

Why Do We Not Learn from Defects?
Towards Defect-Driven Software Process Improvement

Niklas Mellegård1, Miroslaw Staron1 and Fredrik Törner2
1Dept. of Computer Science, Chalmers University of Technology & University of Gothenburg, Gothenburg, Sweden

2Volvo Car Corporation, Gothenburg, Sweden

Keywords: Software Engineering, Software Quality, Metrics/Measurement, Defect Classification.

Abstract: In this paper, we put forth the thesis that state-of-the-art defect classification schemes – such as ODC and
IEEE Std. 1044 – have failed to meet their target; limited industrial adoption is taken as part of the evidence
combined with published studies on model driven software development. Notwithstanding, a number of
publications show that defect reports can provide valuable information about common, important, or
dangerous problems with software products. In this paper, we present the synthesis of two industrial case
studies that illustrate that even expert judgement can be deceptive; demonstrating the need for more
objective evidence to allow project stakeholder to make informed decisions, and that defect classification is
one effective means to that end. Finally, we propose a roadmap that will contribute to improving the defect
classification approach, which in consequence will lead to a wider industrial adoption.

1 INTRODUCTION

Software defect classification schemes – such as
ODC, HP and IEEE 1044 – have the purpose of
providing defect reports with a common structure.
Such a structure allows for efficient quantitative
analyses, which can provide evidence of the
efficiency and effectiveness of various process
activities. Following ODC, defect classification
schemes (DCS) have been around for more than two
decades – during which, software development has
evolved from being code- and document centric to
be model-driven. Based on the number of
publication in the area, however, we conjecture that
DCS have had limited industrial impact – this
limited impact is taken as a symptom of that the
approach has failed to meet its target.

Despite limited adoption, publications – our own
case study included – show that defect reports can
provide valuable information for improving
modelling when aggregated and analysed; to be an
efficient tool to draw attention of various
stakeholders to the most common, important or
dangerous problems with software products.

We approach this apparent contradiction by
addressing the question: “As academic evidence
show that DCS can be successful, why has it not had
a more industrial impact and what can be done?”

We first address this question by concretely showing
the value of DCS, using the synthesis of two
industrial case studies from our previous work. We
then provide evidence in support of the conjectured
limited industrial adoption of DCS, and present
reasons why. Finally, we provide a roadmap that
would fill the gaps in current state-of-research that
we envision would allow for a more successful
approach to DCS.

In particular, we envision that the roadmap will
contribute to making the results of defect analyses
more useful to project stakeholders in control of
resources, in particular in the system modelling
phase. This is in contrast to the current state-of-the-
art where analyses of classification data primary are
intended for developers. By refocusing the DCS
approach we envision that it will better serve as a
tool for fact-based decisions during modelling –
based on descriptive and predictive measures and
indicators. The improvement would contribute to
more accurate targeting of process improvement
initiatives, to serve as the basis for defect-driven
software improvement initiatives.

In practice, the purpose of a defect report is often
limited to facilitating the resolution of the defect.
For instance, defect reports are often free text
(Wagner, 2008) which makes quantitative analyses
effort intensive. In response, various DCS have been

297Mellegård N., Staron M. and Törner F..
Why Do We Not Learn from Defects? - Towards Defect-Driven Software Process Improvement.
DOI: 10.5220/0004345602970303
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 297-303
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

proposed. DCS also contribute to comparability of
defect metrics between projects and between
companies (Chillarege et al., 1992).

Classification schemes typically define a set of
attributes, where each attribute captures a specific
aspect of the defect – e.g. how the defect was
detected, its severity and type. Each attribute
typically contain a set of values that can be chosen
from; this contributes to the efficiency and reliability
of the classification. In literature, the most
commonly referred (Freimut, 2001) DCS are ODC
(Orthogonal Defect Classification) (Chillarege et al.,
1992), the HP approach (Grady, 1992) and the IEEE
Std. 1044 (IEEE, 2010).

