval system receives retrieval

object information from a user, searches
data from retrieval object database with
the retrieval object keywords, receives
retrieval object id if retrieval object data
is equal to retrieval object keywords, and
passes retrieval object to a user.

Figure 8: A functional requirement part of “retrieving an
object.” generated from the functional requirement shown
in Figure 5.

Figure 9 shows a screenshot of supporting system.
This system enables to replace a concrete noun with
an abstract noun. Figure 10 shows a part of contents
of Figure 9 translated into English.

As shown in the second line of Figure10, a noun
“book” is the first target to be abstracted. Using
thesaurus, abstract nouns are listed. In this
requirement, the most important verb is “rent” and
“book” is assigned in the object case of “rent,” so
recommended abstract noun “rental object” is also
provided in the 17th line of Figure 10. If any
candidates of abstract nouns provided by the system
are inadequate, user can give his own abstract noun
by selecting “addText” in the 15th line of Figure 10.

Figure 9: A screenshot of replacing a concrete noun with
an abstract noun.

Figure 10: A part of screenshot translated in English.

The next noun to be abstracted is “book id” shown
in the 18th line in Figure 10. This noun is a
compound noun. A compound noun will be divided
into simple nouns and each simple noun will be
abstracted. It is difficult to automatically judge
which simple noun is important. So, user will reduce
the compound noun. In this example, user will judge
which simple noun is important. In this case, since
“id” is important, just “id” will be selected and
abstracted.

4 EXPERIMENT
OF EVALUATION
OF THE PROPOSED METHOD
AND SYSTEM

In order to evaluate the proposed method shown in
3.2.2 and a prototype system based on the method,
we performed an experiment for developing
functional requirement parts using an SRS of library
system. Four subjects (named a, b, c, and d) who are
master course students of computer science
department can be divided into two groups, say A
and B. We give two functional requirements
included in the SRS of library system to the subjects.
These two functions are “rent a book” and “retrieve
a book.”

Subjects a and b of group A replace concrete
nouns in the functional requirement of “rent a book”

Software�Requirements�Parts�for�Construction�of�Software�Requirements�Specifications

151

with abstract nouns by hand, while they replace
concrete nouns in the functional requirements of
“retrieve a book” using prototype system. Subjects c
and d of group B replace concrete nouns in the
functional requirements of “rent a book” using
prototype system, and then replace concrete nouns
of the functional requirements of “retrieve a book”
by hand.

The number of concrete nouns is 31 and the
number of concrete nouns that should be replaced
with abstract nouns is 6 in the functional
requirement of “rent a book.” The number of
concrete nouns that should be replaced is 5 of
functional requirement of “retrieve a book.” We
prepare correct results in advance and compare the
results by subjects and correct ones. Table 3 shows
precision and recall values of the abstraction.

Here, the precision is defined as follows.

ݐ݆ܾܿ݁ݑݏ	ݕܾ	ݏ݊ݑ݋݊	݀݁ݐܿܽݎݐݏܾܽ	ݕ݈ݐܿ݁ݎݎ݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݄݁ݐ
ݐ݆ܾܿ݁ݑݏ	ݕܾ	ݏ݊ݑ݋݊	݀݁ݐܿܽݎݐݏܾܽ	݂݋	ݎܾ݁݉ݑ݊	݄݁ݐ

The recall is defined as the following equation.

ݐ݆ܾܿ݁ݑݏ	ݕܾ	ݏ݊ݑ݋݊	݀݁ݐܿܽݎݐݏܾܽ	ݕ݈ݐܿ݁ݎݎ݋ܿ	݂݋	ݎܾ݁݉ݑ݊	݄݁ݐ
.݀݁ݐܿܽݎݐݏܾܽ	ܾ݁	݈݀ݑ݋݄ݏ	ݐ݄ܽݐ	ݏ݊ݑ݋݊	݂݋	ݎܾ݁݉ݑ݊	݄݁ݐ

For all the subjects, both precision value and recall
value in the abstraction with system is greater than
the values by hand. This fact means that our method
can correctly support the abstraction. In the case of
the abstraction by hand by the subject c, recall value
is low while precision value is high. This result
means that subject c cannot correctly select nouns
that should be abstracted. As for the subject d, he
cannot abstract functional requirement by hand, but
can correctly abstract functional requirement using
system.

Table 3: Result of the experiment.

subjects
Precision
(abstractio
n by hand)

Recall
(abstractio
n by hand)

Precision
(abstractio

n with
system)

Recall
(abstractio

n with
system)

a 0.3 0.3 0.7 0.9
b 0.6 0.6 1 1
c 0.7 0.4 1 1
d 0 0 1 1

As for the subject a using system, the precision
value and the recall value is not equal to 1. The
reason why the both value is not 1, he modified
abstracted noun to the original noun, because he
thought that the original noun is abstract enough. To
avoid such mistakes, we have to enhance the
function of selection of nouns that should be
abstracted and provide a function that provide the
reason why the abstraction is needed for the selected
noun.

5 RELATED WORKS

Buhne et al. proposes a requirements definition
method of four different abstraction levels. These
levels are software level, function level, system level,
and vehicle level. Their proposed method
contributes to improve the traceability and the
easiness of management of requirements (Buhne et
al., 2004). However, their method cannot support to
make an abstracted requirement specification, while
our method enables to generate an abstracted
functional requirement.

