

Multi-Cloud Governance Service based on Model Driven
Policy Generation

Juan Li, Wendpanga Francis Ouedraogo and Frédérique Biennier
Université de Lyon, CNRS INSA-Lyon, LIRIS UMR 5205, 20 Avenue Albert Einstein,

F-69621 Villeurbanne cedex, France

Keywords: Multi-Cloud Governance, Policy Generation, Model Driven Engineering, NFP Management, Security.

Abstract: Cloud computing is an innovative and promising paradigm that is leading to remarkable changes in the way
we manage our business. Cloud computing can provide scalable IT infrastructure, QoS-assured services and
customizable computing environment. Such scalable and agile environment increases the call for agile and
dynamic deployment and governance environments over multi-cloud infrastructure. Unfortunately, by now,
governance and Non Functional Properties (such as security, QoS…) are managed in a static way, limiting
the global benefits of deploying service-based information system over multi-cloud environments. To
overcome this limit, we propose a contextualised policy generation process to allow both an agile
management NFP in a multi-cloud context and a secured deployment of the service-based information
system. Thanks to the generation of these NFP policies, NFP management functions can be orchestrated at
runtime so that the exact execution context can be taken into account.

1 INTRODUCTION

Cloud computing is transforming the way
enterprises purchase and manage computing
resources (Gartner, 2012), increasing corporate
information System robustness and scalability
thanks to multi-cloud implementation strategy.
Moreover, this multi-cloud re-organisation also fits
the collaborative business stake as collaborative
business processes are distributed among different
IS and clouds. According to a “cloud provider
vision”, this multi-cloud strategy leads to different
challenges such as the ability to automatically
provision services, effectively manage workload
segmentation and portability (i.e., seamless
movement of workloads across many platforms and
clouds), and manage virtual service instances, while
optimizing use of the resources and accelerating the
deployment of new services (DMTF, 2009). These
challenges increase the call for a common cloud
service reference architecture, enabling cloud
portability and cloud service governance.

As far as the “cloud consumer” vision is
concerned, the (multi-)cloud strategy adoption
increases the call for developping agile and secured
deployment means so that the target cloud

characteristics can be taken into account in a
transparent way.

Several works (presented in the related works
section) cope partly with these agile and secured
deployment and governance challenges: some of
them are related to the “technical” side of the multi-
cloud system (such as QoS management,
middcleware improving cloud portability,…)
without taking into account the way business
requirements can be integrated to adjust the
deployment (this may lead to set more protection or
resources than really needed) whereas others are
mostly “Business” oriented i.e. defining high-level
requirements to secure and govern the business
processes without integrating dynamic knowledge
related to the target (multi-)cloud.

To overcome these limits, we propose to federate
the business and cloud vision in a single model-
driven approach to generate security and governance
policies (section 3). These policies are turned in a
“model at runtime” organisation and and are used to
orchestrate conveniently the required security or
governance services at runtime. Lastly a use case is
presented (section 4).

165Li J., Francis Ouedraogo W. and Biennier F..
Multi-Cloud Governance Service based on Model Driven Policy Generation.
DOI: 10.5220/0004365001650174
In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 165-174
ISBN: 978-989-8565-52-5
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 STATE OF THE ART

In this paper we adopt the NIST definition of Cloud
computing which is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and
services) that can be rapidly provisioned and
released with minimal management effort or service
provider interaction (Mell, 2011). To tune the
deployment process depending on the cloud
characteristics, one can use the 2-dimension
typology introduced by (Zhang, 2010):
- The Service Dimension (which refers to the

common XaaS vision) is used to split the cloud
offer into 4 layers (hardware/ data center
Infrastructure as a service layer, Platform as a
Service layer and Application / Software as a
Service layer) that may even be “enriched” with a
Business Process as a Service layer.

- The Deployment Model Dimension which
depends on who owns and who uses the cloud
resources. This dimension leads to classify cloud
resources in 4 categories: Public clouds, Private
clouds, Community clouds and Hybrid clouds
which mix public and private resources.

Unfortunately, the layered service dimension
does not really integrate a business vision. Moreover
QoS and security management are often defined
statically depending on the target deployment model.

2.1 Adapting QoS Management and
Governance to Multi-Cloud
Systems

As stated in (Rodero-Merino, 2010), users increase
their call for functionalities that automate the
management of services as a whole unit, from the
business to the infrastructure layer to increase
efficiency and global benefits. To this end
(Papazoglou, 2006) provides a formal model to
express visibility constraints, manage compliance
and configure cloud resources on demand but this
model do not allow a dynamic reconfiguration at
runtime depending on the context.

