
Defect Bash - Literature Review

Xuejiao Zhou and Mika Mäntylä
Department of Computer Science and Engineering, School of Science, Aalto University, Espoo,

P.O. Box 19210, 00076 Aalto, Finland

Keywords: Defect Bash, Literature Review, Software Quality, Software Testing, Verification and Validation.

Abstract: Defect bash is a co-located testing session performed by a group of people. We performed a systematic
review of the academic and grey literature, i.e. informally published writings, of the defect bash. Altogether,
we found 44 items (17 academic and 27 grey literature sources) that were identified useful for the review.
Based on the review the definition of defect bash is presented, benefits and limitations of using defect bash
are given. Finally, the process of doing defect bash is outlined. This review provides initial understanding
on how defect bash could be useful in achieving the software quality and lays foundation for further
academic studies of this topic.

1 INTRODUCTION

Testing is one of most important software quality
practices and it aims in finding defects before the
software is released. Defect bash (or bug bash) is a
testing event where a group of people tries to find as
many defects as possible from the software. It is
widely applied in software companies (Anonymous
2, 2010; Anonymous 3, 2011; Enns, 2004;
Fitzgerald, 2012; Powell, 2009; Sagynov, 2011a, b;
Whittaker, 2012). For example Microsoft used it
quite often (Anonymous 2, 2010; Crowhurst, 2011;
Liangshi, 2010; Sahay, 2012). Marick (1997) sees
defect bash as an additional testing complementing
written automated and manual test cases. Kaner
(2011) listed defect bash as a technique for black-
box testing. It is used in crowd testing (Anonymous
6, 2012) and open source testing (Grubbs, 2012).

Although, defect bash has been around for
decades (Dolan and Matthews, 1993), we could not
find a single research article that would have had
primary focus on the defect bash, although it is often
mentioned as a side note. This is in stark contrast for
example with code review practice that has been the
primary focus of several academic articles.

In order to shed light to this popular practice, this
article analyses the existing information on defect
bash with the following fundamental issues:
 The definition of defect bash;
 The benefits and limitations of using defect

bash;

 The process of doing successful defect bash.
This paper is a literature review of defect bash.

In Section 2 we define the literature review protocol.
Section 3 defines defect bash based on the literature
review. Section 4 lists the benefits and limitations of
defect bash. The process of defect bash is derived
from the references in the section 5. Finally
conclusion is given in Section 6.

2 SYSTEMATIC LITERATURE
COLLECTION

Systematic literature review (Kitchenham and
Charters, 2007) is used to identify the definition,
benefits and limitations, and process of defect bash.

Combination of string (("bug bash" OR "bug
bashing" OR "defect bash" OR "defect bashing")
AND “software”) is used for title, abstract and
keywords to identify articles related to defect bash.

Using the search string we searched both the
academic and the grey literature. The search engines
used were Google (www.google.com) for grey
literature and Google Scholar (scholar.google.com)
for academic literature. The latter includes the major
academic databases such as IEEE Explore, Scopus
and ACM.

We found 19,500 items from Google (September
8 2012), but only the first 200 results were checked.
This is because in the results from 130 to 200 only

125Zhou X. and Mäntylä M..
Defect Bash - Literature Review.
DOI: 10.5220/0004417101250131
In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2013), pages 125-131
ISBN: 978-989-8565-62-4
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

one relevant page was found. Thus, going deeper in
the Google search results would have increased the
workload with very small likelihood of finding
relevant results. Out of the 200 results 36 results
were related to research needs and only 27 results
from Google are used as references in this article
because some results are duplicated. Classification
of grey literature results according to the definition
on the types of grey literature by GreyNet
International (2012) show the following: we found
four types of grey literature (27): 3 discussion
forums, 12 blogs, and 12 company websites.

66 items were found in Google Scholar (10 April
2013). Among 66 items from Google Scholar, 30
items were unrelated or unavailable (broken links, or
books we did not have access); In 20 items defect
bash only as a term was mentioned, without
information on definition, benefits and limitations of
defect bash. This left us with 17 items (academic
articles and books) containing information on
definition, benefits and limitations. Totally 44
references are used for this article as in Table 1.