Justo proposes a repository for reusing
requirements specification (Justo, 1996). His method
enables to reuse functional requirements each of
which consists of an action and objects of the action.
Since these actions and their objects are fully depend
on a specific system, quite similar specification can
be constructed with the proposed method, while our
method improves the reusability by decomposing
requirements specification and replacing concrete
nouns with more abstract nouns.

Morisaki proposes a software metrics of
abstraction level of software document using a
thesaurus (Morisaki, 2011). He calculates
abstraction level of software document by
abstraction level and cardinality of words in the
documents. His method focuses on calculating
abstraction level of software documents, but does
not focus on the reusability of software documents.

Wilson et al. propose a software metrics of
several characteristics of requirements specifications
and identify statements that need to be improved
(Wilson et al., 1997). Their method enables to detect
the weakness of an SRS, but does not support to
reuse of the SRS.

Peiriyasamy et al. propose a method for
structural compatibility of formal specifications
written with Z (Periyasamy and Chidambaram,
1997). Here specifications may be different
abstraction levels each other. By understanding the
behaviors of a specification of high abstraction level
software developers can reuse a compatible
specification of detailed abstraction level. Their
method enables to detect compatible specifications,
but does not support to make specifications of
different abstraction levels.

There exist several researches on ontology based
requirements elicitation (Kaiya and Saeki, 2005), (Li
et al., 2007). They reuse ontology for requirements
elicitation, but do not reuse software requirements
specification.

Our method can be applied to make similar
products in the product line engineering (Pohl et al.,
2005).

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

152

6 CONCLUSIONS

We have established a construction method of
software functional requirements parts by
decomposing requirements specifications and
replacing concrete nouns with abstract ones. In
abstraction, we can avoid use of synonyms and
replace with adequate nouns by using thesaurus. We
have developed a supporting tool of replacing
concrete nouns with abstract nouns using thesaurus
with C# based on the proposed method. We also
evaluate the usefulness and the correctness of the
abstraction method and the supporting tool through
an experiment.

We do not touch upon construction of SRSs
using SRS parts. In constructing a SRS using SRS
parts, we have to replace abstract nouns with
concrete nouns. As future works, we have to develop
a SRS construction method using functional
requirement parts and evaluate the method.

ACKNOWLEDGEMENTS

We would like to thank to Mr. Masato Satonaka and
Mr. Takahiro Yokoyama, members of our laboratory
for their contributions to the research. This research
is partly supported by the Grant-in Aid for Scientific
Research (c), Japan Society for the Promotion of
Science.

REFERENCES

Buhne, S., Halmans, G., Pohl, K., Weber, M.,
Kleinwechter, H., Wierczoch, T., 2004. “Defining
requirements at different levels of abstraction,” In proc.
12th IEEE International Requirements Engineering
Conference (RE2004), pp.346-347, IEEE Computer
Society.

Fillmore C.J., 1968. The Case for Case, Universals in
Linguistic Theory, ed. Bach & Harrms, Holy, Richard
and Winston Publishing, Chicago.

IEEE std830, 1998. IEEE Recommended Practice for
Software Requirements Specification, IEEE std 830-
1998, IEEE Computer Society.

Justo, J.L.B., 1996. “A repository to support requirement
specifications reuse,” In proc. IEEE Information
Systems Conference of New Zealand, pp.53-62, IEEE
Computer Society.

Kaiya, H., Saeki, M. 2005. “Ontology Based
Requirements Analysis: Lightweight Semantic
Processing Approach," In proc. Fifth International
Conference on Quality Software (QSIC 2005), pp.
19-20.

Li, Z., Wang Z., Yang, Y., Wu, Y., Liu, Y. 2007. “Towards
a Multiple Ontology Framework for Requirements
Elicitation and Reuse,” In proc. 31th Annual
International Computer Software and Applications
Conference (COMPSAC 2007), pp.189-195, IEEE
Computer Society.

Morisaki, S., 2011. “Metrics of the abstraction of software
documents using thesaurus (in Japanese),” In proc.
18th Workshop of the Foundation of Software
Engineering, pp.213-218, Kindai-Kagaku publishing
Co., Japan.

Ohnishi A. and Agusa, K. 1991. “Japanese Software
Requirements Definition Based on Requirements
Frame Model,” Distributed Environments (Ohno, Y.
ed.), Springer-Verlag, pp.7-19.

Ohnishi, A., 1996. Software Requirements Specification
Database based on Requirements Frame Model, In
proc. IEEE 2nd International Conference on
Requirements Engineering (ICRE96), pp.221-228,
IEEE Computer Society.

Periyasamy, K., Chidambaram, J., 1997. “A method for
structural compatibility in software reuse using
requirements specification,” In proc. IEEE 21th
Annual International Computer Software and
Applications Conference (COMPSAC’97), pp.426-
433, IEEE Computer Society.

Pohl K., Boeckle G., Linden F., 2005. Software Product
Line Engineering, Foundations, Principles and
Techniques, Springer.

Shank R., 1997. Representation and Understanding of
Text, Machine Intelligence 8, Ellis Honrood Ltd.,
Cambridge, pp.575-607.

Wilson, W.M., Rosenberg, L.H., Hyatt, L.E., 1997.
“Automated Analysis of Requirements Specifications,”
In proc. 19th IEEE International Conference on
Software Engineering (ICSE 1997), pp.161-171, IEEE
Computer Society.

Yamaguchi, T. ed., 2006, “Japanese Thesaurus, CD-ROM
version (in Japanese),” Daishukan-shoten, Japan.

Software�Requirements�Parts�for�Construction�of�Software�Requirements�Specifications

153

