
About an Extension of the Model-View-Controller Design Pattern for
Increasing the Flexibility of Web based Applications

Design and First Experiences

Markus Markard and Marc Jansen
Computer Science Institute, University of Applied Sciences Ruhr West, Tannenstr. 43, Bottrop, Germany

Keywords: Web based Applications, Model-View-Controller, Design Pattern.

Abstract: The development of web based applications gained enormous interests in recent years. Most of formerly
desktop based applications nowadays provide at least a web based version or are completely re-
implemented as web based applications. Nevertheless, from the development point of view, there are still a
lot of strategies for the development of web based applications borrowed from the development strategies
for desktop applications. Therefore, this paper concentrates on the description of an approach that allows to
re-use a from the development of desktop applications well-known Design Pattern with a distinct
enhancement for web based applications.

1 INTRODUCTION

In recent years, many applications that were
formerly developed as stand-alone applications,
moved towards a web based implementation. Still,
most of the development approaches like the Design
Patterns presented by Gamma, Helm and Johnson
(1994) or test strategies used in the area of the
development of web applications are borrowed from
the development of stand-alone desktop
applications. Here, this paper concentrates on the
description of an approach based on a well-known
Design Pattern, the Model-View-Controller (MVC)
pattern (Reenskaug, 1979), for the implementation
of desktop applications and shows how this pattern
can be extended in order to provide more flexibility
with respect to the development of web based
applications.

While there are already some modifications to
the MVC Design Pattern available, we believe that
the described approach still provides some more
flexibility.

Therefore, the remainder of this paper is
organized as follows: first, an overview about the
current state of the art in Design Patterns for flexible
user interface development for web based
applications is presented. Afterwards, we describe
the enhancement provided by our approach,
followed by some implementation aspects. After

this, first experiences from two industry projects are
described, in which our approach was already
successfully used. Last but not least, a discussion
about the presented approach, along with an outlook
to future work, is presented.

2 STATE OF ART

The major Design Pattern nowadays used for user
interface development is the MVC pattern. Although
there are already some refinements existing for web
applications based on the MVC, e.g., the Model-
View-Presenter pattern (Potel, 1996), still a lot of
web based applications are developed along the
MVC pattern.

One of the problems that usually occur while
developing web based applications with this pattern
is based on the usual partitioning of web
applications (Sridaran, Padmavathi, Iyakutti, 2009).
In web based applications, the view is usually
dislocated from the business logic since the view is
visualized on client side (in the web page of the
user) and the business logic, which usually is
referred to as part of the model, is deployed server
side. Therefore, communication between the model
and the view becomes difficult. Common solutions
to this problem are to keep a representation of both,
the view and the model either on server or on client

304 Markard M. and Jansen M..
About an Extension of the Model-View-Controller Design Pattern for Increasing the Flexibility of Web based Applications - Design and First Experiences.
DOI: 10.5220/0004370303040307
In Proceedings of the 9th International Conference on Web Information Systems and Technologies (WEBIST-2013), pages 304-307
ISBN: 978-989-8565-54-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

side. Here, a pattern that provides more flexibility
for the description of the view, can be beneficial in
order to minimize the requirements for the view and
to allow for a more flexible description of the
graphical representation of the data provided (and
calculated) in the model.

The next section describes the enhancement of
the MVC pattern that achieves the mentioned
flexibility.

3 ENHANCEMENT OF THE MVC
DESIGN PATTERN

The classical MVC pattern allows a distinction
between the model and the view of the application.
Here, the model represents either the data of the
application and the business logic that works on the
data of the application in order to calculate the
application results. Additionally, the controller is
needed in order to foster the communication
between the model and view.

While one of the major ideas for the
development of the MVC pattern was the idea of
providing different (visual) representations for the
same set of data, this is still an issue where some
improvements can be achieved with respect to web
based applications.

The major idea of the enhancement provided by
our approach is that we allow to further parameterize
the view. Therefore, we provide two possibilities for
controlling different parts of the view:
 Parameterization through an XML document
 Parameterization over get parameters passed

to the web application

In order to allow this kind of parameterization of
the view, we extended the standard MVC pattern by
a configurable view, as shown in Figure 1.

Figure 1: The extended Model-View-Controller pattern
with a View Configuration.

