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The objective of this paper is twofold. First we propose a new approach for com@gfinghe subset

of initial states of a system from which there exists at least one trajectory reaching aTtarget finite

time t; from a timetg. This is done considering a discrete tiffgeand a control vector continuous over

a timety_1,t%]. Then, using the previously mentioned work and given a cost function, the objective is to
estimate an enclosure of the discrete optimal control vector from an initial st@tgpto the target. Whereas
classical methods do not provide any guaranty on the set of state vectors that belongig thimterval

analysis and guaranteed numerical integration allow us to avoid any indetermination. We present an algorithm

able to provide guaranteed characterizations of the idijgr, and an the oute€;; of Ciy,, such that

Ciot; € Cuoty C Cg.tf. In addition to that, the presented algorithm is extended in order enclose the discrete
optimal control vector of the system, form an initial state to the target, by a set of discrete trajectories.

1 INTRODUCTION

We consider a control system, defined by the differ-
ential equation

X(t) = f(x(t),u()) 1)

wherex(t) € R" be the state vector of the system,
u(t) € U be the control vector. This system is studied
over a bounded timg € [to, tt], considering a discrete
time

tk =to+kx &, tx <tf,ke {1,---,m}, (2)

It will be assumed thad; is small enough so that the
control vectoru(t) can be assumed to be continuous
over [ty,tk1]. Associated to the differential equation
(1) we define thélow map

¢ (to, t; %o, u(t)) = X(t), 3)

where x(t) denotes the solution to (1) with the
initial condition x(tg) = Xo and the control function
u(t) € U4, where = {u: [to,tk—1] — U|u is con-
tinuous overty,tx, 1]} denotes the set of admissible
controls. Note that in the later the notatiap will
refer tou(t) : [tk,ty1] — U, with u(t) continuous
over|t,tx+1]. GivenXg a set of possible initial values
Xo, the reachable set of the system (1) at the tipig
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b (to, tk: Xo,U) = {  ¢(to.tis xo,u(t))|
¢ (to,to; X0, U(t)) = Xo
and¢ : [to,tk] x Xogx U —=R"
is a solution of (1) for some

u(t) € U}.
4)
The trajectory fronty tofx is defined by
o[ty Bl X, U) = { >:(an|3&<€ [ty Tl (5)

X = ¢('_:k7tk1X7U)}

Let K C R" be a state constraint such thdt) € K,
andT be a compact set i (the target) Cy, ¢, corre-
sponds to the subset of initial stateskofrom which
there exists at least one solution of (1) reaching the
targetT in finite timets from a timeto:

Ciot; = {Xo0 € K|3u(t) € U, d(to,t5;X0,u(t)) € T(} )
6
Given that the input vector is continuous over
[tk, tk+1], the first objective of this paper is to compute
aninner and outer approximation, , andcﬁo,tf , of
Ciyt; (Lhommeau et al., 2011; Delanoue et al., 2009).
Such problems of dynamics control under constraints
refer to viability theory (Aubin, 2006) (see (Aubin,
1990) for a survey). The proposed method to char-
acterizeCyyt,, Which has similarities with dynamic
programming (Kirk, 2004), has the advantage that it
is guaranteed whereas numerical methods give only
an approximation. An interval analysis based method
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is used to compute the approximations, such that now remains to show how to compute such inclu-
Ciots € Ciots S Cﬁo,tf, by using guaranteed numeri- sions. The first step is to compute formally the in-

cal integration (VNODE-LP). Note that an obvious
approximations would b€ ; = 0 andC;, = K.
The proposed method aims at computing a better en-
closure ofCy ¢, .

In a second part, we got interested to the optimal
control problem. Given a cost functiahand an ini-
tial statexg € Cy,t,, we propose a numerical method
to evaluate an enclosure of the discrete optimal con-
trol u(t) € U such thath(to,ts; Xo, u(t)) € T andu(t)
continuous ovefty, tky1]-

The paper is organised as follow. First some in-

terval analysis tools are presented in Section 2 as they

are used to compute the inner and outer approxima-
tions. Section 3 presents the proposed algorithm to
computeCy,t, and is followed by experimental re-
sults in Section 4. Finally Section 5 discusses about
the optimal control problem and Section 6 concludes
this paper.

2 INTERVAL ANALYSIS

Interval analysis for ordinary differential equations
was introduced by Moore (Moore, 1966) (See (Nedi-
alkov et al., 1999) for a description and bibliography
on this topic). These methods provide numerically re-
liable enclosures of the exact solution of differential
equations.

