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Abstract. This paper presents a new combined mathematical method, which 
were proposed, implemented, and experimentally tested for extracting 
information necessary for modeling and, in future, predicting Parkinson’s 
disease. The method was developed for extraction “neurons” from microscopic 
images of brain slices of experimental animals. Then it was adapted for 
different types of initial data, because unfortunately the quality of initial images 
depends on skills of the specialist who has done an experiment. Now the 
method allows one to detect and identify as neurons a set of small informative 
extended objects with well distinguished (by brightness) oval inclusions. The 
result is a binary image of the contours of detected objects and their inclusions 
and a list of characteristics calculated for each detected object. The method is 
based on the joint application of image processing methods, methods of 
mathematical morphology, methods of segmentation, and the methods of 
classification of microscopic images. The method was applied to the following 
areas of brain: the substantia nigra pars compacta and the arcuate nucleus of 
hypothalamus. 

1 Introduction 

One of the most important problems of neurosciences is the development of 
experimental models of socially important neurodegenerative diseases, in particular, 
those associated with the death of dopaminergic (DAergic) neurons. The degeneration 
of the latter in the human nigrostriatal system leads to the development of Parkinson’s 
disease (PD) [2]. These models are designed for the development of new methods and 
technologies for the diagnosis and treatment of such diseases. The models could be 
developed much faster and would be economically more effective, with reduced time 
and material expenses for morphological studies. The latter can be reached by the 
automation and optimization of the methods for processing and analysis of 
experimental data. In particular, the automation of the analysis of images of neurons 
and their dendrons obtained from the microscope (MINs) makes it possible to reduce 
material costs by an order and the time costs, by two orders [7]. 

In spite of the fact that interest to the problem of analysis of biomedical images, 
including MINs, is being constantly growing, there have been very few successful 
attempts to automatize the process (or its stages) (see, for example, [3, 9, 14]). The 
detection and tracing of neurons in two dimensional microscopic images of brain 
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slices is complicated by the following factors [9]: (a) MINs contain, in addition to 
neurons, objects that are not neurons (particles of dirt, staining errors, tissue folds, 
blood vessels, and other artifacts); (b) neurons in MINs may strongly differ from each 
other both in size and shape; (c) neurons may be damaged during the preparation of 
slices; this fact affects their shape and, hence, leads to a large number of cells of 
different types on a slice; and (d) neurons may stick together or may be overlapped. 
On the whole, one should admit that the concept of a neuron as a visual object is not 
clearly defined, and there is no universal list of contextual, logical, geometrical, 
qualitative, and quantitative conditions and characteristics that would allow one to 
standardize the description/definition of this visual object. 

As a rule, the detection and tracing of a neuron in histological microscopic images 
involves the following main stages: preprocessing, segmentation, and classification. 
The need for the preprocessing of a MIN is attributed to the presence of noise, low 
resolution of a MIN, and the contrast non-uniformity due to error in staining the 
slices. To improve the quality of MINs, one usually applies standard operations of 
image processing such as smoothing, inverse convolution, morphological filtration, 
and some other operations [12]. 

In the publications devoted to the automatic or semiautomatic detection of neurons 
in MINs, one mainly uses, for segmentation, algorithms based on thresholding (for 
example, [3, 10]), morphological operations (for example, [4]), Potts models (for 
example, [13]), and watershed methods (for example, [15]) or active contour models 
(for example, [5, 9]). The further classification is carried out, for example, with the 
use of Bayesian procedures, principal component analysis, or machine learning 
methods (for example, [1]).  

An important stage in the analysis of the MINs of brain slices is the morphological 
characterization of the detected neurons. In recent years, a wide set of specific 
morphological parameters has been defined for the efficient mathematical 
characterization of the morphology of neurons, including their nuclei and dendrons 
(see, for example, [11]). 

A survey of the methods and systems of analysis and recognition of MINs for 
solving the problems of automation of diagnosis and the prediction of the clinical 
course of neurodegenerative diseases has been published by the authors of the present 
paper in [6]. 

The mathematical apparatus developed by the authors is based on the combined 
application of the methods of mathematical theory of image analysis and 
mathematical theory of pattern recognition, mathematical morphology, descriptive 
image algebras, information theory, and the methods of mathematical statistics. The 
methods developed allow one to efficiently detect and extract informative objects in 
microscopic images of brain slices (under restrictions imposed on the shape, size, 
topology, and the smoothness characteristics of the boundaries of objects [7, 8]). 