To overcome this limit, and allow a fine-grain
tuning of resources, specification at the IaaS layer
must integrate both computational and network
constraints while adjusting the delivered
infrastructure components to the users’ requirements
and SLAs. Unfortunately, if pricing models can be
used to evaluate the “price” of infrastructure services
depending on the required SLA, they do not
integrate QoS assurance (Freitas, 2012). Moreover,

some low-level scalability rules, such as VMs
adjustment (Vaquero, 2012) must be integrated in a
larger QoS management vision as application
consolidation processes (used to increase resource
utilization) should take into account the performance
interference of co-located workloads to fit the
application required QoS (Zhu, 2012). Lastly, while
optimizing the “real” resource utilization at runtime,
a particular attention must be paid on the way
“elastic QoS” is defined in order to avoid penalties
due to the risk of deviation from the agreed QoS
level (Jayasinghe, 2012) scalability, On the opposite,
higher-level approaches fail to provide mechanisms
for a fine grained control of services at runtime
(Moran, 2011). This increases the call for a global
governance system allowing an efficient execution
and support of collaborative business processes,
without wastes and cause of defect.

This requirements involves monitoring both
infrastructure and services, taking into account
SLAs, elasticity, QoS, etc (Clayman, 2010). As trust,
managerial capability and technical capability have a
significant relationship with cloud-deployment
performance (Garrison, 2012); SLAs should be
understood by both cloud expert and non experts so
that common performance indicators can be
recognised. Unfortunately, as stated in the SLA
survey made by (Alhamad, 2011), SLA frameworks
are focused on technical attributes and do neither
take into account security nor other business related
non-functional properties. Moreover, resources
measuring techniques need further refinement to be
applied in the cloud context in order (1) to ensure
some level of trust between service providers and
customers, (2) to provide a flexible and agile way to
tune performance metrics parameters and (3) to
support real costs evaluation means.

To this end, (Katsaros, 2012), proposes a self-
adaptive hierarchical monitoring mechanism for
clouds. This framework implemented at the Platform
as a Service layer, allows monitoring the QoS
parameters based on SLA for business benefits.
Nevertheless it lacks of providing a flexible policy
enforcement mechanism and it does not indicate its
scalability in web service framework. While
considering quality from a “customer” point of view,
(Jureta, 2009) proposes a comprehensive quality
model for service-oriented systems. It allows
specifying the quality level, determining the
dependency value and ranking the quality priority.
However, the performance issues related to cloud
resources are not discussed and details are missing
regarding the correlation of the quality model with
the service cost model.

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

166

Lastly, the monitoring mechanisms should be
non-intrusive and should let a minimum runtime
footprint over the execution environment (Heward,
2010). It has also (1) to fit the cloud elasticity to
keep up when an application or infrastructure scales
up or down dynamically (Gogouvitis, 2012) and (2)
to provide a “simple” interface so that the cloud
complexity is as transparent as possible for end
users. This requires being able to “generate and
deploy on the fly” contextual monitoring means.

2.2 Integration of Security Management

Due to the variety of cloud deployment models,
different security challenges must be taken into
account. While private Cloud deployment does not
require to enforce the corporate security policy, the
openness involved by the other kinds of deployment
involves paying attention to data isolation and to
data storage protection so that the corporate security
policy can cope the particular vulnerabilities
involved by the cloud deployment (Ouedraogo,
2012). To fit these security challenges, cloud
security-oriented models have also been defined
such as:
-The Cloud Security Alliance Security Stack

(Cloud Security Alliance, 2012) uses the XaaS
levels to identify threats and mitigation means.

-The Jericho Forum Security Cube Model
(Jericho, 2009) uses a 4 criteria classification:
(resources physical location, the resource provider,
the cloud technology and the operating area) to
evaluate the risks and propose the associated
mitigation means.

Nevertheless, both models are organised to
identify and deploy security countermeasures in a
static vision and do not fit an “adaptive” security
deployment in a multi-cloud context. This often
leads either to “over-protect” information systems
while deploying them on clouds (that may reduce
the Quality of Service) or to “forget” protecting
corporate assets while transferring them on a cloud
platform.

In order to overcome this limit, one can adapt the
Model Driven Engineering (MDE) approach as it
allows generating code from requirements thanks to
different transformation steps (Marcos, 2006),
raising the abstraction level and introducing more
automation in software development (Van Der
Straeten, 2009). Such an engineering strategy can be
worthy used in a multi-cloud context as it can
improve reusing abilities of requirements, Platform
Independent Models and parts of Platform specific
models depending on the deployment platform (see

for example (Torres, 2012) that present: how BP-
driven web applications can be developed using
technology independent models before setting
transformation strategies to generate “technology
specific” applications).

Moreover, MDE has also been adapted to define
the Model Driven Security (MDS) strategy (Basin,
2003; Clavel, 2008). MDS defines a framework used
to generate security policies out of annotated
business process models (Souza, 2009, Wolter,
2009) (thanks to either UML based security model
integration (Jürjens, 2005) or BPMN annotations
(Mülle, 2011)) taking advantage of SOA agility and
policy flexibility. Nevertheless, this approach does
not allow generating and deploying automatically
the convenient monitoring functions that are
necessary to guaranty that the system is safe
(Loganayagi, 2011).