Interval analysis usually considers only closed inter-
vals. The set of these intervals is denof&d An in-
terval is usually denoted using brackets. An element
of an interval[x] is denoted by. An interval vector
(box) [x] of R" is a Cartesian product ofintervals. If

[X] = [Xq,%1] X -+ X [X,, %] IS @ box, then its width is

W([X]) = w([xa]) > -+ x W([xa]), @)
wherew([x]) =X — x. The set of all boxes dR" is
denoted byiR".

The Bisect{) function divides an intervdk] into two
intervals[x;] and [x2] such agxi) U [x] = [X], [x1] N

] = 0 andw/([x1]) = W([x2]).

The main concept of interval analysis is the extension
of real functions to intervals, which is defined as fol-
lows. Letf: R" — R™ be a continuous real function,
and[f] : TR" — TR™ be an inclusion function. Then
[f] is an inclusion function of if and only if for every

[X] € IR" {f(x)[x € [x]} < [f]([x]).

Hence, an interval inclusion allows computing en-
closures of the image of boxes by real functions. It

1A C++ package for computing bounds on solutions in Initial

Value Problems for Ordinary Differential Equations, by Nedi
alkov.
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terval extension of elementary functions. For exam-
ple, we defingx,X] + [y,y] := [x+Y,X+y]. Similar
simple expressions are obtained for other functions
ike —, x,=,x",\/x,exp--- This process gives rise
to the so-callednterval arithmetic(see (Jaulin et al.,
2001)).

Then, an interval inclusion for real functions com-
pound of these elementary operations is simply ob-
tained by changing the real operations to their inter-
val counterparts. This interval inclusion is called the
natural extension

Interval arithmetic can be used to compute guaranteed
integration. In the later, the Nedialkov method is used
to compute:

- [x]* such thafx]* D ¢ (tk, tky1; [X], [Uk]),
- K* such thak* > @([tk, tiea]; [X], [Uk])-

Note that the Nedialkov method is one chosen solu-
tion over several methods, one could chose a different
approach.

Given a bounded sdE of complex shape, one usu-
ally defines an axis-aligned box or paving, i.e. an
union of non-overlapping boxe&™ which contains
the setE : this is known as the outer approximation of
it. Likewise, one also defines an inner approximation
E~ which is contained in the s&. Hence we have
the following property

E-CECE" (8)

3 CHARACTERIZATION OF C 1, +;

This section presents an algorithm able to provide an

inner and an outer approximation Gf,+, assuming

that the inputu(ty) is continuous ovefty,tx1], and

bounded so itis possible to determinate ajbhsuch

thatu(t) € [uk] over [ty,tx-1]. That is, the obtained

results will be dependant of the time’s si&p

For each timéy the algorithm computes a gridding of

K (aslice), notedS(tx). The resolution of the gridding

iS Ok = (Oyy,---,0x, - ,0x,) Wheredy corresponds

to the resolution of thé" dimension oK (Figure 1).

A cell s of S(tx) can be

- unreachablef no statex in this cell allows the

system to reach the target at tiefor all possi-
ble input vectors. The set of all theareachable
cells of S(t) is notedS(tx)

S't) ={ s eStlvu(t) eV, (9)
o[t t];s,u(t))N T = 0}

- reachabléf for all the state of this cell it exists
an input vector that allows the system to reach the



target at time; with a trajectory entirely included
in the state space domalk. The set of all the
reachablecells of S(ty) is notedS (t).
S(t) = {seSt|u(t) eV,
d(tk,tr;S,u(t)) C T and
o[t te];s,u(t)) €K}
- indeterminatef it is neitherreachableor unreach-

able The set of all théndeterminatesells of S(t)
is notedS (ty).

(10)

S(tk) =St \ (St US' () (11)
It can be noticed that
Ctg,tf = Sr(to)7 (12)

Cth,tf = g(to) us (to).

The time’s step, of the input vector (step time dur-
ing which one the input vector is continuous and
bounded) and the resolutiodg,i = 1,---,n, are de-
fined by the desired precision of ti&  andC,
characterizations. Note th@{;, can be empty if the

precision is too rough.