The attributes of ODC and IEEE Std. 1044 are
organized into the defect’s life-cycle phases; ODC,
for instance, defines the phases open and close
(shown in Table 1). The attributes in the opener
section of ODC focus on aspects of the failure,
whereas the closer section focuses on aspects of the
fault.

Table 1: Overview of ODC (adapted from (Freimut,
2001)).

Process Attribute Meaning

Open

Activity When did you detect the defect?
Trigger How did you detect the defect?

Impact
What would the customer have

noticed if the defect had escaped
into the field?

Close

Target What high level entity was fixed?
Source Who developed the target?

Age What is the history of the target?
Type What had to be fixed?

Qualifier
Was the defect caused by something

missing, incorrect or extraneous?

DCS typically focus on technical aspects of the
defects and their source code manifestations; IEEE
Std. 1044, for instance, lists 80 different values for
its Type attribute.

2 IMPORTANCE OF DEFECT
CLASSIFICATION

In our earlier work (Mellegård and Staron, 2010) we
investigated the importance of various artefact types
in the automotive software development – such as
requirements, types of software models, and
documents. Specifically, we investigated the
perceived importance of the artefacts and the relative
effort required to create them. The particular focus

of the case study was to characterize the use of
software models in relation to other types of
development artefacts.

Among the conclusions of the case study were
that most effort was spent on simulation models (e.g.
Simulink models), while the most important
artefacts were the requirements and design artefacts.
This result was in itself not surprising as the
simulation models serve as a base for the
implementation, and as development is highly
distributed – both among in-house teams and
external suppliers – the quality of specifications is
crucial to preventing eventual instegration problems.
In fact, during the case study we repeatedly
encountered statements from our interviewees –
expert opinions – that integration was a considerable
challenge, in particular during the late project
phases. Additionally, we frequently encountered
concerns about lack of more objective evidence to
support these expert opinions.

These findings directed our interest towards in-
process defects, specifically to defects detected
during late project phases; did integration issues
cause these, and could we find evidence that the
cause was as had been anticipated?

2.1 Cause of Late Defects

In a second study (Mellegård et al., 2012a), we set
out to make an in-depth examination of in-process
defects from one system developed at the
department. We found, in the initial analyses of the
existing defect data, that there was indeed a
substantial inflow of defects in late project phases;
shown in Figure 1 as the defect backlog.

Figure 1: Defect backlog.

The timing of the late spike in defects close to
software release (a major in-development milestone)
seemed to confirm the hypothesis of integration
issues. Merely examining the quantity of defects,
however, would not reveal the nature of the defects
and as the defect reports were in free text, they were

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

298

not suitable for quantitative analysis. We therefore
used IEEE Std. 1044 as base to develop a DCS
adapted to the context of our case company. The
result was the Light-Weight Defect Classification
scheme (LiDeC) (Mellegård et al., 2012b).

As part of the case study, LiDeC was applied to a
sample of defects from the late defect inflow spike
as shown in Figure 1 and reported in (Mellegård et
al., 2012a), and the analysis results were presented
and discussed at a workshop at the company.

Figure 2 shows a sample of the analysis using
four attributes from LiDeC (see (Mellegård et al.,
2012b), from three perspectives: detection of the
failure, type of fault and finally product and project
impact of the resolution. Using these three
perspectives, the defects can be examined to
evaluate whether they were integration issues as
anticipated.

Figure 2 shows that while the majority of defects
was indeed detected during integration testing –
system or functional – the defect types were not
typical for integration issues. Whereas the
anticipated type would be Interface, Data or Tuning,
the majority of defects were of the type Logic –i.e.
computational or algorithmic faults. Such defects
would normally be present already in the simulation
models. This was corroborated by the Resolution
impact attribute, shown in the bottom left of Figure
2, indicating that most defects required changes to a
single unit –integration issues would typically have
an impact on multiple units, or require changes to
the specification (denoted as Functional changes).