2.3 Challenges

Taking advantage of the multi-cloud deployment to
support collaborative business requires integrating a
unified approach to deploy secured BP and govern
performances and security from the business to the
infrastructure in a dynamic way. This requires first
to enrich the traditional XaaS layer model with a
“Business as a Service” level, used to express
business-dependant performance and security
requirements. Then, to fit the dynamicity required by
a multi-cloud deployment, transformation models
should also integrate a “model at runtime” vision to
support the necessary flexibility.

By now, the different works do not cover these
requirements nor are end-user oriented (so that
requirements can be captured more easily). To
overcome these limits, we propose to take advantage
of the well-know MDE strategy to generate and
deploy service-related policies that will be used to
take into account non-functional requirements (as
security and quality of service) while deploying and
monitoring service oriented systems over a multi-
cloud infrastructure.

3 MODEL DRIVEN POLICY
GENERATION PROCESS

To support the policy generation process to allow an
agile management Non Functional Properties (NFP)
in a multi-cloud context, we couple the MDE to the
Pattern based engineering to generate service-related
policies. Then NFP management functions that can

Multi-Cloud�Governance�Service�based�on�Model�Driven�Policy�Generation

167

be orchestrated at runtime so that the exact
execution context can be taken into account. To
achieve this goal, we propose a format model used
to weave the business and deployment environment
related knowledge in order to define transformation
patterns and generate, compose and orchestrate NFP
related policies.

3.1 Global Architecture

We use a multi-layer architecture to generate
contextualised policies that will be used at runtime
to select and orchestrate the security and governance
services accordingly. Functionally, Business
Requirements analysis allows designing the process
workflow that is used to select and compose services
to achieve each task. Accordingly, services are also
used to select and orchestrate lower level
components. This leads us to organise a 3-layer
architecture on the top of the XaaS model:
- Business Layer (BL) includes all business context

information, such as business deciders, business
requirements that are used to identify the Business
Process workflow.

- Service Layer (SL) includes all virtualized service
context information, such as service provider/
consumer/ register and includes all the services
that are selected and compose to achieve a business
task.

- Implementation Layer (IL) includes all
implementation components, such as hardware,
equipments, human resources and XaaS resources
etc. It contains all the components that must be
composed and orchestrated to support a service
execution. It is an abstraction level of the different
XaaS components.

Our governance architecture has been designed
in a “transversal” way on this architecture in a
Governance as a Service strategy (Li, 2012).
Governance services are composed and orchestrated
while running the enterprises’ business processes
depending on the NFP management requirements
and taking advantage of the “functional knowledge”
to select, compose and orchestrate the NFP
management components accordingly. This provides
a rather non-intrusive system that minimizes its
footprint by transforming and composing policy
rules depending on the context thanks to a set of
transformation patterns.

To select the convenient transformation patterns
NFP are classified into different groups
(‘Performance’, ‘Usability’, ‘Maintainability’,
‘Reliability’, ‘Security’…). Each NFP group is
divided into Critical Success Factors sets (CSFs)

associated to metrics used to constrain and / or
evaluate its accomplishment so that Governance
Agreements can be set and associated to the
different layers. Each agreement refers to the target
layer objectives, CSFs and factors metrics.

To allow a dynamic deployment and
orchestration of the NFP management components,
we propose to couple NFP related policy rules to the
different functional components. Using a pattern-
based transformation process, requirements are
turned into Platform Independent Policies and
Platform Dependant Policies used to orchestrate the
NFP management components at runtime.
Moreover, we take advantage of the functional
specification (i.e. the BP workflow description used
to compose and orchestrate the different services and
cloud components) to compose the NFP
orchestration and governance policies accordingly.

The policy generation process (figure 1) takes
advantage of both Model Driven Engineering and of
Pattern-based Engineering approaches adapting the
security patterns methods (Yoshioka, 2008)
(Uzunov, 2012) and those proposed as “best
practices” in security engineering methods (as
OCTAVE, EBIOS.).

Figure 1: Policy transformation steps.

The transformation strategy relies on a global
model that connects business workflow, security and
governance requirements to monitoring patterns and
policies (figure 2). A ‘Resource’ is associated either
to a ‘task’, a ‘service’ or an ‘implementation’
component. Each resource has its own properties
and interacts with others depending on the business
workflow. NFP requirements (either related to
security or governance) are associated to resources.
Each requirement is analysed and transformed into
policy rules thanks to ‘transformation pattern’.

‘Security rules’ are used to select, orchestrate
and invoke ‘security deployment pattern’ to
implement security means accordingly. In a similar
way, ‘governance rules’ select, orchestrate and
invoke ‘monitoring pattern’ to constrain

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

168

accomplishment of functional rules by assigning and
computing ‘KPIs’. ‘Monitoring pattern’ also can
invoke ‘Action engine (AE)’ to tune and improve
the resources performance by doing actions on
related resources, then at the runtime to improve the
performance of business activities.