2 Statement of the Problem 

The problem consists in detecting the contours and calculating the morphofunctional 
characteristics of neurons for constructing a PD model that represents differences 
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between the parameters of DAergic neurons in the test and control groups 
(experimental animals from the test group were subjected to neurotoxin). 

As a source of experimental data for constructing a PD model, we used digital 
microscopic images of DAergic neurons and the fibers of brain slices of experimental 
animals (with a resolution of 0.0117µm2/pixel2). 

First of all, DAergic neurons are found on frontal serial slices of the substantia 
nigra pars compacta (SNC) with a thickness of 20 µm (fig. 1, left figure). They 
represent a key link in the regulation of motoric behavior. A progressive degeneration 
of these neurons leads to the development of PD. 

DAergic neurons represent dark oval cells with light nucleus. The shape of 
DAergic neurons may be rather arbitrary; however, in many cases one can observe a 
convex soma surrounding a nucleus. The mean diameter of DAergic neurons ranges 
from 10 to 20 µm. The nuclei are of oval shape, with a minimum diameter of 6–12 
µm and a maximum diameter of 9–15 µm. The relative size of the body (soma) and 
the nucleus vary strongly (one may observe either a very thin soma around the 
nucleus or a relatively small nucleus compared with the area of the soma). MINs 
contain a large number of fibers around a cell, which may mask the cell, forming an 
intense background around a neuron. 

In addition to the factors, listed in the Introduction, that impede the processing of 
MINs, one should take into account that (a) MINs contain regions of brain with a 
different number of neurons per unit area, and (b) microscopic images of different 
brain slices differ strongly in contrast and brightness. 

DAergic neurons are found on frontal serial slices of the arcuate nucleus of 
hypothalamus (AN) with a thickness of 20 µm (fig. 1, right figure). The DAergic 
neurons in this part of brain are the same as in SNC area, but the initial images of 
slices have significant differences: 1) the background of AN images is brighter than 
the background of SNC images; 2) neurons located in AN slices can have no visible 
cores; 3) average number of AN neurons per slice is in several times smaller than 
there are in SNC area; 4) neurons located in AN slices are distributed rarely than in 
SNC slices and mutual contacts between neurons in AN area are practically excluded. 

 

Fig. 1. Examples of images of neurons and their dendrons obtained from the microscope: a) 
SNC area (left figure); b) AN area (right figure). 
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3 Automated Detection and Identification of Neurons in 
Microscopic Images of Stained Brain Slices 

The theoretical basis of the development of a new combined method for the analysis 
of MINs is the descriptive approach to image analysis and understanding [8]. 
According to this approach, a mathematical method for the analysis of MINs is 
represented as a special algorithmic scheme. 

The method is designed for detecting a set of small informative extended objects 
with well-distinguished (by brightness) oval inclusions in microscopic images of 
frontal slices of the SNC and AN and calculating their morphometric characteristics. 

The result is a binary image of the contours of selected objects and a list of 
characteristics calculated for each detected object. The method is based on the 
combined application of image processing methods, methods of mathematical 
morphology, methods of segmentation, and methods of classification of microscopic 
images. 

The main feature of the method is that, after preprocessing of images, an iterative 
analysis of microscopic images is carried out with a view to distinguishing various 
classes of objects, that involves five procedures: (1) objects different from neurons are 
eliminated at the stage of application of the classifier; (2) a special class of objects-
stuck-together neurons- is distinguished after the classification; the analysis of these 
neurons reduces to the construction of boundaries between two neurons; (3) 
segmentation ensures the separation of “good” neurons (neurons with regular shape); 
(4) analysis of neurons with thin soma whose boundary has been partially erased and 
the nucleus is in contact with the background; and (5) elimination of the dendrons of 
neurons. 

The combined method involves the following main steps: (1) preprocessing of 
MINs: (1.1) filtration of MINs by an unsharp mask, (1.2) normalization of MINs, 
(1.3) morphological closing by reconstruction, and (1.4) binarization of MINs; (2) 
analysis of MINs: (2.1) segmentation of MINs, (2.2) classification of detected objects, 
(2.3) tracing neurons, (2.4) tracing the boundaries of neurons, (2.5) cutting off the 
dendrons of the neurons, and (2.6) construction of the boundaries of detected neurons; 
and (3) morphological characterization of neurons.  