The classification is done based on the major
content of each reference; this means that one
reference may contain different kinds of
information, i.e., definition, benefits and limitation,
and process of doing bug bash. One reference may
be used in several places of this article.

3 DEFINITION

Several definitions for defect bash were found. Next
we present three definitions that appeared as the
most popular, i.e. these definitions were used in
several places.

In Desikan and Ramesh’s book (Desikan and

Ramesh, 2008), the defect bash is defined as “an ad
hoc testing done by people performing different
roles in the same time duration during the
integration testing phase, to bring out all types of
defects that may have been left out by planned
testing. It is not based on any written testing case”.

The definition in Wikipedia (2012) is “a bug
bash is a procedure where all the developers, testers,
program managers, usability researchers, designers,
documentation folks, and even sometimes marketing
people, put aside their regular day-to-day duties and
pound on the product to get as many eyes on the
product as possible”.

ALLInterviews (2012) and QTP (2012) have the
same definition of “it is an ad hoc testing where
people performing different roles in an organization
test the product together at the same time. The
testing by all the participants during defect bashing
is not based on written test cases. What is to be
tested is left to an individual's decision and creativity.
This is usually done when the software is close to
being ready to release”.

Combing the above 3 definitions, we can define
the defect bash as follows: It is a temporally and
spatially co-located group testing session, done by
people from different roles during the integration
testing phase or close to software release to bring
out all types of defects that may have been left out by
planned testing. It is not based on written test-cases.

4 BENEFITS AND LIMITATIONS

4.1 Benefits

Table 2 presents the benefits of the defect bash. We
can see the most frequently mentioned benefit from

Table 1: Classification of found literatures.

Category n: references
Definition and benefits of
defect bash

15: ALLInterviews, 2012; Aranda and Venolia, 2009; Birkinshaw and Goddard,
2009; ChetanaS, 2011; Desikan and Ramesh, 2008; Dolan and Matthew, 1993;
QTP, 2012; Marick, 1997; Nindel-Edwards and Steinke, 2006; Slaughter and
Rahman, 2011; Wikipedia, 2012; Williams, 1998; Whittaker, 2012; Wong,
2011; Yüksel, Tüzün, Gelirli, and Bıyıklı, 2009

How to do defect bash
13: Anonymous 1, 2010; Anonymous 4, 2011; Bach,1998; Berkun, 2008; Cruden,
2011; Liangshi, 2010; Haynes, 2009; Kalra, 2007; Khan and ElMadi, 2011; Mey,
2012; Powell, 2009; Pruitt and Adlin, 2005; Spagnuol, 2007

Against defect bash 1: Lyndsay, 2011

Report after defect bash
5: Anonymous 2, 2010; Anonymous 3, 2011; Sagynov, 2011a; Sagynov, 2011b;
MarkusN, 2012

Advertisement for doing
defect bash

10: Anonymous 5, 2012; Anonymous 6, 2012; Crowhurst, 2011; Enns, 2004;
Fitzgerald, 2012; Grubbs, 2012; Kaner, 2011; Sahay, 2006; Sakai, 2012; Sande, 2009

Total 44

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

126

defect bashing is finding defects in a short time
before the software is released. It can also bring out
both functional and non-functional defects. The life
cycle of the bugs can be minimized as the reports
can be verified and assigned during the defects bash.

Defect bash acts as a basic sort of usability as
well as acceptance testing. People can pound the
system from the load in the defect bash. Additionally,
defect bash can be used to break the system instead
of trying to conclude the system works.

Defect bash brings different people from
different roles together in the organization for testing.
The boundaries between roles are minimized in a co-
located session. Different roles also help validating
the software from end user perspective. The end
users using a software product will be quite different
from each other in many aspects such as
understanding about the product, the manner of
using the software. Defect bash can bring in people
who have different levels of product understanding
to test the product together randomly, which can
simulate the different approaches of the end users. It
is also recognized that fresh eyes have less bias and
that fresh eyes can uncover new defects.