S(te)
Iy z
EEEEEEE -
HEEENNEE
| L[]

Ty

Figure 1: An example of slice set and sliy), with

K = ([x1,X1], [%2,%2]) a two dimensional state space do-
main. The following color scheme is held for all the figures
of this paper: blue (dark grey) unreachablered (medium
grey)— reachable yellow (light grey)— indeterminate

3.1 The G, Algorithm

We propose an iterative algorithm (Algorithm 1) that
computes for each slicg(t), three subsetS (tx),
S'(t) andS (tk) such as

S(tk) = S (t) U S (tk) US (tk)

S (tk) = {s C S(tx)|s is reachablg
S(tk) = {s C S(tx)|s is unreachablé
S(ty) = {s C S(tx)|s isindeterminaté

Those subsets are computed fréymto tg using
guarantee numerical integration. After the initializa-
tion of the subsets at tinte the other subsets at time
tx are built using the reachability information of the
cellss C S(tx.1). Note that theADD algorithm is
presented in Section 3.2.

Lines 1 to 3 of the Algorithm 1 initialise the three
subsets of the slic8(tt). For this particular slice, the
reachablecells are the ones included in the target, the

(13)
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Algorithm 1. COMPUTATION OFC,y, .

4
5
6
7
8
9

10
11
12

13
14
15
16

18
19

20
21
22

23
24

Data: K,T, to, tf, U
18(tr)={seStr)|s CT};

2 S'(tr) ={s € S(t7)[sNT =0},
3 S(tr) =S(tr) \ (S(tr) US'(tr));
for ty +tf_1 totp do

L=0;

forall the [ux] € U do
L.add(K);

while £ is not emptydo

[x] = L.popout();
[ = ¢ (t, ticya; [X], [Ui]);
if [x]*NK =0then
| Vs C [x],ADD(S"(t),s);
else if[x]* C S (tky1) then
if @([t, tisa; [x], [uk]) € K then
| ¥s C [x].ADD(S (t). S):
else _
| Vs C [x],ADD(S (t).s);

else if[x]* C S'(tx+1) then
| Vs C[x],ADD(S'(t),s));
else if[x] can be bisectethen

([x1), [x2]) = BISECT([));
L L.add([x1]), L.add([x2]);

else

| ¥s C [x]ADD(S (t). 5));

Result {S(t)},tc=1to,-- ..

unreachablecells are the ones that do not intersect

the target and thindeterminatecells are all the oth-

ers ones (the cells intersecting the target without been
included). Then lines 4 to 24, the others slice subsets
are built. Line 6 it can be notices that all the possible

control vectors are considered to determine the reach-

ability of the cells. Line 8 to 24 &et Inversion Via
Interval Analysisapproach (Jaulin and Walter, 1993)

is used to determinate the reachability of the current

slice cells. It can be noticed that the computation of

line 10 is done using guaranteed numerical integration

(VNODE-LP). Line 14, a cell can be reachable only
if the trajectory is included in the state spaceUsu-
ally the computation of the inclusion flow is based on

the Banach fixed-point theorem and the application of
the Picard-Lindelof operator (see (Berz and Makino,

1998; Nedialkov et al., 1999) for details). Line 21,

the box is bisected among the grid. It means that, line

20, the box{x] can not be bisected if it contains only

one cell. In other words, the algorithm stops when all

the indeterminate boxes have a grid cell size.
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The result of the algorithm has to be interpreted as

Cfg’tf = g(to) U S(to)

Ct;,tf = g(to) (14)

Figure 3: The reachability information priorities. A cell

The Figure 2 represents three cases of the Algo- notedunreachablecan be updated tachableor indeter-

rithm 1:

- [xa]* € S'(tkr1), then{s C S(tx)|s C [x1]} can be
added taS'(tk) (Line 19 of the algorithm),

- [X2]* € S(tk+1), then{s C S(tk)|s C [xz]} can be
added tdS (t) [x2]* (Line 15 of the algorithm),

- [xa]* is neither included ir8"(tc;1) or S (tky1),
and the boxx3z] is too small to be bisected, thus

{s € S(ty)|s C [x3]} can be added t8(ty) (Line
24 of the algorithm).
YV L7 %
el =
b1 [xo) -l S(t
el =7
T 2 T [xs]
1758 xal” [x1] [x3]
txl

Figure 2: The reachability of the cells C St 1) are
used to build the subsets of the sli&ty). Denote
that [xi]* = O (ti,ti1; [xil, [u]).i = 1.2.3, with [xq]* C