The algorithmic scheme for analysis of AN slices is almost the same: 1) the step 
1.4 of MINs binarization is applied with other values of parameters; 2) the step 2.2 of 
object classification is based on another method of learning classifier. 

The algorithmic scheme that implements the detection and identification of objects 
involves the following stages: 

1. Preprocessing of MINs: 
1.1) Filtration of MINs by an unsharp mask:  the goal of this procedure is to 

increase the sharpness of the MINs, which allows one to increase the accuracy of 
tracing closely located neurons at further stages; the input data is a color MIN, and the 
output data is a sharper color MIN. 

A copy of the initial image is subjected to blurring (standard Gaussian blurring). If 
the difference between the mask and the original exceeds a certain threshold, the 
images are subtracted. The threshold is needed to avoid undesirable details such as 
noise in a digital image. The method ends with a pixel-by-pixel addition of the initial 
and obtained images. 
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Unsharp masking increases the local contrast of an image in the regions that 
initially contained sharp variations in color gradation; this allows one to keep the 
boundaries between neurons. 

1.2) Normalization: the aim of this procedure is a transition to a grayscale 
representation of MINs to normalize the difference in the staining of preparations; the 
input data are a color MIN with increased sharpness, and the output data is a 
grayscale MIN. 

The formula for the transition from a color to a grayscale MIN is standard, because 
all three channels of the original image carry equal information necessary for the 
further operation of the method. To pass from a color to a grayscale image, one 
should apply the following formula for calculating the gray level at every point of this 
image: gray= 0.299*R+ 0.587*G+0.114*B. 

1.3) Filtration of MINs with the use of morphological closing by reconstruction; 
the aim of this procedure is to suppress dark noise objects that are smaller than 
neurons; the input data is a color MIN, and the output data is a grayscale MIN. 

The applying of a morphological filter is motivated by the fact that the initial MINs 
contain noisy objects that neither belong to the objects of the background nor 
represent the goal objects. Noise in the images is produced due to the parts of neurons 
(a part of the neuron shell) that do not completely fall into the slice, or due to the 
terminals that fall into the slice. The noise objects in the image distort the results of 
classification; moreover, they may affect the shape of the selected objects in case of 
superimposition.  

For the morphological processing of images, we chose a filter “closing by 
reconstruction” because of the applying of this filter preserves the boundaries of the 
objects subjected to filtration. 

After the morphological filtration, large objects of the foreground that can easily be 
detected against the background remain on the grayscale image. However, large noisy 
objects may also exist among the remaining objects. This problem is solved at the 
subsequent steps of the method. 

1.4) Binarization; the aim of this procedure is a transition from a grayscale MIN to 
a binary MIN followed by the segmentation of the objects; the input data is the 
processed grayscale MIN, and the output data is the binary MIN with the goal objects, 
which will be checked for membership in the “neuron” class.  

The binarization of an image is performed by a thresholding algorithm with 
adaptive threshold. The adaptive threshold is chosen by Otsu’s method [12]. After 
that a threshold rule is applied to the grayscale image: all pixels of the original image 
whose brightness function is above the threshold are assigned a brightness value of 
255, and the remaining pixels are assigned a value of 0. 

The binarization of AN images is performed by a thresholding algorithm with 
adaptive threshold multiplied by some normalizing constant, because of the brightness 
of the background. The constant (0.74) was found during the experiments. 

The pixels with a brightness value of 0 on the binary image obtained are 
considered to be neuron like objects, while the pixels with brightness 255 are assumed 
to belong to the background. 

2. Analysis of MINs: 
2.1.2) Elimination of objects according to the shape and size of neurons; the aim of 

this procedure is to eliminate redundant objects by their size (a) from above with a 
very high threshold, in order to remove large areas that are certainly not neurons, 
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while retaining fragments corresponding to stuck together neurons, and (b) from 
below with a small lower threshold, in order to remove undoubted noise; the input 
data are the extracted connected components, and the output data is a shortened list of 
connected components. 

2.1.3) Preparation of areas with extracted objects for classification; the aim of this 
procedure is the construction of the minimal bounding square for each connected 
component; the input data is a binary MIN and the list of connected components, and 
the output data is the list of minimal bounding squares. 