Learning and competitions are also mentioned as
benefits of a defect bash. The built-in competitive
instinct of participants should be stimulated to
achieve this. Defect bash also helps in learning the
product and learning from each other. It can be used
as unofficial demo. The learning and competition

aspects are also claimed to help in team building
inside a company.

4.2 Limitations

Though many benefits are declared in the literature,
still there are limitations of defect bash as below by
them:

Limitation 1: Defect bash might cause too
many duplicate defect reports. The quality of defect
reports can be low. Time is wasted in investigating,
diagnosing and logging the same problem several
times (Anonymous 4, 2011; Berkun, 2008; Lyndsay,
2011).

Limitation 2: The blog (Lyndsay, 2011) claims
that in defect bash there isn’t much opportunity to
learn from each other. This is because many people
use the system for the first time, at the same time.
Also the limited time period disables learning. We
think that the defect bash in the first time would be
similar to what Lyndsay observed. However after
more experience both organizer and participants will
learn how to do a defect bash more efficiently.

Limitation 3: Defect bash can only predict
customer behavior for the first few hours (Lyndsay,
2011). Thus, it cannot offer information of long-term
product use. We think that usage by different users
even once or short period is better than nothing, and
we maybe should not expect too many feedbacks on
customer behaviors from defect bash as Lindsay’s

Table 2: Benefits and the references mentioning it.

Benefit References mentioning the benefit

Finding many defects, bring out both functional
and non-functional defects, also shortening the life
cycle of the bugs

Anonymous 1, 2010; Anonymous 2, 2010; Anonymous 3, 2011;
Aranda and Venolia, 2009; Crudden and Lawson, 2011;
Desikan and Ramesh, 2008; Haynes, 2009; Karla, 2007;
Liangshi, 2010; MarkusN, 2012; Powell, 2009; QTP, 2012;
Sagynov, 2011b; Sahay, 2006; Sande, 2009; Spagnuolo, 2007

The competitive instinct of participants are
stimulated and good for team building

Haynes, 2009; Birkinshaw and Goddard, 2009; Wong, 2011;
Yüksel, Tüzün, Gelirli, and Bıyıklı, 2009

Saving money (no need to hire group externals) Crudden and Lawson, 2011

Help in rapid evolution of test scripts Bach, 1998

Acting as acceptance testing and usability testing Anonymous 1, 2010; Anonymous 4, 2011; Karla, 2007

Make software more valuable while enhancement
done

Anonymous 1, 2010; Crudden and Lawson, 2011

Cross boundary testing Desikan and Ramesh, 2008

Learn your product and team building
Berkun, 2008; Crudden and Lawson, 2011; Desikan and Ramesh,
2008; Haynes, 2009; Spagnuolo, 2007; Khan and ElMadi, 2011

Fresh eyes have less bias
Anonymous 1, 2010; Crudden and Lawson, 2011; Desikan and
Ramesh, 2008

Users in different levels Desikan and Ramesh, 2008

Not wait for documentation Desikan and Ramesh, 2008

Testing is also to break system Desikan and Ramesh, 2008

Defect�Bash�-�Literature�Review

127

observation is reasonable.
Limitation 4: Defect bash causes the strain of

available resources for setting test environment with
a big group of people (Lyndsay, 2011). However,
this limitation can be overcome by careful planning
of defect bash.

5 PROCESS

Defect bash process is categorized into three phases
in this article: preparation, defect bash session and
post-process data as shown in Figure 1. There are
two kinds of roles in defect bash process, organizer(s)
and participators. Organizers plan the defect bash,
moderate it and analyze the report from participants.
Participants just test the software and report findings.