Figure 2: Global model.

3.2 Policy Formal Model

Our policy transformation process is based on a
formal model integrating requirements, patterns and
policy so that policy rules can be designed and
transformed in a generic way.

Formally, a Requirement i is defined as a tuple:

Reqi = (RR, (RT, RM), RG, RL, RC) (1)

Where
- RR (Requirement Resource) defines the resource

concerned by the requirement. It can be a task
(business activity), a service or a part of the
infrastructure / piece of data.

- RT (Requirement Type) defines the type of the
requirement (governance of one of the NFP group,
ensure security, support QoS control…)

- RG (Requirement Goal) defines precisely the
goal of this requirement (governance or other
functional requirement related to a NFP)

- RM (Requirement Metrics) is the metric
(specifically defined or standardized) to measure
this requirement’s implementation.

- RL (Requirement Layer) defines the layer
(BL/SL/IL) associated to the resource targeted by
this requirement.

- RC (Requirement Context) the condition of this
requirement’s implementation. Such as, association

of involved resource’s with other resources in
business workflow.

According to this definition, we can gather all
the requirements for all the resources as:

Reqs = {Reqi} where 0<i<Ni; (2)

Where “i” is the requirement number and Ni the
total of the all requirements of all resources.

We can also get the requirements associated to a
resource Rk (Reqs(Rk)) by selecting (thanks to the
selection function σ) all the requirements in Reqs
which associated resource (RR) matches with Rk.

Reqs(Rk) = σ(Reqs.RR=Rk)(Reqs) (3)

Where “i” is the requirement number and “Ni” is the
total number of requirements of resource Rk.

A pattern j is defined as a tuple:

Patj = (PatN, PatG, {PatCtx}, PatP,
{PatCol},{PatR}, {PatCsq, PatStep})

(4)

Where
- PatN is the name which identifies the pattern. This

name is related to the requirement type, a NFP
identification or or a CSF for a group of NFP.

- PatG defines the pattern goal (or the reason for
using it). This goal is similar to the requirement
goal and the associated value can be either
governance or any other functional requirement
related to a NFP or CSF.

- PatCtx identifies the context under which which
this pattern can be used.

- PatP defines a list of “participants” and their roles
in the pattern definition. A participant can refer to
requirement which need to be transformed,
transformed policy rule, relevant sub-pattern,
collaborative business process organization, etc.

- PatCol describes the collaboration strategy used
by the participants to interact with each other.

- PatR a set of related patterns. For example,
governance requirement pattern requires a set of
the CSF pattern for a parent NFP group pattern.)

- PatCsq describes the results or actions
implemented by the pattern.

- PatStep defines the transformation step (CIM to
PIM, PIM to PSM or PSM to PDM) for which the
pattern must be used.

In a similar way, the set of patterns is defined by:

Pats= {Patj} where 0<j<=Nj (5)

Where “j” is the pattern number and “Nj” the total
number of patterns.

A policy rule x is also defined as a tuple:

PolRx= (PR, PT, PG, PL, {PC}, PP) (6)

Multi-Cloud�Governance�Service�based�on�Model�Driven�Policy�Generation

169

Where
- PR is the set of resources involved in the policy.
- PT is the Policy type. It refers to the requirement

type and Pattern Name (RT and PatN) as well, as
to the NFP group or the CSFs for a parent NFP
group)

- PG defines the Policy goal and is related to RG
and PatG such as governance or any other
functional goal related to the NFP.

- PL is the layer of the involved resource for this
policy. As we defined before it could be BL/SL/IL.

- PC is the set of conditions to decide if the policy
can be used or not. (For governance policy rule, it
is related to business process and organization of
business workflow)

- PP identifies the pattern to use to define the policy
implementation.

According to this definition, we can gather all
the policy rules of all resources as:

PolRs= {PolRx} where 0<x<Nx; (7)

Where “x” is the policy rule number and Nx the total
number of policy rules (for all resources).

Lastly, policy rules attached to any resource Rk
can be defined by selecting (σ) the policy rules in the
PolRs while the policy resource (PR) matches with
resource Rk:

PolRs(Rk) = σ(PolRs.PR=Rk) (PolRs) (8)

Where “x” is the policy rule number and “Nx” the
total number of policy rules involving resource Rk.

3.3 From Requirements to Computer
Independent Model (CIM)

At the beginning of the process, users define their
requirements using a rather high abstraction level
and do not have to provide any implementation
technical details. As NFP management requirements
are mostly specified at the Business layer, we use
the “functional composition process” knowledge to
select the resources belonging to the lower-levels
and involved in the BL resource deployment and to
propagate these requirements to these SL and IL
resources. Our CIM elicitation process is based on
this “composition-based” propagation models.

As stated in our formal model (see eq. 1), each
requirement is defined by specifying the resource
(RR) to which this requirement is associated to and
the layer to which this resource belongs as well as
the type of requirement (RT), its goal (RG) and the
associated metric (RM).

