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Abstract: Cloud computing is an innovative and promising paradigm that is leading to remarkable changes in the way 
we manage our business. Cloud computing can provide scalable IT infrastructure, QoS-assured services and 
customizable computing environment. Such scalable and agile environment increases the call for agile and 
dynamic deployment and governance environments over multi-cloud infrastructure. Unfortunately, by now, 
governance and Non Functional Properties (such as security, QoS…) are managed in a static way, limiting 
the global benefits of deploying service-based information system over multi-cloud environments. To 
overcome this limit, we propose a contextualised policy generation process to allow both an agile 
management NFP in a multi-cloud context and a secured deployment of the service-based information 
system. Thanks to the generation of these NFP policies, NFP management functions can be orchestrated at 
runtime so that the exact execution context can be taken into account. 

1 INTRODUCTION 

Cloud computing is transforming the way 
enterprises purchase and manage computing 
resources (Gartner, 2012), increasing corporate 
information System robustness and scalability 
thanks to multi-cloud implementation strategy. 
Moreover, this multi-cloud re-organisation also fits 
the collaborative business stake as collaborative 
business processes are distributed among different 
IS and clouds. According to a “cloud provider 
vision”, this multi-cloud strategy leads to different 
challenges such as the ability to automatically 
provision services, effectively manage workload 
segmentation and portability (i.e., seamless 
movement of workloads across many platforms and 
clouds), and manage virtual service instances, while 
optimizing use of the resources and accelerating the 
deployment of new services (DMTF, 2009). These 
challenges increase the call for a common cloud 
service reference architecture, enabling cloud 
portability and cloud service governance. 

As far as the “cloud consumer” vision is 
concerned, the (multi-)cloud strategy adoption 
increases the call for developping agile and secured 
deployment means so that the target cloud 

characteristics can be taken into account in a 
transparent way. 

Several works (presented in the related works 
section) cope partly with these agile and secured 
deployment and governance challenges: some of 
them are related to the “technical” side of the multi-
cloud system (such as QoS management, 
middcleware improving cloud portability,…) 
without taking into account the way business 
requirements can be integrated to adjust the 
deployment (this may lead to set more protection or 
resources than really needed) whereas others are 
mostly “Business” oriented i.e. defining high-level 
requirements to secure and govern the business 
processes without integrating dynamic knowledge 
related to the target (multi-)cloud. 

To overcome these limits, we propose to federate 
the business and cloud vision in a single model-
driven approach to generate security and governance 
policies (section 3). These policies are turned in a 
“model at runtime” organisation and and are used to 
orchestrate conveniently the required security or 
governance services at runtime. Lastly a use case is 
presented (section 4). 
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2 STATE OF THE ART 

In this paper we adopt the NIST definition of Cloud 
computing which is a model for enabling 
convenient, on-demand network access to a shared 
pool of configurable computing resources (e.g., 
networks, servers, storage, applications, and 
services) that can be rapidly provisioned and 
released with minimal management effort or service 
provider interaction (Mell, 2011). To tune the 
deployment process depending on the cloud 
characteristics, one can use the 2-dimension 
typology introduced by (Zhang, 2010): 
- The Service Dimension (which refers to the 

common XaaS vision) is used to split the cloud 
offer into 4 layers (hardware/ data center 
Infrastructure as a service layer, Platform as a 
Service layer and Application / Software as a 
Service layer) that may even be “enriched” with a 
Business Process as a Service layer. 

- The Deployment Model Dimension which 
depends on who owns and who uses the cloud 
resources. This dimension leads to classify cloud 
resources in 4 categories: Public clouds, Private 
clouds, Community clouds and Hybrid clouds 
which mix public and private resources. 

Unfortunately, the layered service dimension 
does not really integrate a business vision. Moreover 
QoS and security management are often defined 
statically depending on the target deployment model.  

2.1 Adapting QoS Management and 
Governance to Multi-Cloud 
Systems 

As stated in (Rodero-Merino, 2010), users increase 
their call for functionalities that automate the 
management of services as a whole unit, from the 
business to the infrastructure layer to increase 
efficiency and global benefits. To this end 
(Papazoglou, 2006) provides a formal model to 
express visibility constraints, manage compliance 
and configure cloud resources on demand but this 
model do not allow a dynamic reconfiguration at 
runtime depending on the context. 