Phase 1 – Preparation: Panic can be caused
(Berkun, 2008) if there is no preparation before
defect bash. Usually the defect bash events are
advertised in a certain period earlier (Anonymous 6,
2012). Fitzgerald (2012) and Sakai (2012) have a
good list of items for the bug bash: goals, when to
have defect bash, duration, testing target software,
testing environment, defect reporting system,
participants, instructions. Sagynov (2011a) also
declares the evaluation method and rewards in the
preparation phase. Additionally, management
support needs assured during the proration phase.
Table 3 collects all items which might be needed for
the preparation. The preparation actions can be as
the items in Table 4.

Phase 2 - Defect bash session Analyzing the
references and the items for the doing defect bash
are collected in Table 5, and the actions in the
session can be as the items in Table 6.

Phase 3 - Post-process the data from defect
bash Analyzing the references and the items for
post-processing the data are collected in Table 7, and
the actions in the session are in Table 8.

Figure 1: The process of doing defect bash.

6 CONCLUSIONS

Based on a systematic review of literature of defect
bash, we make the following conclusions. First,
defect bash is defined as a spatially and temporally
co-located testing session performed by a group of
people. As academic studies of defect bash are
lacking, we also decided to search for a grey
literature in addition to academic literature.

Second, we found several claimed benefits of
defect bash. Among them are finding many defects
in a short time period, learning the product, team
building, getting many roles to test the software
from different viewpoints and getting fresh eyes to
search for defects (see Section 4.1). However,
Lyndsay (2011) and handful of other authors
disagreed with the benefits of defect bash, see
Section 4.2. The most serious limitation, however,
was the number of duplicated defect reports.
Nevertheless, this disagreement calls for empirical
investigation on the benefits and limitations of
defect bash.

Third, we presented a process for defect bash in
Section 5. There are two major roles in defect bash,
organizer(s) and participants that can represent
various roles from the software development
organization. A defect bash is divided into three
phases: preparation, defect bash session and post-
process data. The actions for executing each defect
bash phase in Tables 4, 6 and 8 can be used as the
guidelines for doing defect bash.

We think that this work lays out an initial
foundation for the future studies of defect bash that
are needed to understand this industrially relevant
software testing approach. Some examples of future
studies are: Improved guidelines on defect bash
process, collecting data on the detected defects,
factors affecting the efficiency and effectiveness, the
spread of knowledge in defect bash and the group
sizes for defect bash. Additionally, this literature
review should be extended to cover ‘team
exploratory testing’ practice (Bach 2003; George,
2013; Saukkoriipi and Tervonen, 2012) that appears
to have many similarities with defect bash practice.
Furthermore, similarity between defect bash and
software review meetings exist as both defect bash
and software reviews are group based quality
assurance techniques. The main difference between
defect bash and software review is that defect bash
consists of individuals testing the software while in
software review individuals review software
artefacts’ such as requirements, design or code. As
software reviews are widely studied group based QA
method (Wiegers 2002) comparison of practices of
defect bash and software reviews should be made.

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

128

Table 3: Items on the phase 1 – preparation.

Items of preparation References for each item
Goals Flush out the bugs (Crowhurst, 2011; Fitzgerald ,2012; Sakai, 2012)

Time
Informed 1 month earlier (Anonymous 6, 2012), A given time (Fitzgerald, 2012;
Sakai, 2012), clear afternoon (Berkun, 2008; Crowhurst, 2011); Schedule in key
milestone (Mey, 2012)

Get support from management Big shot (Berkun, 2008), Haynes, 2009; Pruitt and Adlin, 2005
Where Have a bug bash headquarter (Berkun, 2008); Haynes, 2009

Duration
3-5 hours (Anonymous 1, 2010), 60 minutes (Fitzgerald, 2012; Sakai, 2012),
(Cruden and Lawson, 2011), 30 minutes (Cruden and Lawson, 2011)

Target software or focus
Focus (Anonymous 4, 2011; Fitzgerald, 2012; Sakai, 2012), Freeze the build and a
Focus (Berkun, 2008; Crowhurst, 2011)

Testing environment
Server (Fitzgerald, 2012; Sakai, 2012), in the same environment (Cruden and
Lawson, 2011)