However, the Re-verification Level attribute –
showing the activity required to test a resolution –
indicates that it is not a clear-cut case. On the one
hand, a significant amount of defects requires only

 inspection or component test, indicating unit
problems. On the other hand, most defects would
require new system or functional tests, indeed
indicating integration impact – finding the root cause
of these defects could bring significant benefits.

Our (careful) conclusions from this study is that
the majority of late defects – although to a large
extent requiring new integration tests – are not of the
type typically associated with integration problems.
Thus, the classification of defects provided the
development teams with new information that may
contribute to better test planning – e.g. put effort into
improving testability of requirements on unit level.

Finally, we would like to emphasize that the
analysis presented here was conducted on a sample
of defects from a project that had finished a year
prior to the study. The results should therefore be
treated as proof-of-concept rather than as a basis for
recommended change of practice. We can however
conclude that the classification contributed with new
information that in part contradicted expert opinion.
This raised interest and inspired discussions
regarding possible causes; the case study provides
evidence that conducting defect classification and
analysis contributes to constructive review of the
state-of-practice.

3 PROBLEM DESCRIPTION

As we illustrated above, the use of DCS can be an
effective approach to extracting data from problem
reports, and can provide new information about the
development process. In addition, there have been
studies reporting similar results, e.g. Butcher et al.
(Butcher et al., 2002), or Li et al. (Li et al., 2012).

Figure 2: Preliminary analysis results.

Why�Do�We�Not�Learn�from�Defects?��-�Towards�Defect-Driven�Software�Process�Improvement

299

However, we conjecture – partially based on our
observations – that DCS has had limited industry
adoption; we take this as a symptom that state-of-
the-art DCS as a means of extracting process metrics
has missed its target. To find evidence in support of
this conjecture we searched IEEE Explore
(http://ieeexplore.ieee.org) using the search term:
(‘defect classification’ AND ‘software’). The search,
performed Oct. 25 2012, yielded 70 publications
between 1986 and 2012. By reading titles and
abstracts, we found that the publications fell into the
following categories:

 Proposing new DCS, e.g. (Chillarege et al.,
1992); (Paul et al., 2002); (IEEE, 2010)

 Improving existing DCS, e.g. by assisting a user
in conducting the classification (Wang He et al.,
2009); (Huang et al., 2011), or adapting the
scheme to a specific context (Li et al., 2010)

 Academic evaluation of a DCS, e.g.
(Henningsson et al., 2004); (Vetro’ et al., 2012)

 Industrial evaluation of a DCS, e.g. (Butcher et
al., 2002); (Chillarege et al., 2002); (Freimut et
al., 2005); (Li et al., 2012)

 Analysis techniques for classification data (Li et
al., 2010)

 Using classification data for other purposes, e.g.
to evaluate efficiency of inspections (Nagappan
et al., 2004), to evaluate static analysis for fault
detection (Zheng et al., 2006), to propose
reliability estimation models (Paul et al., 2000),
or to evaluate fault injection techniques (Jin et
al., 2009)

Notably, we found no publications evaluating
industrial adoption of DCS, nor investigating what
companies would require from such an approach;
specifically in terms of the information that analyses
of the data need to provide.

Further support for our conjecture can be found
in the systematic literature review by Hall et al.
(Hall et al., 2011). In their paper, Hall et al.
examined 36 fault prediction models and noted that
the vast majority of the models were limited to
predicting the quantity of faults per module. In fact,
Hall et al. could only find one model that
incorporated fault severity as a predicted variable. In
their paper, Hall et al. argue that one reason may lay
in the difficulty of defining severity. An additional
reason, however, may simply be a lack of available
data; companies tend to collect only the defect data
necessary to facilitate the resolution of the defect.
This brings our thesis to a point: although defect
classification has been shown to be an effective
approach to acquiring process metrics, why has it
not had a wider industrial adoption?

We can consider this point in the context of
communication paths (Pareto et al., 2012). In their
paper, Pareto et al. argue that a source of problems
in projects is miscommunication because the needs
and concerns of developers are not expressed in
terms that managers and architects need in order to
make informed decisions – rather developers express
their needs in highly detailed and specific technical
terms. In order to make an impact on the
stakeholders in power, developers need to create
abstractions suitable for that specific stakeholder; to
provide evidence that level of abstraction.