As a resource Rk (‘k’ is numbering the resource)
can be associated to many requirements, the

Computer Independent Model is defined as the set of
requirements associated to the different resources:

Reqs = {Reqs (Rk)} where0< i<Ni, 0< k<Nk (9)

Where ‘i’ is the requirement number, ‘Ni’ is the total
number of requirements associated to the resource
Rk.

3.4 From Requirements to Policy Rules

After gathering and formatting the requirements in a
single Computer Independent Model, the policy
generation process consists in turning each CIM
assertion in a Platform Independent policy rule.
Basic policy rules are generated thanks to a pattern-
based transformation process. Our NFP
classification is used to organize transformation
patterns depending on the NFP they are related to.
Pattern’s name (PatN) and patterns’ goal (PatG) are
used to identify each pattern.

For each resource, the requirements are turned
one after the other in a policy rule. To this end, for a
given requirement i associated to a resource Rk:
Reqi, the convenient pattern (Pat) is selected from
the patterns set (Pats) thanks to the selection
function (σ) that extract the pattern which name
(PatN) matches the requirement type (RT) and
which pattern goal (PatG) matches the resource
goal(RG):

Pat= σ (Pats.PatN= Reqi.RT AND
Pats.PatG =Reqi.RG)(Pats)

(10)

The selected pattern is used to instantiate the
corresponding policy rule. According to this, a
policy rule refereeing to the requirement and the
resource is generated. Let Rk be the resource
associated to the ith requirement Reqi, (i.e. Rk =
Reqi.RR), the policy rule which refers to this
requirement and to the kth resource is defined as:

PolRik= (Reqi.RR, Pat.PatN, Pat.PatG,
Reqi.RL, Reqi.RC,Pat)

(11)

After discovering the ‘basic policy rule’ thanks
to this selection process, we have to check the
selected pattern’s related sub-pattern to get more
precise policy rules. If a selected pattern contains a
related sub-pattern (i.e. when Pat.PatR is not an
empty set), a refinement algorithm (see Algorithm 1)
is recursively launched to precise and develop the
policy rules associated to this pattern (for example, a
generic “confidentiality management” pattern can be
refined using authentication and authorization
patterns as well as encryption sub-patterns).

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

170

Ref.PatR(pattern Pat)
{ int j ; //numbering pattern;

Patj= Pat;
If (Patj.PatR ≠)
//if pattern ‘Patj’ has related

transfer pattern Patj.PatR
 {then call Ref.PatR(Patj.PatR);

 //the consequence is call
refinement algorithm until the pattern
has no related pattern; }

If (Patj.PatR =)
 //if patter ‘Patj’ has no related

transfer pattern;
{Then int x;//numbering policy rule;
Patj.PatCsq = PolRX;
 // if Patj has no related pattern

then its consequence is generated
policy rule ‘PolRx’; } }

Algorithm 1: Refinement algorithm.

At the end of this step the different policy rules
associated to the requirements are generated. As for
the CIM elicitation, we use a policy composition
process, including the functional composition
knowledge, to select, extract and compose the
different policy rules attached to a resource. Each
task (in the BL level) is considered as a sub-process
and used to compose / derive the policies associated
to same or lower-level resources composed to
implement this sub-process (see algorithms 2 and 3).

Comp-subPB (Resource R, Policy-rule
PolR)
{ Int k , x;
//numbering resource and policy rule;

Rk=R; PolRx= PolR;
Extract (Rk.RT , PolRx. PR);

//extract policy rule’s resource and
the resource type:’Rk.RT’;
//all relevant resources are in the
same sub-BP;
 If (Rk.RT == ‘Task’)
 {call Comp-task(Rk)}
//if resource type is Task call ‘Task’s
PIM rule composition process;
 If (Rk.RT == ‘service’)
 {call Comp-service(Rk)}
//if resource type is service call
service’s PIM rule composition process;
 }

Comp-task (task R)
{ Int num-task, k ;//numbering task
and resource;
 Rk= R; //Rk has related services
 int num-service,n-service;
//’num-service’ is the related service
number;

//’n-service’ is the total number of
related services;

Service (num-service) = Rk’s related
service;
// 0<num-service<=n-service

Valid Rk’s PIM policy rules to
service(num-service);
//valid task’s policy rules to all
related service resources;

If (service (num-service) has related
infrastructure resource)
Call Comp-service (service (num-service));}

Comp-service (service R)
{ Int num-service,k ; //numbering
service and resource;
 Rk=R; //Rk has related
infrastructure resource;

int num-inf,n-inf;
//’num-inf’ is the related
infrastucture number;
//’n-inf’ is the total number of
related infrastructure;

Infnum-inf= Rk’s related
infrastructure; // 0<num-inf<=n-
inf

Valid Rk’s PIM policy rules to
Infnum-inf;
//valid service’s policy rules to all
related infrastructure resources; }

Algorithm 2: Cross layers sub-PB PIM policy rule
composition.