Participants
Registered users (Sakai, 2012; Fitzgerald, 2012), everyone in the company (Cruden
and Lawson, 2011); market person, developers, technical writers (Haynes, 2009)

Defects reporting system Jiras (Fitzgerald, 2012; Sakai, 2012)

Evaluation method and reward
Give out $50 Amazon gift card (Sagynov, 2011a), criteria to judge the bug
(Anonymous 2, 2010)

Instructions
How to connect the testing server, do testing and report findings (Sakai, 2012;
Fitzgerald, 2012)

Inform earlier Participants informed earlier (Cruden and Lawson, 2011)

Table 4: Actions in phase 1 – preparation.

Performer Actions
Organizer Planning defect bash:

 Goals – detect all defects as much as possible;
 Time – when to have it?
 Support from management;
 Where to have defect bash?
 Duration – how long a session lasts? Duration can be varied depending on project, 30 minutes,

3-5 hours, and whole afternoon;
 Target software – which software build should be used? Optimizing the effort involved in

defect bash. For example, it can be classified into: Feature/component defect bash; Integration
defect bash; Product defect bash (Desikan and Ramesh 2008).

 Testing environment – in what testing environment defect bash can be done? Setting up
testing environment;

 Participants – who will participate in the defect bash?
 Reporting system – how the findings should be reported?
 Instructions on how to do it;
 Evaluation method, who will win and what is the rewards?

Sending invitation to all usually at least one week ago and invite a big manager.
Participators Not involved yet.

Table 5: Items on the phase 2 - defect bash session.

Items of doing defect bash References for each item
Build team or create a rival teams Anonymous 1, 2010; Anonymous 4, 2011; Berkun, 2008

Explain what to do briefly Anonymous 1, 2010; Anonymous 4, 2011

Show a list of known issues and the format of good report Anonymous 4, 2011; Berkun, 2008

Let participants perform on their own Anonymous 1, 2010; Haynes, 2009
Keep scores Anonymous 1, 2010; Berkun, 2008
Encourage reporting Anonymous 4, 2011
Doing ad hoc testing Anonymous 4, 2011
Snacks offered Anonymous 4, 2011, Haynes, 2009; Mey, 2012
Taking pictures for fun Haynes, 2009;

Defect�Bash�-�Literature�Review

129

Table 6: Actions in phase 2 - defect bash session.

Performer Actions
Organizer Create rival teams; compose a team having a good mix of experienced, new and untrained people to

participate in this exercise. Or each participant does testing him/herself independently.
Explain system briefly, show known issues and show a good error report to participants at beginning.
Provide focus of testing areas; let them use the software without interruptions. Do not let them discuss
each other during the testing.
Allow participants report as they like. Anything like issues faced, crashes encountered, questions,
comments, and general feedbacks and any suggestions or enhancements.
Keep scores who found what.
Have snacks and drinks offered and pictures may be taken for fun.

Participators Doing ad hoc testing for detecting the defects.

Table 7: Items on the phase 3 - post-process data.

Items in post-process References for each item
Analyse all the issues, filter out the known issues Anonymous 1, 2010; Anonymous 3, 2011; Haynes, 2009
Criteria to judge the winner Anonymous 2, 2010
Winners Anonymous 2, 2010; Anonymous 3, 2011
Appreciation Anonymous 2, 2010; Anonymous 3, 2011; Mey, 2012

Table 8: Actions in the phase 3 - post-process data.

Performer Actions

Organizer

Analyse all the issues and suggestions and summarize them for the team.
 Issues should be compared with the error tracker to check for duplicates;
 All duplicated issues grouped into one issue;
 Filter out the known issues. The left ones will probably be new encountered defects, suggestions

and enhancement that will be used to improve the software further.
Send appreciation email or broadcasting information to all participants to tell the results, how many new
defects, who found the most important defects and reward the person or which team (if rival teams) who
found the most important defects.

Participators Receive the acknowledgement from organizer and rewards.

REFERENCES

ALLInterviews, 2012. What is meant by defect bash? In
link: http://www.allinterview.com/showanswers/23853
.html.