To overcome this limit, and allow a fine-grain 
tuning of resources, specification at the IaaS layer 
must integrate both computational and network 
constraints while adjusting the delivered 
infrastructure components to the users’ requirements 
and SLAs. Unfortunately, if pricing models can be 
used to evaluate the “price” of infrastructure services 
depending on the required SLA, they do not 
integrate QoS assurance (Freitas, 2012). Moreover, 

some low-level scalability rules, such as VMs 
adjustment (Vaquero, 2012) must be integrated in a 
larger QoS management vision as application 
consolidation processes (used to increase resource 
utilization) should take into account the performance 
interference of co-located workloads to fit the 
application required QoS (Zhu, 2012). Lastly, while 
optimizing the “real” resource utilization at runtime, 
a particular attention must be paid on the way 
“elastic QoS” is defined in order to avoid penalties 
due to the risk of deviation from the agreed QoS 
level (Jayasinghe, 2012) scalability, On the opposite, 
higher-level approaches fail to provide mechanisms 
for a fine grained control of services at runtime 
(Moran, 2011). This increases the call for a global 
governance system allowing an efficient execution 
and support of collaborative business processes, 
without wastes and cause of defect. 

This requirements involves monitoring both 
infrastructure and services, taking into account 
SLAs, elasticity, QoS, etc (Clayman, 2010). As trust, 
managerial capability and technical capability have a 
significant relationship with cloud-deployment 
performance (Garrison, 2012); SLAs should be 
understood by both cloud expert and non experts so 
that common performance indicators can be 
recognised. Unfortunately, as stated in the SLA 
survey made by (Alhamad, 2011), SLA frameworks 
are focused on technical attributes and do neither 
take into account security nor other business related 
non-functional properties. Moreover, resources 
measuring techniques need further refinement to be 
applied in the cloud context in order (1) to ensure 
some level of trust between service providers and 
customers, (2) to provide a flexible and agile way to 
tune performance metrics parameters and (3) to 
support real costs evaluation means.  

To this end, (Katsaros, 2012), proposes a self-
adaptive hierarchical monitoring mechanism for 
clouds. This framework implemented at the Platform 
as a Service layer, allows monitoring the QoS 
parameters based on SLA for business benefits. 
Nevertheless it lacks of providing a flexible policy 
enforcement mechanism and it does not indicate its 
scalability in web service framework. While 
considering quality from a “customer” point of view, 
(Jureta, 2009) proposes a comprehensive quality 
model for service-oriented systems. It allows 
specifying the quality level, determining the 
dependency value and ranking the quality priority. 
However, the performance issues related to cloud 
resources are not discussed and details are missing 
regarding the correlation of the quality model with 
the service cost model. 
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Lastly, the monitoring mechanisms should be 
non-intrusive and should let a minimum runtime 
footprint over the execution environment (Heward, 
2010). It has also (1) to fit the cloud elasticity to 
keep up when an application or infrastructure scales 
up or down dynamically (Gogouvitis, 2012) and (2) 
to provide a “simple” interface so that the cloud 
complexity is as transparent as possible for end 
users. This requires being able to “generate and 
deploy on the fly” contextual monitoring means. 

2.2 Integration of Security Management 

Due to the variety of cloud deployment models, 
different security challenges must be taken into 
account. While private Cloud deployment does not 
require to enforce the corporate security policy, the 
openness involved by the other kinds of deployment 
involves paying attention to data isolation and to 
data storage protection so that the corporate security 
policy can cope the particular vulnerabilities 
involved by the cloud deployment (Ouedraogo, 
2012). To fit these security challenges, cloud 
security-oriented models have also been defined 
such as: 
-The Cloud Security Alliance Security Stack 

(Cloud Security Alliance, 2012) uses the XaaS 
levels to identify threats and mitigation means. 

-The Jericho Forum Security Cube Model 
(Jericho, 2009) uses a 4 criteria classification: 
(resources physical location, the resource provider, 
the cloud technology and the operating area) to 
evaluate the risks and propose the associated 
mitigation means. 