2.2) Classification of extracted objects; the aim of this procedure is the distribution 
of detected objects into two classes (“neurons” and “other objects”); the input data is 
the list of squares that contain connected components, and the output data are two lists 
of squares (the class of “neurons” and the class of “other objects”). 

The problem of recognition of neurons is solved by a classifier based on the 
calculation of the distances from some special points of objects (the search of these 
points is done during classifier teaching process) to the objects’ edge in fixed 
direction and on the features based on such distances. 

The classifier is applied with various resolutions to square fragments of a MIN that 
contain connected region chosen at the previous step. This approach allows one to 
determine the presence of a single or several neurons in a single connected region. 

The accuracy of the trained classifier on a test sample was 5% (for AN - 7%) - 
error of the first type (neurons assigned to the class of “other objects”) or 15% (for 
AN - 20%) - error of the second type (“non-neurons” identified as “neurons”). The 
accuracy of the classifier can be improved by increasing the learning sample and by 
bootstrap estimates to choose background objects. 

2.3) Tracing “neurons”: 
2.3.1) Elimination of “other objects”; the aim of this procedure is to remove 

connected components corresponding to “other objects” according to the 
classification performed; the input data are the minimum size squares bounding “other 
objects” and the processed connected components, and the output data is a shortened 
list of connected components. 

All the connected components are eliminated according to the list of minimum size 
squares bounding “other objects”. 

2.3.2) Checking the number of extracted “neurons” in a connected component; the 
aim of this procedure is to calculate the number of neurons in one connected 
component; the input data are the minimum size squares bounding neurons and the 
shortened list of connected components, and the output data is the number of 
extracted neurons in each connected component. 

2.4) Tracing the boundaries of neurons: 
2.4.1) Splitting stuck-together neurons; the aim of this procedure is the 

construction of a boundary between stuck-together neurons; the input data is the 
number of extracted neurons in each connected component and the binary MIN, and 
the output data is a new list of connected components. 

When a connected component contains several neurons, stuck-together neurons are 
separated. The separation was proceed as follows. One “non-neuron” connected 
component suitable in size is taken. The amount of “white color” regions completely 
covering by connected component is calculated in the next step. If the amount of such 
regions is more than one than the median perpendiculars for line connected its centers 
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conducted between these regions. These perpendiculars will be the part of new 
neurons boundaries. 

After the boundary of new candidate for “neuron” is highlighted  the minimum size 
square bounding it and the classifier is running. 

2.4.2) The construction of the minimum convex hull around a connected 
component; the aim of this procedure is to construct the minimum convex hull, which 
allows one to detect both “good” neurons and neurons with thin soma and vanishes 
after preprocessing of a MIN; the input data is the shortened list of connected 
components, and the output data are the minimum convex hulls of the connected 
components. 

2.4.3) Obtaining a traced boundary of a connected region; the aim of this procedure 
is to obtain the boundary of neurons; the input data is a new list of connected 
components, and the output data are the preliminary boundaries of neurons. 

2.4.4) Checking the coincidence of the exact boundary and the minimal convex 
hull; the aim of this procedure is to obtain the exact boundaries of neurons: (2.4.4.1) 
when a region of the convex hull differs substantially from the traced boundary of a 
connected component, the region of the convex hull is taken as the boundary of a 
neuron; (2.4.4.2) when the region of the convex hull and the traced boundary either 
coincide or differ insignificantly, the boundary of the connected component is taken 
as the boundary of a neuron; the input data are the preliminary boundaries of neurons 
and the minimal convex hulls, and the output data are the exact boundaries of 
neurons. 

2.5) Cutting off the dendrons of neurons; the aim of this procedure is to eliminate 
redundant parts of objects identified as “neurons”; the input data are the exact 
boundaries of neurons, and the output data are the exact boundaries of neurons 
without dendrons. 

2.6) Construction of the boundaries of the nuclei of extracted neurons; the aim of 
this procedure is to remove the pixels belonging to the connected region from the 
domain enclosed inside the boundary; the remaining pixels belong to the nucleus by 
definition; the input data are new exact boundaries of neurons and a new list of 
connected components, and the output data are the exact boundaries of nuclei. 

3. Morphological characterization of neurons. 
3.1) Determination of the necessary feature space; the aim of this procedure is to 

determine a parametric model for the characterization of neurons. Biological experts 
consider the mean brightness, perimeter, area, form factor, optical density, and 
amount as the main parameters of the model.  