Comp-samelayer(provider-resource R1,
consumer-resource R2)
{ Int k1 , k2;
//’k1’’k2’ are resource numbers;
 Rk1= R1; Rk2=R2;

Rk1 is provider resource;
Rk2 is consumer resource;

//Which means Rk2’s input == Rk1’s
output;
 Valid Rk2’s PIM policy rules to Rk1;
 If (Rk1, Rk2’s resource type== task
and they have related resources)
{Call Comp-task(Rk1)and Comp-task(Rk2)};
//If Rk1, Rk2’s resource type is task
and they have related services, then
call task composition process;

If (Rk1), Rk2’s resource type ==
service and they have related
infrastructures)

{Call Comp-service(Rk1)and Comp-
service(Rk2)};
//If Rk1, Rk2’s resource type is service
and they have related infrastructures,
then call service composition process;}

Algorithm 3: At same level’s PIM policy rule
composition.

Multi-Cloud�Governance�Service�based�on�Model�Driven�Policy�Generation

171

4 USE CASE

Our use case aims at generating the security and
delay governance policies for a business level
Payment Task described Figure 3.

Figure 3 Example of a Payment Task crossing the 3 layers.

At the first step, the user defines his
requirements according to our formal model:

1) Requirement 1: Managing and governing the
confidentiality at a high level (level 2)

Req1= {“PaymentTask”, (“Confidentiality”,
level2), “Govern”, “Business layer”}

2) Requirement 2: Being able to capture the
payment task execution delay at a business level to
evaluate its impact to the global business
performance system

Req2 = {“PaymentTask”, (“Delay”), “Govern”,
“Business Layer”}

Then governance patterns are identified and used
to define the governance policy rule. Figure 4
presents the confidentiality and performance patterns
organization.

Figure 4: Organization of the Confidentiality and
Performance NFP family and governance pattern.

Based on the requirement type and on the goal,
the selection function is used to discover the CIM to
PIM transformation pattern to apply in order to
generate the policy rule associated to the payment
task: As far as the security requirement is concerned,

the confidentiality governance pattern is selected
(Eq. 1) and checked: to identify if it contains sub-
patterns (i.e. related patterns) that can be a Critical
Success Factor or not. As the Conf-Pattern contains
an Encryption pattern (that is not a CSF) the policy
rule is refined to integrate the sub-pattern invocation
(Eq. 2) and the refinement algorithm is launched is
re-launched to refine the Encrypt-Pattern which is
associated to CSF.

(R1=Req1.RR==PaymentTask)
PolR1(R1)={“PaymentTask”, “Confidential”,
“Govern-confidentiality”, “ Business Layer”,
{PC},”Conf-Pattern”}) (Eq. 1)

PolR2(R1)=(“PaymentTask”, “Encryption”,
“Govern-encyption”, “Business Layer”,
{PC},”Encrypt-Pattern”) (Eq. 2)
As far as the performance requirement is

concerned; we use a similar pattern selection process
to support the CIM to PIM transformation,
identifying the Delay pattern (Eq. 3) and refining it
with the 2 CSF patterns (Response delay pattern and
Executive delay pattern) (Eq. 4)

(R1=Req2.RR==PaymentTask)
PolR3(R1)=(“PaymentTask”, “Delay”,
“Govern -delay”, “Business Layer”, {PC},
“Delay-Pattern”) (Eq. 3)

PolR4(R1)={“PaymentTask”, “Delay”, ”Govern-
Delay”, ”Business Layer”,{PC},”Response
delay”}
PolR5(R1)={“PaymentTask”, “Delay”, ”Govern-
Delay”, ”Business Layer”,{PC},”Execution
delay”} (Eq. 4)
Each policy rule is analyzed to identify the sub-

resource related to the policy’s “root resource”.so
that relevant policy rules can be composed. In our
case, the resource attached to the policy is the
payment-task which belongs to the business layer.
This task is implemented thanks to a service chain
composed of 3 services: S1, S2 and S3 deployed at
the service layer. The policy rule is “propagated” to
each service (see Eq. 5 which presents the security
policy rule associated to S1). In a similar way, the
selection process is used to identify the
implementation level resources related to the service
in order to generate the corresponding policy rules
accordingly (see the example for DB 1 in Eq. 6)

PolR6(S1)=(“S1”, “Encryption”, “Govern-
encyption”, “SL”, “”,”Encrypt-Pattern”) (Eq. 5)

PolR7(DB1)=(“DB1”, “Encryption”, “Govern-
encyption”, “IL”, “”,”Encrypt-Pattern”) (Eq. 6)
The delay governance requirement is also used

to generate policy rules attached to the different
services and resources (Eq. 7 and 8).