Nevertheless, both models are organised to 
identify and deploy security countermeasures in a 
static vision and do not fit an “adaptive” security 
deployment in a multi-cloud context. This often 
leads either to “over-protect” information systems 
while deploying them on clouds (that may reduce 
the Quality of Service) or to “forget” protecting 
corporate assets while transferring them on a cloud 
platform. 

In order to overcome this limit, one can adapt the 
Model Driven Engineering (MDE) approach as it 
allows generating code from requirements thanks to 
different transformation steps (Marcos, 2006), 
raising the abstraction level and introducing more 
automation in software development (Van Der 
Straeten, 2009). Such an engineering strategy can be 
worthy used in a multi-cloud context as it can 
improve reusing abilities of requirements, Platform 
Independent Models and parts of Platform specific 
models depending on the deployment platform (see 

for example (Torres, 2012) that present: how BP-
driven web applications can be developed using 
technology independent models before setting 
transformation strategies to generate “technology 
specific” applications). 

Moreover, MDE has also been adapted to define 
the Model Driven Security (MDS) strategy (Basin, 
2003; Clavel, 2008). MDS defines a framework used 
to generate security policies out of annotated 
business process models (Souza, 2009, Wolter, 
2009) (thanks to either UML based security model 
integration (Jürjens, 2005) or BPMN annotations 
(Mülle, 2011)) taking advantage of SOA agility and 
policy flexibility. Nevertheless, this approach does 
not allow generating and deploying automatically 
the convenient monitoring functions that are 
necessary to guaranty that the system is safe 
(Loganayagi, 2011). 

2.3 Challenges 

Taking advantage of the multi-cloud deployment to 
support collaborative business requires integrating a 
unified approach to deploy secured BP and govern 
performances and security from the business to the 
infrastructure in a dynamic way. This requires first 
to enrich the traditional XaaS layer model with a 
“Business as a Service” level, used to express 
business-dependant performance and security 
requirements. Then, to fit the dynamicity required by 
a multi-cloud deployment, transformation models 
should also integrate a “model at runtime” vision to 
support the necessary flexibility. 

By now, the different works do not cover these 
requirements nor are end-user oriented (so that 
requirements can be captured more easily). To 
overcome these limits, we propose to take advantage 
of the well-know MDE strategy to generate and 
deploy service-related policies that will be used to 
take into account non-functional requirements (as 
security and quality of service) while deploying and 
monitoring service oriented systems over a multi-
cloud infrastructure. 

3 MODEL DRIVEN POLICY 
GENERATION PROCESS 

To support the policy generation process to allow an 
agile management Non Functional Properties (NFP) 
in a multi-cloud context, we couple the MDE to the 
Pattern based engineering to generate service-related 
policies. Then NFP management functions that can 
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be orchestrated at runtime so that the exact 
execution context can be taken into account. To 
achieve this goal, we propose a format model used 
to weave the business and deployment environment 
related knowledge in order to define transformation 
patterns and generate, compose and orchestrate NFP 
related policies. 

3.1 Global Architecture 

We use a multi-layer architecture to generate 
contextualised policies that will be used at runtime 
to select and orchestrate the security and governance 
services accordingly. Functionally, Business 
Requirements analysis allows designing the process 
workflow that is used to select and compose services 
to achieve each task. Accordingly, services are also 
used to select and orchestrate lower level 
components. This leads us to organise a 3-layer 
architecture on the top of the XaaS model: 
- Business Layer (BL) includes all business context 

information, such as business deciders, business 
requirements that are used to identify the Business 
Process workflow. 

- Service Layer (SL) includes all virtualized service 
context information, such as service provider/ 
consumer/ register and includes all the services 
that are selected and compose to achieve a business 
task. 

- Implementation Layer (IL) includes all 
implementation components, such as hardware, 
equipments, human resources and XaaS resources 
etc. It contains all the components that must be 
composed and orchestrated to support a service 
execution. It is an abstraction level of the different 
XaaS components. 