3.2) The characteristics are calculated for individual neurons and their averaged 
values by slices and series of slices; the input data is a binary MIN with the 
boundaries of objects and the original colored MIN, and the output data are the values 
of features and parametric models of neurons. 

4 Experimental Testing of the Method Developed 

The method of analysis of MINs developed is convergent, stable with respect to small 
variations in the initial data, and has quadratic computational complexity. The method 
is software implemented and is used for the automation, filling, and analysis of 
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preclinical models of PD by experimental data at the Kol’tsov Institute of 
Developmental Biology, Russian Academy of Sciences (Moscow, Russian 
Federation). 

Experimental testing was carried out on 58 brain slices of the same animal. The 
accuracy of the results was estimated by verifying whether the distributions of neuron 
characteristics detected automatically coincide with those detected manually by the 
Kolmogorov–Smirnov criterion (the zero hypothesis). 

The accuracy of the results was also estimated by comparing the mean 
multifunctional characteristics obtained under the automatic and manual tracing of 
neurons on randomly chosen brain slices (we took five brain slices). The averaged 
values of the characteristics of objects traced in the automatic and manual modes are 
shown in Table 1 (for SNC case) and in Table 2 (for AN case). These tables present 
also the correlation between the characteristics calculated in the manual and automatic 
modes. The results confirm that the automatic tracing of neurons is close to the 
manual tracing: the difference in the brightness and the area of the selected region is 
within admissible limits, while the difference in the perimeters and the shape factors 
of objects is attributed to the fact that it is very difficult to draw the exact boundary 
manually. 

During the experimental investigations, we confirmed the following characteristics 
of the algorithms developed. 1. The algorithms guarantee the analysis and recognition 
of the images of neurons on two dimensional brain slices of experimental animals. 2. 
According to the statistical estimate of the Kolmogorov–Smirnov criterion, the 
accuracy of the automatic analysis of neuron images is comparable with the accuracy 
of visual analysis of neuron images, which is carried out when studying PD without 
computer-aided analysis of images. 

Table 1. Comparison of the characteristics of objects detected automatically and manually in 
SNC. 

Manual detection 
Image Mean brightness 

(0...255) 
Area (mm2) Perimeter 

(mm) 
Shape factor 

1 149,7 2,355 5,09 -0,06 
2 145,9 3,046 6,08 -0,02 
3 149,8 2,815 5,77 -0,03 
4 146,4 2,756 5,31 -0,02 
5 150,0 2,493 5,23 -0,02 

Automatic detection 
1 149,1 2,403 5,42 -0,05 
2 145,2 3,166 6,69 -0,03 
3 148,1 2,848 5,66 -0,03 
4 146,6 2,813 5,11 -0,04 
5 148,4 2,508 5,37 -0,03 

Correlation between the manual and automatic modes 
 0,95 0,99 0,87 0,78 
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Table 2. Comparison of the characteristics of objects detected automatically and manually in 
AN. 

Manual detection 
Image Mean brightness 

(0...255) 
Area (mm2) Perimeter 

(mm) 
Shape factor 

1 122,1 2,239 4,79 -0,06 
2 112,7 3,691 4,32 -0,03 
3 117,0 2,512 6,15 -0,03 
4 123,4 3,254 4,67 -0,02 
5 122,7 2,417 4,30 -0,04 

Automatic detection 
1 119,7 2,432 4,89 -0,05 
2 111,0 4,843 5,13 -0,03 
3 118,7 2,712 6,15 -0,02 
4 123,1 3,373 4,47 -0,04 
5 121,1 2,313 4,51 -0,04 

Correlation between the manual and automatic modes 
 0,93 0,95 0,86 0,75 

5 Conclusions 

We have developed a new mathematical method and a software designed for 
extracting and characterizing DAergic neurons in microscopic images of brain slices 
in the SNC and in AN. The problem of detecting neurons in the images of SNC and 
AN slices has been posed by scientists from the Laboratory of Hormonal Regulations 
at the Kol’tsov Institute of Developmental Biology, Russian Academy of Sciences. 
They also supplied images for processing and analysis. The experimental testing of 
the method has been carried out jointly. At present, we study the possibility of 
improving the mathematical and functional characteristics of the method by using 
combinatorial recognition algorithms that admit the input of spatial information and 
essentially employ contextual and logical conditions and constraints. 
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