At the left part of Figure 1 the usual MVC
pattern can be seen. The extension is provided by the
external configuration of the View, as explained
above either via a XML document or passed as

parameters to the web application. The next section
describes some implementation details together with
an example of a XML configuration file.

4 IMPLEMENTATION

Our approach described in the previous Section was
tested in a first prototypical implementation using
the Google Web Toolkit. In this Section we present
the major parts of the prototype’s architecture as
shown in Figure 2 and the prototype’s potential to
parameterize the view.

Figure 2: The Prototype’s Architecture.

As can be seen in the lower area of Figure 2, the
server side located XML handler is responsible for
the parsing and deserialization of the XML
configuration file. To clarify the XML handler’s
purpose it is appropriate to previously introduce the
structure of the XML configuration file, as shown in
the following sample listing. For improved
readability of the listing, the attribute’s values are
only presented as single characters or a single word.

<configuration>
<item div="a" class="b" value="c" />
<item div="a" class="ListBox" >
 <entry value="x" />
 <entry value="y" />
 …
</item>
…
</configuration>

The root element of the XML configuration file

envelops only one type of child element called item.
In our listing the first item element is the rule, it has
three attributes, namely div, class and value. The
div-attribute contains the identifier of a specific div
element in the HTML host page. The class attribute
holds the full class name of the widget UI
component to be positioned in a specific div

About�an�Extension�of�the�Model-View-Controller�Design�Pattern�for�Increasing�the�Flexibility�of�Web�based�Applications
-�Design�and�First�Experiences

305

element. The last attribute named value represents a
default value of the component, e.g., an inscription
in case of a button or a default input value in case of
a textbox. The second item constitutes a special case
by extending the definition of the first item. It also
just has one div and one class attribute but can have
any number of entry child elements. Since every
entry element has a value attribute it is possibly to
set multiple default values to list-boxes or other UI
components supporting multiple values.

After this brief introduction to the XML
configuration file the purpose of the XML handler is
summarized quickly. The XML handler parses all
item elements in the configuration file and creates an
Item object with corresponding initial values for
each one. All new created Item objects are directly
added to a list. In the middle area of Figure 2 the
Item class is shown.

As the name suggests, the widget mapper class,
shown in the upper area of Figure 2, delivers a new
widget instance for each item in the item list. At
runtime, the instance of the widget mapper,
instantiates new UI components according to the
item’s class attribute.

Populating the host page with UI components is
the task of the UiBuilder class utilizing the
WidgetMapper and the item list constructed by the
XMLHandler. The UiBuilder, shown in the upper
area of Figure 2, iterates through the list of items and
the WidgetMapper returns a UI component
corresponding to the certain class attribute of each
item in the list. After identifying the according div
element in the host page the returned UI component
is added to the particular div element. Of course the
UI Builder does not only append UI components to
the host page but also handles the adding of listeners
and DOM identifiers to these components. Adding
DOM identifiers to UI components placed on the
host page gives us the opportunity to set individual
styles for every single component. The listing below
shows an example for an individual CSS that is
applied to an UI component with the DOM identifier
button_id.

#button_id {
 height:20px;
 padding-top:0px;
 padding-bottom:3px;
 font-size:10pt;
}

Positioning and appearance of the UI

components can be defined over the positions of the
according div elements in the HTML host page.
Their visual representation can be controlled by

using Cascading Style Sheets. Every widget used in
the UI has its own div element, identified by the id
of the item’s div attribute. The div elements
containing the widgets can be grouped and arranged
by using HTML and CSS, so it is possible to
rearrange the UI without altering the actual Java
source responsible for the widgets and their
functions.

Controlling the selection of classes defined in the
configuration file is an even wider reaching tool to
influence the UI. By combining CSS manipulation
and the control over selected classes it is even
possible to have completely different UIs, e.g. a
desktop UI and a mobile UI without the need to alter
the actual sourcecode.

So the UI created in our Prototype can be
modified in three different ways without touching
the sourcecode of the actual application. The first
and simplest way is to modify the default attributes
of the item elements in the configuration file. Doing
so enables quick changes to label texts or default
values of input widgets.

The second way allows the modification of the
styles associated to the div elements containing the
widgets. These styles should be used to define the
position of an UI component, so the possibility to
modify these styles allows us to gain control over
the whole layout without using a source based layout
offered by frameworks like the Google Web Toolkit
that we used for our prototype. At this point we also
have to mention a problem that has been occurred
during implementation of the prototype. While
making extensive use of CSS manipulations cross
browser CSS issues cannot be avoided.