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

172

PolR8(S1)=(“S1”, “Delay”, “Govern-delay”,
“SL”, “”,”ExecDelay-Pattern”) (Eq. 7)
PolR9(DB1)=(“DB1”, “Delay”, “Govern-delay”,
“IL”, “”,”ExecDelay-Pattern”) (Eq. 8)

While deploying the task and related services,
the deployment environment knowledge is used to
generate platform dependant policy rules. For each
platform independent policy rule, we select the
“deployment” pattern depending on the PIM rule
name and on the deployment platform
characteristics. As we use an hybrid cloud platform
to support the Payment Task deployment, the
transformation pattern is selected thanks to the
following criteria: PatStep is associated to the PIM
to PDM transformation step, PatG fits the
“Encryption level 2” goal and PatCtx fits the hybrid
cloud context. This leads to select the AES-256 data
encryption implementation pattern. So for each PIM
rule that refers to the Encrypt-Pattern, the AES-256-
KPI pattern is substituted (Eq. 9 and 10)

PolR10(S1)=(“S1”, “Encryption”,
“Govern-encyption”, “SL”, “”,”AES-256-KPI
pattern”) (Eq.9)

PolR11(DB1)=(“DB1”, “Encryption”,
“Govern-encyption”, “IL”, “”,”AES-256-KPI
pattern”) (Eq. 10)

Figure 5: Extract of Policy file “Govern-NFP.xml”.

Figure 6: Policy reference added in Service S1 description
(WSDL: Binding part).

Then these policy rules are used to generate the
XML policy file that is attached to each service.
Figure 5 shows the policy file related to the
encryption whereas figure 6 shows the service

annotation which refers to the policy file. At
runtime, each policy rule is analysed and leads to the
execution of the convenient security / governance
service invocation while orchestrating the
Governance KPIs. This PaymentTask’s relevant
KPIs’ results can be aggregated into comprehensive
result for business decision makers.

5 CONCLUSIONS

To support governance functions and secured
deployment in a multi-cloud context we proposed to
take advantage of the MDE and pattern-based
engineering approaches to generate NFP
management policies depending on the deployment
process. Our multi-level architecture built on the top
of the XaaS model allows taking advantage of the
Business knowledge to derive and compose policy
rules at each layer based on a single business
requirement and deploy them depending on the
execution context. Further works will focus on the
service orchestrator component so that the policy
rules will be used to compose and orchestrate the
NFP management and governance services “on the
fly” depending on the exact deployment context.

ACKNOWLEDGEMENTS

This work has been partly supported by the French
economy ministry DGCIS under the Web Innovant
Process 2.0 project grant.

REFERENCES

Alhamad, M., Dillon, T., Chang, E., 2011. a survey on
SLA and performance measurement in cloud
computing, on the move to meaningful internet
systems: OTM 201, springer Berlin, 7045, 469-477.

Basin, D., Doser J., Lodderstedt, T., 2003. Model Driven
Security for Process Oriented Systems, In SACMAT
’03: Proceedings of the eighth ACM symposium on
Access control models and technologies.

Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero-
Merino, L., Vaquero, L. M., Nagin, K., Rochwerger
B., 2010. Monitoring Service Clouds in the Future
Internet. In: Tselentis, G and Galis, A and Gavras, A
and Krco, S and Lotz, V and Simperl, E and Stiller, B
and Zahariadis, T, (eds.) Towards the Future Internet
- Emerging Trends from European Research.,pp. 115 -
126

Multi-Cloud�Governance�Service�based�on�Model�Driven�Policy�Generation

173

Cloud security alliance, 2012. Security Guidance for
Critical Areas of Focus in Cloud Computing V3,
https://cloudsecurityalliance.org/wp-content/themes/
csa/guidance-download-box.php.

Clavel, M., Silva, V., Braga, C., Egea, M., 2008. Model-
Driven Security in Practice: An Industrial Experience,
ECMDA-FA '08 Proceedings of the 4th European
conference on Model Driven Architecture:
Foundations and Applications, pp.326 – 337.

DMTF Informational, 2009. Interoperable Clouds – A
White Paper from the Open Cloud Standards Incubator

Freitas A.L., Parlavantzas N., Pazat J., 2012. An
Integrated Approach for Specifying and Enforcing
SLAs for Cloud Services.; In Proceedings of IEEE
CLOUD. pp. 376-383.

Gartner, Inc. analysts, 2012. Gartner Report. Top 10
Strategic Technologies for 2012.

Garrison, G., Kim, S., Wakefield, R. L., 2012, Success
factors for deploying cloud computing. Commun.
ACM 55(9) pp., 62-68.

Gogouvitis, S., Konstanteli, K., Waldschmidt, S.,
Kousiouris, G., Katsaros G., Menychtas A., Kyriazis
D., Varvarigou, T., 2012. Workflow management for
soft Real-time Interactive applications in virtualized
environments. Future Generation Computer Systems
28 (1), 193–209.

Heward, G., 2010. Assessing the Performance Impact of
Service Monitoring. In Proceedings of the 2010 21st
Australian Software Engineering Conference (ASWEC
'10). IEEE Computer Society, Washington, DC, USA.