Our governance architecture has been designed 
in a “transversal” way on this architecture in a 
Governance as a Service strategy (Li, 2012). 
Governance services are composed and orchestrated 
while running the enterprises’ business processes 
depending on the NFP management requirements 
and taking advantage of the “functional knowledge” 
to select, compose and orchestrate the NFP 
management components accordingly. This provides 
a rather non-intrusive system that minimizes its 
footprint by transforming and composing policy 
rules depending on the context thanks to a set of 
transformation patterns. 

To select the convenient transformation patterns 
NFP are classified into different groups 
(‘Performance’, ‘Usability’, ‘Maintainability’, 
‘Reliability’, ‘Security’…). Each NFP group is 
divided into Critical Success Factors sets (CSFs) 

associated to metrics used to constrain and / or 
evaluate its accomplishment so that Governance 
Agreements can be set and associated to the 
different layers. Each agreement refers to the target 
layer objectives, CSFs and factors metrics. 

To allow a dynamic deployment and 
orchestration of the NFP management components, 
we propose to couple NFP related policy rules to the 
different functional components. Using a pattern-
based transformation process, requirements are 
turned into Platform Independent Policies and 
Platform Dependant Policies used to orchestrate the 
NFP management components at runtime. 
Moreover, we take advantage of the functional 
specification (i.e. the BP workflow description used 
to compose and orchestrate the different services and 
cloud components) to compose the NFP 
orchestration and governance policies accordingly. 

The policy generation process (figure 1) takes 
advantage of both Model Driven Engineering and of 
Pattern-based Engineering approaches adapting the 
security patterns methods (Yoshioka, 2008) 
(Uzunov, 2012) and those proposed as “best 
practices” in security engineering methods (as 
OCTAVE, EBIOS.). 

 

Figure 1: Policy transformation steps. 

The transformation strategy relies on a global 
model that connects business workflow, security and 
governance requirements to monitoring patterns and 
policies (figure 2). A ‘Resource’ is associated either 
to a ‘task’, a ‘service’ or an ‘implementation’ 
component. Each resource has its own properties 
and interacts with others depending on the business 
workflow. NFP requirements (either related to 
security or governance) are associated to resources. 
Each requirement is analysed and transformed into 
policy rules thanks to ‘transformation pattern’. 

‘Security rules’ are used to select, orchestrate 
and invoke ‘security deployment pattern’ to 
implement security means accordingly. In a similar 
way, ‘governance rules’ select, orchestrate and 
invoke ‘monitoring pattern’ to constrain 
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accomplishment of functional rules by assigning and 
computing ‘KPIs’. ‘Monitoring pattern’ also can 
invoke ‘Action engine (AE)’ to tune and improve 
the resources performance by doing actions on 
related resources, then at the runtime to improve the 
performance of business activities. 

 

Figure 2: Global model. 

3.2 Policy Formal Model 

Our policy transformation process is based on a 
formal model integrating requirements, patterns and 
policy so that policy rules can be designed and 
transformed in a generic way. 

Formally, a Requirement i is defined as a tuple: 

Reqi = (RR, (RT, RM), RG, RL, RC) (1)

Where 
- RR (Requirement Resource) defines the resource 

concerned by the requirement. It can be a task 
(business activity), a service or a part of the 
infrastructure / piece of data. 

- RT (Requirement Type) defines the type of the 
requirement (governance of one of the NFP group, 
ensure security, support QoS control…)  

- RG (Requirement Goal) defines precisely the 
goal of this requirement (governance or other 
functional requirement related to a NFP) 

- RM (Requirement Metrics) is the metric 
(specifically defined or standardized) to measure 
this requirement’s implementation. 

- RL (Requirement Layer) defines the layer 
(BL/SL/IL) associated to the resource targeted by 
this requirement. 

- RC (Requirement Context) the condition of this 
requirement’s implementation. Such as, association 

of involved resource’s with other resources in 
business workflow.  

According to this definition, we can gather all 
the requirements for all the resources as: 

Reqs = {Reqi} where 0<i<Ni; (2)

Where “i” is the requirement number and Ni the 
total of the all requirements of all resources. 

We can also get the requirements associated to a 
resource Rk (Reqs(Rk)) by selecting (thanks to the 
selection function σ) all the requirements in Reqs 
which associated resource (RR) matches with Rk. 