Anonymous 1, 2010. How to do a test bug bash for your
software project? In link: http://bettersoftwaretesting.
blogspot.com/2010/10/how-to-do-test-bug-bash-for-
your.html.

Anonymous 2, 2010. The WDK community bug bash
contest 2010 is over. In link: http://www.osronline.
com/page.cfm?name=bugbash.

Anonymous 3, 2011. Bug bash aftermath. In link:
http://seleniumhq.wordpress.com/2011/01/31/bug-
bash-aftermath/

Anonymous 4, 2011. Software bug bash tips. In link:
http://programmers.stackexchange.com/questions/470
07/software-bug-bash-tips.

Anonymous 5, 2012. Bug bash on Uhuru software. In link:
https://www.odesk.com/o/jobs/job/Bug-Bash-on-
Uhuru-Software_~~7390d00ba7cef979/.

Anonymous 6, 2012. 99tests Bug bash. In link: http://99tests

.com/99tests-bug-bash/.
Aranda, J., Venolia, G., 2009. The secret life of bugs:

going past the errors and omissions in software
repositories. In IEEE 2009. Article ID: 978-1-4244-
3452-7/09.

Bach, J.A., 1998. Microdynamics of process evolution. In
IEEE Computer Society, February 1998.

Bach, J.A., 2003. Exploratory testing explained. In link:
http://www.satisfice.com/articles/et-article.pdf.

Berkun, S., 2008. How to run a bug bash? In link:
http://www.scottberkun.com/blog/2008/how-to-run-a-
bug-bash/.

Birkinshaw, J., Goddard, J., 2009. The management
spectrum. In Journal Compilation, London Business
School.

Chetanas, 2011. What is defect bash? In link: http://
www.testingken.com/forum/showthread.php?t=346.

Crowhurst, C., 2011. Bug bash 2011 – A direct response.
In link: http://www.marketingarchitects.com/2011/
05/bug-bash-2011-a-direct-response/.

Cruden, K., Lawson, N., 2011. The Power of the bug bash.
In link: http://www.agilequalityassurance.com/2010/

ENASE�2013�-�8th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

130

04/the-power-of-the-bug-bash/.
Desikan, S., Ramesh, G., 2008. Software testing, principle

and practices. Dorling Kindersley (India) Pvt.
Ltd.123-126. ISBN 978-81-7758-121-8.

Dolan, R.J., Matthews, J.M., 1993. Maximizing the utility
of customer product testing: beta test design and
management. J PROD INNOV MANAG 1993;10:318-
330. Elsevier Science Publishing.

Enns, N., 2004. It is bug bash day on 28 April 2004. In
link: http://blogs.msdn.com/b/windowsmobile/archive/
2004/04/28/122435.aspx.

Fitzgerald, K., 2012. Sakai bug bashes. In link:
https://confluence.sakaiproject.org/display/3AK/Bug+
Bashes.

George, C., 2013. Team exploratory testing: our first
experiences... In link: http://mostly-testing.blogspot.fi/
2013/01/team-exploratory-testing-our-first.html.

GreyNet International, 2012. http://www.greynet.org/
greysourceindex/documenttypes.html.

Grubbs, J.C., 2012. Chicago open source bug bash. In
link: http://www.meetup.com/chicago-open-source-
bug-bash/.

Haynes, D., 2009. The search for software robustness. In
Excerpt from Pacific NW Software Quality
Conference.

Kalra, P., 2007. Bug bash. In link: http://rivr.sulekha.
com/bugbash_265217_blog.

Kaner, C., Fiedler, R.L., 2011. Black box software testing.
Introduction to test design. A survey of test techniques.
In BBST Test Design. In http://www.testingeducation.
org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf.

Kitchenham, B., Charters, S., 2007. Guidelines for
performing systematic literature reviews in software
engineering. Software Engineering Group, School of
Computer Science and Mathematics, Keele University,
Tech. Rep. EBSE-2007-01, July 2007.