S(tkr1), [X2]" € S(tks1) and[xz]* is neither included in
S(tr1) or S (tta)-

3.2 The ADD algorithm

The slide’s cell reachability is updated regards to all
the possible control vectofsi] € U. For a given cell,
the reachability information can be different consid-
ering two different control vectors. That is why it
is needed to consideriorities for the update of the
reachability information of a cell and thus the com-
puting of the three subseS (tk),3(tx) and S (ix).
That is the purpose of the ADD function. For ex-
ample if a control vectoju, k] leads to aeachability
information for a cell C S(tx) whereas a control vec-
tor [uzk] leads to andeterminaténformation for the
same cell, this cell belongs taS (i) (is reachabl@

because it has been proved that it exists a control vec-

tor, [uzy], that leads the cell t& (tc;1). Figure 3
presents the several reachability information priori-
ties.

196

minate a cell notedndeterminatecan only be updated to
reachableand a cell notedeachablecan not be updated at
all.

4 EXPERIMENTATION

In-order to validate the proposed method the algo-
rithm has been implemented in C++ using VNODE-
LP library. Be considered the following two-
dimensional system

X1 =Xo+Vxcog),
1
{)‘(2 = sin(x1) + v x sin(0), (15)
the following input vector
U ={uy] Uuz] U uzy]
Uikl = ([vi].8),
[urk] =([-0.25,0.25,11/2), (16)
[U27k] = ([3 75 4. 25] T[/Z)
[u3,k] - ([9757 1025],7'[/2),
the following parameters
& =05
to =0, tr =10,
17
&, =0.5,0,=05 7
K =(]-30,30],[—30,30]),
and the following target
T =([-15.1,-9.9],[1.9,7.1]). (18)

The Figure 4 shows four slices. The PC we use has
two processors (Intel(R) Core(TM)2 CPU 6420 @
2.13 Ghz), and it takes 1457s (24min 17s) to compute
all the slicesS(tx). The details of the computation
time are presented in the Table 1. _

The sliceS(0) provides theC;f ;, = S'(0)US(0) and
Ciot; = S (0) characterizations dE,t, . Note that it

is possible to increase the precision of the approxima-
tion of Cy, t, by reducing the values &, anddy,.

5 DISCRETE OPTIMAL
CONTROL ENCLOSURE

The previous algorithm computes two guaranteed ap-
proximationsCy ;, and Cﬁo,tf of Cyyt,. It is possi-



Table 1: Slices computation time.

slice S(9.5) | §9) | S85) | S8
time (s)|| 2.56 | 555 | 11.95| 22.6
slice S(75) | S7) | S65) | S6)
time (s) || 40.66 | 61.78| 71.86 | 75.6
slice S(5.5) | S(5) | 545 | S4)
time (s)|| 76.41 | 79.6 | 82.88 | 87.89
slice S(35) | S(3) | S(25 | 92
time (s) || 93.96 | 98.59| 102.79| 105.87
slice S(15) | S(1) | S0.5 | S0
time (s) || 106.78| 108.5| 109.23| 111.73

Figure 4: Four slices: (from left top to right bottor&)9.5),
S(7.5), S(5) andS(2.5).

ble to extend this algorithm to be able to deal with
optimal control. Considering a given cost function
J(x(t),u(t)), the idea of the algorithm is to enclose
the cost of the trajectories that allow to reach a cell
S C S(tkr1) from a cells; € S(tx). Note that the input
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5.1 The Algorithm Modifications

The idea is to use th€;, computation to enclose
the optimal trajectory from an initial stapeg] € Cy, ,
to the targefl. To this end it is needed to slightly
modify the presented algorithm. The purpose of this
new algorithm is to define for all the cebsC S(t) a
set of input vectort)(s) that leads the cell t&8 (ty; 1)
or S(tx.1) (Figure 5):
U(s) = {[u € Ul (it 1S [U]) Z S'(tin)},

(20)
with 5 € S(ty), tk < ts. _
Each time a cels C S(tx) may be added t& (tk) or
S (t) (lines 15,17 and 24 of the Algorithm 1) the cur-
rent input vectofuy] has to be added td(s)).

Figure 5. Example of added control vectors for a eglt
S(ty): U(s) = {[uz ], [k}, [urk] is not relevant since it
leads taS'(tc,1). Note thatsj]" = ¢ (t, ticr1:8, [Uj ). ] =
1,2,3.

Considering the cost function it is possible to asso-
ciate a cosd([uk]) to each control vectduy] € U(s),

is still assumed to be continuous and bounded overS € S(t). In the following a control vectoju] will

[tk—1, ]
To simplify we assume that the cost function to

minimize is
I= / u(t)2dt. (19)

It can obviously be extended to other cost functions.