Last but not least, the individual look of every
widget can be influenced by the modification of the
styles associated to the DOM identifier of a
particular widget.

5 FIRST EXPERIENCES

The developed approach was already used in two
independent projects with two independent
companies.

The first company is located in the business of
hotel room management and provides a framework
that allows to easily develop booking engines for
hotel rooms based on a rich database of hotels
available all over Germany. Whereas the second
company is working in the area of management
consulting, especially for IT companies.

WEBIST�2013�-�9th�International�Conference�on�Web�Information�Systems�and�Technologies

306

5.1 Advantages of the Presented
Approach for a Hotel Room
Management Software

Since the company in the area of the hotel
management software provides a framework that has
to be very flexible with respect of the graphical
representation of the different components, in order
for being able to easily integrate the framework into
an already existing webpage of a customer, the
presented approach was suited for this integration.

The presented approach allowed to easily
integrate standard widgets, already used by the rest
of the webpage, into the framework, so that the look
and feel of the booking engine, in comparison to the
rest of the webpage, could be integrated smoothly.

Furthermore, our approach allowed to highly
customize the framework without even touching the
sourcecode of the framework. Just as one example,
we will present one of the customizations that was
achieved without touching the sourcecode of the
framework itself. Imagine you are the organizer of a
local event in your home town. If you want to
integrate a hotel room booking functionality within
the homepage promoting your event, some of the
fields usually available for a hotel room booking
engine are obsolete, e.g., the dates of arrival and
departure, the zip code of the town where the visitor
of your webpage is looking for a hotel, … just
because all these parameters are already predefined
by the event that you organize.

By using our approach, we were able to
customize these type of fields either with the help of
the XML configuration file and/or by defining the
appropriate values as parameters to the webpages.

Therefore, the presented approach was perfectly
suited for this kind of integration of an external
framework into an already existing webpages.

5.2 Advantages of the Presented
Approach for an IT Management
Consulting Company

The second example where we used the presented
approach was together with a management
consulting company that usually works for large IT
companies. Parts of their customers are located in
the German public sector. Therefore, our partner
also supports their customers in their complex
bidding procedures, that are very much regulated by
complex German and European laws.

Here, we developed a Web 2.0 based simulation
for planning the bidding procedures. One of the
requests from our partner was that we should

provide two different versions of the simulation, one
for internal use (available only via the intranet of the
company) and one as sort of an advertisement for
their publicly available webpage. The major
difference between these two solutions is the degree
and amount of parameters that can be set by the user
of the simulation.

Again, the presented approach allowed to easily
customize the version that was primarily developed
for internal use (with a very rich set of different
parameters available to the user of the simulation) in
order to restrict the functionality of the publicly
available simulation by strapping down and pre-
configuring certain parameters of the simulation.

6 DISCUSSION AND OUTLOOK

As the examples discussed in the previous section
show, the presented approach provides advantages
for modern web based applications on different
levels. Of course, since there is nothing like a free
lunch, these advantages of flexibility come with
some drawback, especially with respect to the
increasing complexity that the presented pattern
adds to the usual Model-View-Controller pattern.

Nevertheless, since the additional complexity is
on the one hand not too huge (in comparison to the
gained advantages) and can on the other hand easily
be tackled by an experienced programmer, we guess
that programmers will usually be willing to use the
presented approach.

Furthermore, future research will be necessary in
order to decrease the added complexity, so that the
usage of the presented extension of the Model-View-
Controller design pattern will still get easier and
therefore will most likely attract more developers.

REFERENCES

Gamma, E., Helm, R., Johnson, R. E. (1994). Elements of
Reusable Object-Oriented Software (1st ed.).
Amsterdam: Addison-Wesley

Reenskaug, T. (1979). MVC: XEROX PARC 1978-79.
Xerox

Potel, M. (1996). MVP: Model-View-Presenter: The
Taligent Programming Model for C++ and Java.
Taligent

Sridaran, R., Padmavathi, G., Iyakutti, K. (2009). A
Survey of Design Pattern Based Web Applications.
Journal of Object Technology, Vol. 8, No. 2, 2009

About�an�Extension�of�the�Model-View-Controller�Design�Pattern�for�Increasing�the�Flexibility�of�Web�based�Applications
-�Design�and�First�Experiences

307