Reqs(Rk) = σ(Reqs.RR=Rk)(Reqs) (3)

Where “i” is the requirement number and “Ni” is the 
total number of requirements of resource Rk.  

A pattern j is defined as a tuple: 

Patj = (PatN, PatG, {PatCtx}, PatP, 
{PatCol},{PatR}, {PatCsq, PatStep} ) 

(4)

Where 
- PatN is the name which identifies the pattern. This 

name is related to the requirement type, a NFP 
identification or or a CSF for a group of NFP. 

- PatG defines the pattern goal (or the reason for 
using it). This goal is similar to the requirement 
goal and the associated value can be either 
governance or any other functional requirement 
related to a NFP or CSF. 

- PatCtx identifies the context under which which 
this pattern can be used. 

- PatP defines a list of “participants” and their roles 
in the pattern definition. A participant can refer to 
requirement which need to be transformed, 
transformed policy rule, relevant sub-pattern, 
collaborative business process organization, etc. 

- PatCol describes the collaboration strategy used 
by the participants to interact with each other. 

- PatR a set of related patterns. For example, 
governance requirement pattern requires a set of 
the CSF pattern for a parent NFP group pattern. ) 

- PatCsq describes the results or actions 
implemented by the pattern. 

- PatStep defines the transformation step (CIM to 
PIM, PIM to PSM or PSM to PDM) for which the 
pattern must be used. 

In a similar way, the set of patterns is defined by: 

Pats= {Patj} where 0<j<=Nj (5)

Where “j” is the pattern number and “Nj” the total 
number of patterns. 

A policy rule x is also defined as a tuple: 

PolRx= (PR, PT, PG, PL, {PC}, PP) (6)
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Where 
- PR is the set of resources involved in the policy. 
- PT is the Policy type. It refers to the requirement 

type and Pattern Name (RT and PatN) as well, as 
to the NFP group or the CSFs for a parent NFP 
group)  

- PG defines the Policy goal and is related to RG 
and PatG such as governance or any other 
functional goal related to the NFP.  

- PL is the layer of the involved resource for this 
policy. As we defined before it could be BL/SL/IL. 

- PC is the set of conditions to decide if the policy 
can be used or not. (For governance policy rule, it 
is related to business process and organization of 
business workflow) 

- PP identifies the pattern to use to define the policy 
implementation. 

According to this definition, we can gather all 
the policy rules of all resources as: 

PolRs= {PolRx} where 0<x<Nx; (7)

Where “x” is the policy rule number and Nx the total 
number of policy rules (for all resources). 

Lastly, policy rules attached to any resource Rk 
can be defined by selecting (σ) the policy rules in the 
PolRs while the policy resource (PR) matches with 
resource Rk: 

PolRs(Rk) = σ(PolRs.PR=Rk) (PolRs) (8)

Where “x” is the policy rule number and “Nx” the 
total number of policy rules involving resource Rk. 

3.3 From Requirements to Computer 
Independent Model (CIM) 

At the beginning of the process, users define their 
requirements using a rather high abstraction level 
and do not have to provide any implementation 
technical details. As NFP management requirements 
are mostly specified at the Business layer, we use 
the “functional composition process” knowledge to 
select the resources belonging to the lower-levels 
and involved in the BL resource deployment and to 
propagate these requirements to these SL and IL 
resources. Our CIM elicitation process is based on 
this “composition-based” propagation models. 

As stated in our formal model (see eq. 1), each 
requirement is defined by specifying the resource 
(RR) to which this requirement is associated to and 
the layer to which this resource belongs as well as 
the type of requirement (RT), its goal (RG) and the 
associated metric (RM). 

As a resource Rk (‘k’ is numbering the resource) 
can be associated to many requirements, the 

Computer Independent Model is defined as the set of 
requirements associated to the different resources: 

Reqs = {Reqs (Rk)} where0< i<Ni, 0< k<Nk (9)

Where ‘i’ is the requirement number, ‘Ni’ is the total 
number of requirements associated to the resource 
Rk. 