Note that isJ is dependant of the state the cost of

an input vector between two time steps can still be
computed using interval arithmetic and the evaluation

of the trajectoryp(]tk, tk+1], Xk, Uk)-

Instead of characterizing the cells with the reachabil-
ity of the target this section provides a method to add
the input control that could be used to reach the target.

The modifications of the previous algorithm are pre-

sented in Subsection 5.1, Subsection 5.2 details how

be abusively associated to its cdgfuy]).
5.2 A Graph Building

Given an initial statgxo] € Cy,¢,, the idea is to build
a graph starting with a nod®(tg) and ending with a
nodenr (t¢) (Figure 7), such as
no(to) = {s € S(to)|s N [xo] # O}
nr(ts) ={s CStr)[sNT #0}
N defines the set of nodes of the graph. A node
ni(tx) € N is defined by a set of cels C S(tx). Two
nodesn; (tx) andnj(tk1) are linked if
Alu(to)] € U[Vs € ni(t), ¢ (t, tr 23S, [Uk]) € nj(tirn)
(22)

(21)

to build a graph using the added control vectors, and With J([uk]) the weight of the edge that links the two
Subsection 5.3 explains how to use the graph to en-nodesi(t) andn (t1).

close the optimal control input. Note that the found

Itis possible to define a set of control vectd(m;(tx))

enclosure corresponds to the enclosure of the optimalfor @ noden;(tx) € N corresponding to all the control
trajectory assuming that the input vector is bounded VectorsU(s) of all the cellss; € nj(ty):

between each time steps.

U(ni(tk)) = {U(s), Vs € ni(tx)}. (23)
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Note that for efficiency reason it is recommended ularity: as the nodes of the graph are cell sets, it can

to avoid control vector redundancy ibJ(ni(tx)),
Vni(tx) € N (otherwise identical nodes will appear
several times in the graph).

The graph is built frommg(to) to nr(t¢) using the cor-

responding edge sets. Algorithm 2 details the nodes
building and the Figure 6 presents an example of

graph building.

Algorithm 2: NODES.

Data: S, np(to), nr(tr)

L= no(to),N =0;

while L is not emptydo

ni(tx) = L.popout();

N.add(n;(t));

if ty <tf then
for all [ux] € U(ni(tx)) do
L Ni(t1) = {S € Stir1)|

~NOoO o~ WN B

b (t, tra; Ni (), [Uk]) N's # 03
L.add(ni(tkr1));

N.add(nr(tr)):
Result N.

©

na2

Figure 6: Example of graph building. Starting from a node
no(to) = {s € S(to)|s N [xo] # O}, two nodes are com-
puted:m (t1) = {s C S(t1)|s N [x1] # 0} andnp(t1) = {s C
Sity)[s N [x2] # 0}, with [x1] = ¢ (to,tz; No(to), [uz0]) and
[X2] = §(to,t1; No(to), [U2,0]). The same principle is repeated
for the other nodes. It can be noticed that

be associated a reachability information for each node
ni(ty) €N
- anoden;(t) is reachabléf all the cellss € nj(tk)
arereachable

- a noden;(t) is indeterminatdf at least one cell
s € ni(t) is notreachable

This can be extended to the paths of the graph

- a path isreachabléef all the nodes of the path are
reachable

- a path isndeterminatef at least one node of the
path isindeterminate It can be noticed that an
indeterminatgpath may correspond to a trajectory
that does not exist considering the system. They
have to be considered carefully.

5.3 Exploitation of the Graph

Using this graph, it is possible, with a shortest path
algorithm, to compute two informations:

--an-enclosure of the optimal control vector to reach
the targefl from an initial statgxo] € Cy,

- an evaluation of the cost of this control vector.

The chosen shortest path algorithm is a general-
ization of the Dijkstra algorithm (Dijkstra, 1971).
The classical Dijkstra algorithm is presented Algo-
rithm 3. The input of this algorithm is a gragh,
composed by a set of nodés linked to each oth-
ers with weighted edgesJ(n;) corresponds to the
weight of the noden; and J(nj,n;) corresponds to
the weight of the edge linking the nodesand n;
(in our case it corresponds to the cost of the control
vector fromn; to nj). The Dijkstra algorithm can
easily be extended for edges with interval weights
as themin() function can be extended to intervals
(min([xa, ], [%2,%2]) = [Min(xy, %), Min(xz,%z)] e.g.
min([3,9],[5,7]) = [3,7]). Note that with interval
weights it may not be possible to choose between two
paths, in this case, both paths are solutions.