In this context, we contend that established DCS
are too focused on the developers’ context –
illustrated, for instance, by the high granularity of
the Type attribute in both ODC and the IEEE 1044.
In particular, established DCS fail at providing
sufficient guidance to translate the results into the
language needed to make an impact on the
stakeholders that are in control of the resources.

Furthermore, unnecessarily high level of detail in
classification brings a risk that may have a double
impact: on the one hand, it adds to the effort needed
to make a classification (and thus reduces the
available resources to resolve the problem). On the
other hand, it adds to the required analysis effort
needed to adapt results to the stakeholders in control.
Consequently, effort risks being put into collecting
data that remain unused (Li et al., 2012).

4 ROADMAP

The roadmap is divided into three parts:
investigation of current DCS state-of-practice;
investigation of how the design of DCS could meet
the needs better; and finally, investigation of how to
analyse the data to meet the organizational
information needs.

4.1 State-of-practice

As we found a notable lack of research into current
DCS state-of-practice in general and in modelling
specifically, we envision surveying:

 To what extent do companies use DCS – in
particular in the context of how DCS provides
input to decision formulation and execution
processes;

 What alternative approaches are used to facilitate
analyses of defect reports on an aggregate level
(e.g. none, defect taxonomies, root-cause
analysis etc).

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

300

Furthermore, the results of the surveys should be
correlated with aspects such as the size of the
company and development teams, types of products
developed and types of development processes used.
Such an in-depth understanding of current practice
would contribute to improving state-of-the-art DCS.

Additionally, there is a need to investigate the
information needs of relevant project stakeholders –
mainly product and project managers, and architects.
In their paper Buse and Zimmerman (Buse et al.,
2011) examine general information needs among the
stakeholders at a large software organization,
exemplified by Microsoft. We, however, call for a
more targeted investigation into which stakeholders
are relevant, and what their information needs are,
with the specific focus on defect data. We envision
the needs falling into two main categories:
descriptive and predictive.

Descriptive information would characterize
project phases in terms of their defect profile
(patterns). Descriptive information could be used in-
process for benchmarking against a company base-
line (Chillarege et al., 1992), for instance to provide
evidence for evaluating process improvements.

Predictive information needs relate to the
challenges of resource planning. For instance, in
assigning resources of test phases in a project, there
may be a need to predict the anticipated amount and
type of defects – fault prediction models, such as
reviewed in Hall et al. (Hall et al., 2011) aim at that.
However, more granular defect data may enable
more precise prediction models, thus enable defect-
driven proactive decision support.

4.2 Design of DCS

The state-of-practice investigations should be
complemented with establishing a library of best
practices and lessons learned in both the design and
application of DCS. Li et al. (Li et al., 2012) made a
recent contribution in part by reporting a number of
lessons learned when applying DCS in two
organizations, however more studies are necessary.

Even though the design of DCS is already well
represented in state-of-the-art, there are aspects that
are not sufficiently developed. For instance, DCS
should be refocused from aspects of the
implementation (source code) to covering all project
phases – in particular modelling. There is,
additionally, a need to build abstraction mechanisms
into the DCS in order to reduce the required analysis
effort, and to improve the comparability of data
between projects and organizations.

LiDeC (Mellegård et al., 2012a, 2012b) contributes
to this for the automotive domain, but studies in
other domains are needed. For instance, the attribute
values in LiDeC are structured hierarchically, which
is an inherent abstraction mechanism. This allows
attributes to be extended with values at more
detailed levels while retaining comparability at
higher levels of abstraction.

In addition, the design of DCS should maintain
reference to the ISO/IEC 15939 standard (ISO/IEC,
2007) in order to facilitate integration with other
measures (e.g. predictions).