3.4 From Requirements to Policy Rules 

After gathering and formatting the requirements in a 
single Computer Independent Model, the policy 
generation process consists in turning each CIM 
assertion in a Platform Independent policy rule. 
Basic policy rules are generated thanks to a pattern-
based transformation process. Our NFP 
classification is used to organize transformation 
patterns depending on the NFP they are related to. 
Pattern’s name (PatN) and patterns’ goal (PatG) are 
used to identify each pattern. 

For each resource, the requirements are turned 
one after the other in a policy rule. To this end, for a 
given requirement i associated to a resource Rk: 
Reqi, the convenient pattern (Pat) is selected from 
the patterns set (Pats) thanks to the selection 
function (σ) that extract the pattern which name 
(PatN) matches the requirement type (RT) and 
which pattern goal (PatG) matches the resource 
goal(RG): 

Pat= σ (Pats.PatN= Reqi.RT AND 
Pats.PatG =Reqi.RG)(Pats) 

(10)

The selected pattern is used to instantiate the 
corresponding policy rule. According to this, a 
policy rule refereeing to the requirement and the 
resource is generated. Let Rk be the resource 
associated to the ith requirement Reqi, (i.e. Rk = 
Reqi.RR), the policy rule which refers to this 
requirement and to the kth resource is defined as: 

PolRik= (Reqi.RR, Pat.PatN, Pat.PatG, 
Reqi.RL, Reqi.RC,Pat) 

(11)

After discovering the ‘basic policy rule’ thanks 
to this selection process, we have to check the 
selected pattern’s related sub-pattern to get more 
precise policy rules. If a selected pattern contains a 
related sub-pattern (i.e. when Pat.PatR is not an 
empty set), a refinement algorithm (see Algorithm 1) 
is recursively launched to precise and develop the 
policy rules associated to this pattern (for example, a 
generic “confidentiality management” pattern can be 
refined using authentication and authorization 
patterns as well as encryption sub-patterns). 
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Ref.PatR(pattern Pat) 
{ int j ; //numbering pattern; 

Patj= Pat;  
If (Patj.PatR ≠ )   
//if pattern ‘Patj’ has related 

transfer pattern Patj.PatR  
  {then call Ref.PatR(Patj.PatR );  

  //the consequence is call 
refinement algorithm until the pattern 
has no related pattern; } 

If (Patj.PatR = ) 
 //if patter ‘Patj’ has no related 

transfer pattern; 
{Then int x;//numbering policy rule; 
Patj.PatCsq = PolRX; 
 // if Patj has no related pattern 

then its consequence is generated 
policy rule ‘PolRx’; }  } 

Algorithm 1: Refinement algorithm. 

At the end of this step the different policy rules 
associated to the requirements are generated. As for 
the CIM elicitation, we use a policy composition 
process, including the functional composition 
knowledge, to select, extract and compose the 
different policy rules attached to a resource. Each 
task (in the BL level) is considered as a sub-process 
and used to compose / derive the policies associated 
to same or lower-level resources composed to 
implement this sub-process (see algorithms 2 and 3). 

Comp-subPB (Resource R, Policy-rule 
PolR) 
{  Int k , x; 
//numbering resource and policy rule; 

Rk=R;       PolRx= PolR; 
Extract (Rk.RT ,  PolRx. PR ); 

//extract policy rule’s resource and 
the resource type:’Rk.RT’;  
//all relevant resources are in the 
same sub-BP; 
 If (Rk.RT == ‘Task’) 
 {call Comp-task(Rk)} 
//if resource type is Task call ‘Task’s 
PIM rule composition process; 
 If (Rk.RT == ‘service’) 
 {call Comp-service(Rk)} 
//if resource type is service call 
service’s PIM rule composition process;
  }  
 
Comp-task (task R) 
{ Int num-task, k ;//numbering task 
and resource; 
 Rk= R; //Rk has related services 
 int num-service,n-service; 
//’num-service’ is the related service 
number; 

//’n-service’ is the total number of 
related services; 

Service (num-service) = Rk’s related 
service; 
// 0<num-service<=n-service 

Valid Rk’s PIM policy rules to 
service(num-service); 
//valid task’s policy rules to all 
related service resources; 

If (service (num-service) has related 
infrastructure resource) 
Call Comp-service (service (num-service));} 
 