Jureta, J.I., Herssens, C., Faulkner S., 2009. A
comprehensive quality model for service-oriented
systems. Software Quality Control 17 (1), , 65-98.

Jericho Forum, 2009. “Cloud Cube Model: Selecting
Cloud Formations for Secure Collaboration,” Jericho
Forum, Version 1.0, http://www.opengroup.org/
jericho/cloud_cube_model_v1.0.pdf.

Jürjens, J., 2005. Model-Based Security Engineering with
UML, FOSAD 2004/2005, Springer-Verlag Berlin
Heidelberg, pp.42-77.

Jayasinghe D., Swint G., Malkowski S.,Li J., Wang Q,
Park J., Pu C., 2012. Expertus: A Generator Approach
to Automate Performance Testing in IaaS Clouds,
IEEE Fifth International Conference on Cloud
Computing, pp. 115-122,

Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis
D., Menychtas, A., Varvarigou T., 2012. A Self-
adaptive hierarchical monitoring mechanism for
Clouds, Journal of Systems and Software, 85 (5),
1029-1041,

Li, J., Biennier, F., Amghar, Y., 2012. Business as a
Service governance in a Cloud organization.
Proceedings of the I-ESA Conferences 6, Enterprise
Interoperability V, pp. 355-365.

Loganayagi, B., Sjuatha, S., 2012. Enhance Cloud
Security by Combining Virtualization and Policy
Monitoring Techniques, Procedia Engineering, 30,
654-661,

Mell, P., Grance, T., 2011. The NIST Definition of Cloud
Computing, NIST Special Publication 800-145.

Marcos, E., Acuria, C., Cuesta C., 2006. Integrating

 Software Architecture into a MDA Framework,
sofware architecture, pp 127-143.

Mülle, J, von Stackelberg, S., Böhm, K., 2011. Security
Language for BPMN Process Models, Karlsruhe
institute of technology, Germany.

Moran, D., Vaquero, L.M., Galan, F., 2011. Elastically
Ruling the cloud: specifying application’s behavior in
federated clouds. in: IEEE International Conference
on Cloud Computing - CLOUD, pp. 89-96,

Ouedraogo, W.F., Biennier, F., Ghodous, P., 2012.
Adaptive security policy model to deploy business
process in cloud infrastructure. The 2nd International
Conference on Cloud Computing and Services
Science, CLOSER 2012. Porto, Portugal, pp. 287-290.

Organization for the Advancement of Structured
Information Standards (OASIS), 2009.OASIS:
Reference Architecture Foundation for Service
Oriented Architecture, Version 1.0.

Papazoglou M., Van Den W., Heuvel, 2006. Service-
oriented design and development methodology. Int. J.
Web Eng. Technol. 2, 4, 412-442.

Rodero-Merino L., M. Vaquero L., Gil V., Galán F, Javier
Fontán J., Montero R. S., Llorente I. M., 2010. From
infrastructure delivery to service management in
clouds, Future Generation Computer Systems, Volume
26, Issue 8, 1226-1240.

Souza, A., Silva B., Lins F., Damasceno J., Rosa N., 2009.
Sec-MoSC Tooling – Incorporating Security
Requirements into Service Composition. Proceeding
ICSOC-ServiceWave '09 Proceedings of the 7th
International Joint Conference on Service-Oriented
Computing, pp 649 – 650.

Torres, V., Giner, P., Pelechano, V., 2012. Developing
BP-driven web applications through the use of MDE
techniques, Software & Systems Modeling, Springer-
Verlag Volume 11, Issue 4, pp 609-631

Uzunov, A. V., Fernandez, E. B., Falkner, K., 2012.
Securing distributed systems using patterns: A survey,
Computers & Security, Volume 31, Issue 5, pp.681–
703.

Van Der Straeten, R., Mens, T., Van Baelen, S., 2009.
Models in Software Engineering: challenges in Model-
Driven Software Engineering, Springer-Verlag
Berlinpp. 35 - 47 .

Vaquero L. M., Morán D., Galán F., Alcaraz-Calero,J. M.,
2012.Towards Runtime Reconfiguration of
Application Control Policies in the Cloud, Journal of
Network and Systems Management,Volume 20, Issue
4, pp 489-512.

Wolter, C., Menzel M., Schaad A., Miseldine P, 2009.
Model-driven business process security requirement
specification, Journal of Systems Architecture JSA,
211–223.

Yoshioka, N., Washizaki, H., 2008. A survey on security
patterns, Progress in Informatics, No. 5 pp. 35-47.

Zhu Q., Tung, T., 2012. A Performance Interference
Model for Managing Consolidated Workloads in QoS-
Aware Clouds, Cloud Computing (CLOUD), 2012
IEEE 5th International Conference, pp.170-179,

Zhang, Q., Cheng, L., Boutaba R.., 2010. Cloud
Computing: state-of-the-art and research challenges, J:
Internet Services and Applications,1(1), 7-18

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

174