As some paths may not correspond to possible tra-
jectories of the studied systenm@eterminateaths),
a reachablesub-graph has to be considered. Be a
graphG, itis possible to build a sub-graji defined
by all thereachablepaths ofG. In this cases corre-

- the top figure corresponds to the superimposition of the sponds to all the trajectories that may lead the system

three slicesS(tp), S(t1), andS(ty),

to the target an; corresponds to all the guaranteed

- some cells can belong to different nodes, as the dark grey trajectories that lead the system the target from the

cell is attached to the nodey(t2) andny(ta).

The computed graph corresponds to all the possible
trajectories of the system that may lead to the target

att; from an initial state[xg] attp. A priori it en-

closes the optimal trajectory. This graph has a partic-
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initial state.

Processing an interval Dijkstra algorithm ov&r
it is possible to find a se®; of shortest guaranteed
paths for this sub-graph.

P = {shortest pathB € G, } (24)
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Algorithm 3: Dijkstra Algorithm. - Nr = {no,n1,N2,N2,N21,N121,Np11, N7} corre-
Data- G sponding to theeachablenodes and edges,

1 initialize the nodes asnmarked with N; the node set o&;.

2 Vi € N,J(n;) = +o0; For the reader information here are the computation

3 L(ng) =0; of all the path costs:

4 while it exists an unmarked nodio - J(P(Nng, Ny, N11, M11,N7)) = [6,10

5 n_ = the unmarked node with the lowekt J(P( ) B [11 1]5

6 | noten_ asmarked - J(P(no, Ny, M2, N2y, nr)) = [11,15)

7 for all unmarked nodesylinked to n do - J(P(no,n2,n21,N211, 7)) = [5,9]

8 L J(nU) :mln(J(nU),J(nL)+J(nL,nU)); _ J(P(nO,nZ,nZL N212, nT)) _ [14’ 18]
Result weighted node sét. Using the interval Dijkstra algorithm it is possi-

] . ] ble to evaluate the optimal paths of the graph
As mentioned before, when itis not possibleto deter- G p: — P(ng,np, np1,Np11,nf)}. By process-

minate if a path is shorter than an other one the two ing an other-interval Dijkstra algorithm ove®

paths have to be kept as solution. For example if a 54q keeping only the paths that may be better
pathP; has a cosﬂ(Pl_) = [20,25 andapatiP, hasa  that P: we obtainP* = {P(no,ny, N1z, Nu1g,n7)} U
costJ(P,) :_[22, 30}, it is not possible to determinate P:. It can be concluded that the optimal path
which path is shorterJ(P1) # J(Pp) since 25> 22, of the system for this  example is included in
andJ(P2) # J(Py) since 22> 20). In this case the - px — (p(n . ny1, Naag, Nt), P(No, N, Mo Npaa, )}

two pathsP; andP, have to be kept as they may both 5,4 has a cost(P*) = [5,9].

be the shortest path.

The paths so obtained are guaranteed to exist, but may

not be the shortest paths considering the gaphhe 6 CONCLUSIONS

idea is to conside?; as an upper bound of the shortest
path ofG.

Knowing P; and processing an other interval Dijkstra

algorithm ovelG it is possible to finally find the path to compute an evaluation of the subg, of initial

£3
se:P that encloses the shortest patif i states from which there exists at least one trajectory of
P* = {pathsP € G that may be better thaj } UP; the system reaching the targetn finite timets from

In this paper, we have introduced two interval-based
algorithms. The first one allows, given a step time,

(25) a timetg, assuming that the input vector is continuous
Note that a path may be better than an other, if it is agnd bounded over a time_1,t]. The result of this
not possible to determinate which path is shorter. work is an outer and inner characterisationGyfy, .
Then adapting this work we have defined an other al-
S(to) S(t1) S(ta) S(ts) S(ty) gorithm to deal with discrete optimal control charac-

terization. This second algorithm computes a graph
corresponding to all the possible discrete trajectories
that might lead the system from an initial state to the
target. Using a generalized Dijkstra algorithm, it is
possible to use this graph in order to enclose the dis-
crete optimal control vector and evaluate is cost. As
future work we are planing to modify the algorithm in
order to be independent of the time step.
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