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Abstract. The well known N.Megiddo complexity result for Point Cover Prob-
lem on the plane is extended ontod-dimensional space (for any fixedd > 1).
It is proved that Min-dPC problem isL-reducible to Min-(d + 1)PC problem,
therefore for any fixedd > 1 there is no PTAS for Min-dPC problem, unless
P = NP.

1 Introduction

Settings of geometric covering problem and related problems are usual in various oper-
ations research domains [1-3]: optimal facility location theory, cluster analysis, pattern
recognition, etc. Mathematically, family of such problems can be partition into two
classes.

The first one contains special cases and modifications of well-known abstract Set
Cover problem. The main general feature shared by these problems is thefinitenessof
the initial family of subsets, for which it is required to find a subfamily (or just prove its
existence) covering some target set and satisfying given optimality conditions. There
are many papers studying problems from this class (see survey at [4]). The classical
papers [5-7] seem to be the most important among them. First two papers contain in-
tractability proof of Set Cover problem and two main design patterns for constructing
approximation algorithms for this problem. The last paper proves the optimality of these
patterns, unlessP = NP.

The second class consists of problems without the mentioned above finiteness con-
straint. Usually, the initial family of subsets is given here implicitly in terms of some
geometric property characterizing its elements. For instance, for a given set it is required
to find a minimal cardinality cover by straight lines, circles of a given radii, etc.

2 Point Cover (2PC) Problem

In the paper, a series of hyperplane covering problems for given finite sets in finite-
dimensional vector spaces of fixed dimensiond > 1 is considered. The first element of
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this family (ford = 2), also known as Point Covering on the plane (2PC) problem was
studied by N.Megiddo and A.Tamir [8] who proved its intractability in the strong sense.

We extend this result on to the case of appropriate fixed dimensionality d > 1
and prove that all these problems are Max-SNP-hard and consequently have no PTAS,
unlessP = NP.

Problem 1. ‘Point covering by lines on the plane’ (2PC). A finite subsetP = {p1, . . . ,
pn} ⊂ Z

2 and natural numberB are given. Is there exists a finite familyC of straight
lines coveringP such that|C| ≤ B?

Obviously, in the particular case when the setP is in the general position, i.e. each
triple of its points does not belong to the same straight line, the 2PC problem has a
trivial solution (’Yes’ whetherB ≥ ⌈|P |/2⌉ and ’No’ otherwise), which can be found
in a polynomial time. But in the general case this problem is intractable.

Theorem 1 ([8]).The 2PC problem is NP-complete in the strong sense.

Note that Theorem 1 applies that 2PC problem could not be solved by only polynomial
time algorithms, but also pseudo-polynomial time.

3 Hyperplanes Covering Problems

Let us consider the more general problem settings.

Problem 2. ‘Hyperplane covering ind-dimensional space’ (dPC). For a fixedd > 1, a
finite subsetP = {p1, . . . , pn} ⊂ Z

d and natural numberB are given. Is there exists a
coverC of P by hyperplanes such that|C| ≤ B?

Problem 3. ‘Minimal hyperplane covering ind-dimensional space’ (Min-dPC). Let a
finite subsetP = {p1, . . . , pn} ⊂ Z

d be given. It is required to find a minimum cardi-
nality partitionJ1, . . . , JL of a setNn = {1, . . . , n} such that for eachi ∈ NL there is
a hyperplaneHi and

{pj ∈ P : j ∈ Ji} ⊂ Hi.

We extend the result of Theorem 1 onto the case ofd-dimensional space for any
fixed d > 1. We start with construction of polynomial-time reduction of (d − 1)PC to
dPC problem. Let an instance of(d − 1)PC be given by subsetP = {p1, . . . , pn} ⊂
N

d−1

M andB ∈ N. We use a natural isomorphic embedding of(d− 1)-dimensional into
d-dimensional vector space:

x ∈ R
d−1 7→ [x, 0] ∈ R

d.

Map any pointpi ∈ P into couple of points inZd by the formula

p̄2i−1 = [pi,−wi], p̄2i = [pi, wi],

where
wi = (K + 2)i−1 and K =

⌈

(d− 1)
d− 1

2 (M − 1)d−1

⌉

.
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Such a way, we construct the subsetP̄ ⊂ Z
d and the setting(P̄ , B) of thedPC problem.

It is evident, that any hyperplane cover ofP induces the equivalent cover (with the
same number of hyperplanes) ofP̄ in R

d. The converse statement should be proved.
Denote byπ0 the hyperplane{[x, 0] : x ∈ R

d−1}. Let Prπ0
Q be an orthogonal

projection of the subsetQ ⊂ R
d ontoπ0.

Lemma 1. Let subsetsQ ⊂ P andQ̄ ⊂ P̄ be related byQ = Prπ0
Q̄ and the following

inequalities be valid

|Q̄| ≥ d+ 1,

dimaffQ̄ ≤ d− 1.

ThendimaffQ ≤ d− 2.

Lemma 2. Let Π̄ = {π̄1, . . . , π̄t} be a hyperplane cover of subsetP̄ . The subsetP
also has a hyperplane coverΠ such that|Π | ≤ t.

Lemma 3. The described above reduction(d−1)PC todPC can be done in polynomial
time ofLength((d− 1)PC).

On the basis of these lemmas we can prove the following

Theorem 2. For an arbitrary fixedd > 1, thedPC problem is NP-complete (and the
Min-dPC problem is NP-hard) in the strong sense.

Now we show that the supposed above(d− 1)PC todPC reduction can be reformu-
lated asL-reduction [9] from Min-(d− 1)PC to Min-dPC problem.

Definition 1. Let setsI andS, set-valued mapF : I → 2S and some target function
c :

⋃

I∈I
F (I) → R+ be given. The quadrupleA = (I, S, F, c), where eachI ∈ I is

mapped to optimization problem

min{c(s) : s ∈ F (I)},

is called a combinatorial minimization problem.

W.o.l.g., anyI ∈ I is called an instance of the problemA and its optimum value is
denoted byOPT (I).

Definition 2. Consider problemsA andB of combinatorial minimization. It is called,
that there is anL-reduction fromA intoB, if there are two LSPACE-computable func-
tionsR andS and positive constantsα andβ such that the following conditions are
valid:

1. for each instanceI of the problemA, R(I) is an instance ofB and

OPT (R(I)) ≤ αOPT (I);
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2. for each feasible solutionz ofR(I), S(z) is a feasible solution ofI such that

cA(S(z))−OPT (I) ≤ β(cB(z)−OPT (R(I))),

wherecA, cB are target functions ofA andB correspondingly.

Now we are ready to formulate a recurrentL-reduction of problems in question.

Theorem 3. For each fixedd > 2, there is anL-reduction of Min-(d − 1)PC to Min-
dPC problem.

Taking into account the following known result

Theorem 4 ([11]).Min-2PC problem is Max-SNP-hard.

one can formulate the last

Theorem 5. For each fixedd > 1, the Min-dPC problem is Max-SNP-hard.

Consequently, Min-dPC problem has no polynomial-time approximation schema
(PTAS) for each fixedd > 1, unlessP = NP.

4 Conclusions

We show that Hyperplane covering problem remains intractable and poorly approximat-
able even in fixed dimension spaces (for anyd > 1). This result extends the well known
Point Cover intractability result obtained by N. Megiddo and A. Tamir. Obviously, Min-
dPC problem can be trivially approximated in polynomial timewithin O(n/d) approxi-
mation guarantee. But the question on the existence of polynomial time algorithms with
lower (e.g. fixed) approximation guarantee is still open.
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