4.3 Data Analysis

The arguably most challenging aspect of DCS is in
analysing of the data. The thesis put forward in this
paper is that state-of-the-art DCS have failed partly
due to insufficient analysis methods. We propose
therefore the need for research into analysis and
visualization methods that satisfy typical
information needs and attract attention to the most
important defect patterns (as proposed in section
4.1). For instance, identifying product and project
characteristics, such as change patterns in source
code or software models (by inspecting versioning
systems), that correlate with defect inflow profiles
would enable defect inflow prediction models based
on data mined from software repositories.

We envision an analysis reference manual that
maps a stakeholder’s information need with a set of
best practices – for instance as a recommendation on
which attributes to include in the analysis and how
to visualize the data.

Moreover, we assert that reporting on industrial
case studies where specific organizational problems
have been addressed by analysis of defect
classification data would be of valuable – the work
by Li et al. (Li et al., 2012) contributes to this end.

5 CONCLUSIONS

In this paper, we have examined defect classification
schemes as a tool for collecting process metrics in
model based automotive software development
projects. Specifically, we have critically examined
the quality of state-of-the-art defect classification by
investigating its industrial adoption. Our thesis was
that defect classification has had limited industrial
adoption which we have argued to be a symptom of
knowledge gaps in state-of-the-art DCS.

One main reason for limited industrial adoption
is – in our view – that state-of-the-art DCS are

Why�Do�We�Not�Learn�from�Defects?��-�Towards�Defect-Driven�Software�Process�Improvement

301

inadequate for their purpose. In particular, there is a
too strong of a focus on low-level aspects of the
implementation; i.e., a tool primarily intended for
developers. DCS thus fail to address that project
stakeholders in control of resources need
information on a different level of abstraction to
make informed decisions. This means that state-of-
the-art classification approaches are poorly designed
to produce the results that are needed in order to
make an impact in an organization; thus the effort
invested in collecting data risks being in vain, as a
large potential of the data remain unused.

We have proposed a roadmap for an improved
defect classification approach that would contribute
towards developing new proactive evidence-based
software process improvement strategies – defect-
driven software process improvement. The roadmap
includes: making a deeper investigation of the
current adoption rate in industry; investigation of the
typical information needs of the project stakeholders
that have control over resources; investigation of
how to design DCS to support multiple levels of
abstraction, and finally; to investigate methods of
data analyses to accommodate the information needs
of the various project stakeholders.

These actions will contribute to making DCS
more appropriately adapted to organizations’ needs.
This in turn, we conjecture, will result in wider
industrial adoption.

ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish
Governmental Agency for Innovative Systems
(VINNOVA) under the Intelligent Vehicle Safety
Systems (IVSS) programme.

REFERENCES

Buse, R. P. L., Thomas Zimmermann, 2011. Information
Needs for Software Development Analytics (Microsoft
Technical report No. MSR-TR-2011-8)

Butcher, M., Munro, H., Kratschmer, T., 2002. Improving
software testing via ODC: Three case studies. IBM
Systems Journal 41, 31 –44.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M.
J., Moebus, D. S., Ray, B. K., Wong, M.-Y., 1992.
Orthogonal defect classification-a concept for in-
process measurements. IEEE Trans. Softw. Eng. 18.

Chillarege, R., Ram Prasad, K., 2002. Test and
development process retrospective - a case study using
ODC triggers, Int'l Conf Dependable Syst. and Netw.

Freimut, B., 2001. Developing and using defect
classification schemes (IESE- Report No. 072.01/E).
Fraunhofer IESE.

Freimut, B., Denger, C., Ketterer, M., 2005. An industrial
case study of implementing and validating defect
classification for process improvement and quality
management, 11th IEEE Int'l Symp. Softw. Metrics.

Grady, R. B., 1992. Practical Software Metrics for Project
Management and Process Improvement. Prentice
Hall.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.,
2011. A Systematic Review of Fault Prediction
Performance in Software Engineering. IEEE Trans.
Softw. Eng.

Henningsson, K., Wohlin, C., 2004. Assuring fault
classification agreement - an empirical evaluation, Int'l
Symposium on Empirical Softw. Eng. (ISESE).