Khan, M.S.A., ElMadi, A., 2011. Data warehouse testing
– an exploratory study. Software engineering master
thesis no: MSE-2011-65. In School of Computing
Blekinge Institute of Technology SE-371 79
Karlskrona, Sweden.

Liangshi, 2010. Ce shi za gan, bug bash. In link:
http://www.51testinzg.com/html/63/n-225363.html.

Lyndsay, J., 2011. Known ways of managing ET #2 – bug
bash. In link: http://workroomprds.blogspot.fi/2011
/12/known-ways-of-managing-et-02-bug-bash.html.

Marick, B., 1997. Class Testing mistakes. In http://
www.csi-chennai.org/swtws/ws-swt/mistakes.pdf.

MarkusN, 2012. Big bug bashing for GRASS 6! In link:
http://gfoss.blogspot.fi/2012/08/big-bug-bashing-for-
grass-6.html.

Mey, C.V., 2012. Shipping greatness. Practical lessons on
building and launching outstanding software, learned
on the job at Google and Amazon. By O’Reilly Media.

Nindel-Edwards, J., Steinke, G., 2006. A full life cycle
defect process model that supports defect tracking,
software product cycles and test iterations. In
Communications of the IIMA 2006 Volume 6 Issue 1.

Powell, C., 2009. ABAKAS bug bash. In link:
http://blog.abakas.com/2009/01/bug-bash.html.

Pruitt, J., Adlin, T., 2005. The personal lifecycle: Keeping
people in mind throughout product design.

QTP Tutorials and Interview Questions, 2012. In link:
http://qtp.blogspot.fi/2010/03/bug-bash-defect-bash.
html.

Sagynov, E., 2011a. CUBRID bug bash event! In link:
http://www.cubrid.org/blog/news/cubrid-bug-bash-
event/.

Sagynov, E., 2011b. CUBRID bug bash event results. In
link: http://www.cubrid.org/blog/cubrid-life/cubrid-
bug-bash-event-results/

Saukkoriipi, S., Tervonen I., 2012. Team exploratory
testing sessions. In International Scholarly Research
Network, ISRN Software Engineering, Volume 2012,
Article ID 324838.

Sahay, A., 2006. Microsoft, Appin launch security bug
bash 2006. In link http://press.xtvworld.com/
article12437.html.

Sakai, 2012. QAE QA. Call for bug bash. In link:
https://oae-community.sakaiproject.org/~oae-qa#l=
Bug-Bashes/Bug-Bashes.

Sande, S., 2009. Bug-bashing Bento 2.0v5 is now
available for download. In link: http://www.tuaw.
com/2009/08/19/bug-bashing-bento-2-0v5-is-now-
available-for-download/.

Slaughter, J., Rahman, M., 2011. Information security plan
for flight simulator applications. In International
Journal of Computer Science & Technology (IJCSIT),
Vol 3, No 3, June 2011. DOI: 10.5121/ijcsit.
2011.3301.

Spagnuolo, C., 2007. The bug bash sprint. In link:
http://edgehopper.com/the-bug-bash-sprint/

Wang, L., 2011. Master project. Best practice for testing in
development and testing groups. In
[http://etd.dtu.dk/thesis/277238/]

Whittaker, J.A., 2012. The 10-minute test plan. In IEEE
Software by IEEE Computer Society. Article ID: 0740
-7459/12.

Wiegers, Karl Eugene. Peer reviews in software: A
practical guide. Boston: Addison-Wesley, 2002.

Wikipedia, 2012. Bug bash. In link:
http://en.wikipedia.org/wiki/Bug_bash#cite_note-0.

Williams, G., 1998. Usability process challenges in a web
product cycle. In HCT’98 Conference Companion.

Yüksel, H.M., Tüzün, E., Gelirli, E.., Bıyıklı, E., 2009.
Using continuous integration and automated test
techniques for a robust C4ISR system. In IEEE 2009.
Article D: 978-1-4244-5023-7.

Defect�Bash�-�Literature�Review

131