Comp-service (service R) 
{ Int num-service,k ; //numbering 
service and resource; 
 Rk=R;  //Rk has related 
infrastructure resource; 

int num-inf,n-inf; 
//’num-inf’ is the related 
infrastucture number; 
//’n-inf’ is the total number of 
related infrastructure; 

Infnum-inf= Rk’s related 
infrastructure;    // 0<num-inf<=n-
inf 

Valid Rk’s PIM policy rules to 
Infnum-inf; 
//valid service’s policy rules to all 
related infrastructure resources; } 

Algorithm 2: Cross layers sub-PB PIM policy rule 
composition. 

Comp-samelayer(provider-resource R1, 
consumer-resource R2) 
{ Int k1 , k2; 
//’k1’’k2’ are resource numbers; 
 Rk1= R1; Rk2=R2; 

Rk1 is provider resource; 
Rk2 is consumer resource; 

//Which means Rk2’s input == Rk1’s 
output; 
   Valid Rk2’s PIM policy rules to Rk1; 
 If (Rk1, Rk2’s resource type== task 
and they have related resources) 
{Call Comp-task(Rk1)and Comp-task(Rk2)}; 
//If Rk1, Rk2’s resource type is task 
and they have related services, then 
call task composition process;  

If (Rk1), Rk2’s resource type == 
service and they have related 
infrastructures) 

{Call Comp-service(Rk1)and Comp-
service(Rk2)}; 
//If Rk1, Rk2’s resource type is service 
and they have related infrastructures, 
then call service composition process;} 

Algorithm 3: At same level’s PIM policy rule 
composition. 
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4 USE CASE 

Our use case aims at generating the security and 
delay governance policies for a business level 
Payment Task described Figure 3. 

 

Figure 3 Example of a Payment Task crossing the 3 layers. 

At the first step, the user defines his 
requirements according to our formal model: 

1) Requirement 1: Managing and governing the 
confidentiality at a high level (level 2) 

Req1= {“PaymentTask”, (“Confidentiality”, 
level2), “Govern”, “Business layer”} 

2) Requirement 2: Being able to capture the 
payment task execution delay at a business level to 
evaluate its impact to the global business 
performance system 

Req2 = {“PaymentTask”, (“Delay”), “Govern”, 
“Business Layer”} 

Then governance patterns are identified and used 
to define the governance policy rule. Figure 4 
presents the confidentiality and performance patterns 
organization. 

 

Figure 4: Organization of the Confidentiality and 
Performance NFP family and governance pattern. 

Based on the requirement type and on the goal, 
the selection function is used to discover the CIM to 
PIM transformation pattern to apply in order to 
generate the policy rule associated to the payment 
task: As far as the security requirement is concerned, 

the confidentiality governance pattern is selected 
(Eq. 1) and checked: to identify if it contains sub-
patterns (i.e. related patterns) that can be a Critical 
Success Factor or not. As the Conf-Pattern contains 
an Encryption pattern (that is not a CSF) the policy 
rule is refined to integrate the sub-pattern invocation 
(Eq. 2) and the refinement algorithm is launched is 
re-launched to refine the Encrypt-Pattern which is 
associated to CSF. 

(R1=Req1.RR==PaymentTask) 
PolR1(R1)={“PaymentTask”, “Confidential”, 
“Govern-confidentiality”, “ Business Layer”, 
{PC},”Conf-Pattern”})                               (Eq. 1) 
 

PolR2(R1)=(“PaymentTask”, “Encryption”, 
“Govern-encyption”, “Business Layer”, 
{PC},”Encrypt-Pattern”)                            (Eq. 2) 
As far as the performance requirement is 

concerned; we use a similar pattern selection process 
to support the CIM to PIM transformation, 
identifying the Delay pattern (Eq. 3) and refining it 
with the 2 CSF patterns (Response delay pattern and 
Executive delay pattern) (Eq. 4) 

(R1=Req2.RR==PaymentTask) 
PolR3(R1)=(“PaymentTask”, “Delay”, 
“Govern -delay”, “Business Layer”, {PC}, 
“Delay-Pattern”)                                         (Eq. 3) 

 