Huang, L., Ng, V., Persing, I., Geng, R., Bai, X., Tian, J.,
2011. AutoODC: Automated generation of Orthogonal
Defect Classifications, 26th IEEE/ACM Int'l Conf. on
Automated Softw. Eng. (ASE).

IEEE, 2010. IEEE Std. 1044-2009. Standard Classification
for Software Anomalies.

ISO/IEC, 2007. ISO/IEC 15939 - Systems and Software
Engineering – Measurement Process.

Jin, A., Jiang, J., 2009. Fault Injection Scheme for
Embedded Systems at Machine Code Level and
Verification, 15th IEEE Pacific Rim Int'l Symp. on
Dependable Comput. (PRDC).

Li, J., Stalhane, T., Conradi, R., Kristiansen, J. M. W.,
2012. Enhancing Defect Tracking Systems to
Facilitate Software Quality Improvement. IEEE Softw.
29, 59 –66.

Li, N., Li, Z., Sun, X., 2010. Classification of Software
Defect Detected by Black-Box Testing: An Empirical
Study, 2nd World Congress Softw. Eng. (WCSE).

Li, N., Li, Z., Zhang, L., 2010. Mining Frequent Patterns
from Software Defect Repositories for Black-Box
Testing, 2nd Int'l Worksh. Intell. Syst. and Appl. (ISA).

Mellegård, N., Staron, M., 2010. Characterizing Model
Usage in Embedded Software Engineering: A Case
Study, 8th Nordic Workshop on Model Driven Softw.
Eng. (NW-MoDE). Copenhagen, Denmark.

Mellegård, N., Staron, M., Törner, F., 2012a. A Light-
weight Defect Classification Scheme for Embedded
Automotive Software and its Initial Evaluation, IEEE
Int'l Symp. Softw. Rel. Eng. (ISSRE), Dallas Tx USA.

Mellegård, N., Staron, M., Törner, F., 2012b. A Light-
Weight Defect Classification Scheme for Embedded
Automotive Software (Technical Report No. 2012:0x,
ISSN: 1654-4870), Research Reports in Software Eng.
and Management. Chalmers Univ. of Tech., Göteborg.

Nagappan, N., Williams, L., Hudepohl, J., Snipes, W.,
Vouk, M., 2004. Preliminary results on using static
analysis tools for software inspection, 15th Int'l Symp.
Softw. Rel. Eng. (ISSRE).

Pareto, L., Sandberg, A. B., Eriksson, P., Ehnebom, S.,
2012. Collaborative prioritization of architectural
concerns. Journal of Syst. and Softw. 85.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

302

Paul, R. A., Bastani, F., I-Ling Yen, Challagulla, V. U.
2000. Defect-based reliability analysis for mission-
critical software, Comp. SW and Applications Conf.
(COMPSAC).

Paul, R. A., Bastani, F. B., Challagulla, V. U. B., Yen, I.-
L., 2002. Software measurement data analysis using
memory-based reasoning, 14th IEEE Int'l Conf. Tools
with AI, (ICTAI).

Wagner, S., 2008. Defect classification and defect types
revisited, Workshop on Defects in Large Softw. Syst.,
DEFECTS.

Wang He, Wang Hao, Lin Zhiqing, 2009. Improving
Classification Efficiency of Orthogonal Defect
Classification via a Bayesian Network Approach,
Comp. Intell. and Softw. Eng. (CiSE).

Vetro’, A., Zazworka, N., Seaman, C., Shull, F., 2012.
Using the ISO/IEC 9126 product quality model to
classify defects: A controlled experiment, 16th Int'l
Conf. Eval. Assessment in Softw. Eng. (EASE).

Zheng, J., Williams, L., Nagappan, N., Snipes, W.,
Hudepohl, J. P., Vouk, M. A., 2006. On the value of
static analysis for fault detection in software. IEEE
Trans. Softw. Eng.

Why�Do�We�Not�Learn�from�Defects?��-�Towards�Defect-Driven�Software�Process�Improvement

303