PolR4(R1)={“PaymentTask”, “Delay”, ”Govern-
Delay”, ”Business Layer”,{PC},”Response 
delay”} 
PolR5(R1)={“PaymentTask”, “Delay”, ”Govern-
Delay”, ”Business Layer”,{PC},”Execution 
delay”}                                                       (Eq. 4) 
Each policy rule is analyzed to identify the sub-

resource related to the policy’s “root resource”.so 
that relevant policy rules can be composed. In our 
case, the resource attached to the policy is the 
payment-task which belongs to the business layer. 
This task is implemented thanks to a service chain 
composed of 3 services: S1, S2 and S3 deployed at 
the service layer. The policy rule is “propagated” to 
each service (see Eq. 5 which presents the security 
policy rule associated to S1). In a similar way, the 
selection process is used to identify the 
implementation level resources related to the service 
in order to generate the corresponding policy rules 
accordingly (see the example for DB 1 in Eq. 6) 

PolR6(S1)=(“S1”, “Encryption”, “Govern-
encyption”, “SL”, “”,”Encrypt-Pattern”)   (Eq. 5) 
 

PolR7(DB1)=(“DB1”, “Encryption”, “Govern-
encyption”, “IL”, “”,”Encrypt-Pattern”)    (Eq. 6) 
The delay governance requirement is also used 

to generate policy rules attached to the different 
services and resources (Eq. 7 and 8). 

CLOSER�2013�-�3rd�International�Conference�on�Cloud�Computing�and�Services�Science

172



 

 

PolR8(S1)=(“S1”, “Delay”, “Govern-delay”, 
“SL”, “”,”ExecDelay-Pattern”)                  (Eq. 7) 
PolR9(DB1)=(“DB1”, “Delay”, “Govern-delay”, 
“IL”, “”,”ExecDelay-Pattern”)                   (Eq. 8) 
 

While deploying the task and related services, 
the deployment environment knowledge is used to 
generate platform dependant policy rules. For each 
platform independent policy rule, we select the 
“deployment” pattern depending on the PIM rule 
name and on the deployment platform 
characteristics. As we use an hybrid cloud platform 
to support the Payment Task deployment, the 
transformation pattern is selected thanks to the 
following criteria: PatStep is associated to the PIM 
to PDM transformation step, PatG fits the 
“Encryption level 2” goal and PatCtx fits the hybrid 
cloud context. This leads to select the AES-256 data 
encryption implementation pattern. So for each PIM 
rule that refers to the Encrypt-Pattern, the AES-256-
KPI pattern is substituted (Eq. 9 and 10) 

PolR10(S1)=(“S1”, “Encryption”,  
“Govern-encyption”, “SL”, “”,”AES-256-KPI 
pattern”)                                                       (Eq.9) 
 

PolR11(DB1)=(“DB1”, “Encryption”,  
“Govern-encyption”, “IL”, “”,”AES-256-KPI 
pattern”)                                                    (Eq. 10) 

 
Figure 5: Extract of Policy file “Govern-NFP.xml”.  

 

Figure 6: Policy reference added in Service S1 description 
(WSDL: Binding part). 

Then these policy rules are used to generate the 
XML policy file that is attached to each service. 
Figure 5 shows the policy file related to the 
encryption whereas figure 6 shows the service 

annotation which refers to the policy file. At 
runtime, each policy rule is analysed and leads to the 
execution of the convenient security / governance 
service invocation while orchestrating the 
Governance KPIs. This PaymentTask’s relevant 
KPIs’ results can be aggregated into comprehensive 
result for business decision makers. 

5 CONCLUSIONS 

To support governance functions and secured 
deployment in a multi-cloud context we proposed to 
take advantage of the MDE and pattern-based 
engineering approaches to generate NFP 
management policies depending on the deployment 
process. Our multi-level architecture built on the top 
of the XaaS model allows taking advantage of the 
Business knowledge to derive and compose policy 
rules at each layer based on a single business 
requirement and deploy them depending on the 
execution context. Further works will focus on the 
service orchestrator component so that the policy 
rules will be used to compose and orchestrate the 
NFP management and governance services “on the 
fly” depending on the exact deployment context. 
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