Higher-order Rewriting of Model-to-Text Templates
for Integrating Domain-specific Modeling Languages

Bernhard Hoisl?, Stefan Sobernfg and Mark Strembeci
Linstitutefor InformationSystemsnd NewMedia, WU Vienna,Vienna,Austria

2SecureBusinessAustriaResearcr(SBAResearch)Vienna,Austria

Keywords: Domain-specific Modeling Language, M2T, Code Generation, Higher-order Transformation, Eclipse Model-
ing Framework, Epsilon.

Abstract: Domain-specific modeling languages (DSMLs) are commonly used in model-driven development projects. In
this context, model-to-text (M2T) transformation templates generate source code from DSML models. When
integrating two (or more) DSMLs, the reuse of such templates for the composed DSML would yield a number
of benefits, such as, a reduced testing and maintenance effort. However, in order to reuse the original templates
for an integrated DSML, potential syntactical mismatches between the templates and the integrated metamodel
must be solved. This paper proposes a technology-independent approach to template rewriting based on
higher-order model transformations to address such mismatches in an automated manner. By considering
M2T generator templates as first-class models and by reusing transformation traces, our approach enables
syntactical template rewriting. To demonstrate the feasibility of this rewriting technique, we built a prototype
for Eclipse EMF and Epsilon.

1 INTRODUCTION 2009; Krueger, 1992). For a single software product,
the development of a tailored DSML can be justified if
A domain-specific modeling language (DSML) pro- the underlying software product is subject to frequent
vides modeling abstractions and notations to describemodifications or if the respective project demands for
the concepts and activities in a business domain (e.g.,multiple and rapidly available prototypes. While a
health care or banking) or a technical domain (e.g., DSML would generate significantly more benefits if
access control or workflow specification). DSMLs it was used in the development of different software
commonly focus on narrow domain fragments and products, this reuse is often barred by the narrow do-
system concerns only, such as schedule managemenmains covered by DSMLs. In this situation, one op-
for power suppliers or security properties of business tion is to start from a joint metamodel and to refine
process data (Spinellis, 2001). this metamodel, the corresponding structural and be-
The benefits of DSMLs include reduced develop- havioral semantics, as well as the DSML notation to
ment times for DSML-based software products, an cover an extended domain.
improved time-to-market, as well as reductions in de- To develop a software product using two or more
velopment and delivery costs; e.g., for developer or pre-existing DSMLs, with each DSML defining a
customer trainings (Bettin, 2002). However, the de- subsystem of the product, integrating the correspond-
velopment of a DSML and correspondingtool support ing DSMLs into a new consolidated DSML is an im-
most often requires substantial efforts that add to the portant design option (Vallecillo, 2010). Consider,
overall costs of the underlying software development for example, modeling the billing domain in a power
project (White et al., 2009; Krueger, 1992). Thus, supply company which covers company-specific ac-
benefits of a domain-specific development approach counting and branch-specific schedule management.
only realize over time. Provided that compatible DSMLs for both tasks (i.e.,
As a result, the costs of DSML development are accounting and schedule management) are available
strong drivers for reusing DSMLs as design artifacts, (e.g., based on the same metamodeling infrastruc-
both during the life cycle of a single software prod- ture), their integration is a viable strategy; e.g., via
uct and for multiple software products (White et al., product line techniques (White et al., 2009). Simi-

Hoisl B., Sobernig S. and Strembeck M..

Higher-order Rewriting of Model-to-Text Templates for Integrating Domain-specific Modeling Languages.

DOI: 10.5220/0004321100490061

In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 49-61
ISBN: 978-989-8565-42-6

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

larly, in security-critical domains integrating security ~ vide reuse capabilities at the block level (e.g. for
related DSMLs can support the systematic composi- entire template or function blocks) rather than at
tion of different security concerns (Hoisl et al., 2012). the expression level. Furthermore, most M2T trans-
In addition to reusing the domain-specific lan- formation languages lack the ability to use generic
guage models through metamodel composition transformations to abstract from different, but struc-
(Kalnina et al., 2010; Object Management Group, turally compatible metamodels. Generic transfor-
2008), the model-to-text (M2T) transformations mation techniques, as available for some model-
available for the source DSMLs could be applied to to-model (M2M) transformation languages, require
models of the new DSML. This way, generator ar- an upfront definition in terms of parametric tem-
tifacts (such as platform code, configuration specifi- plates and explicit bindings (Cuadrado et al., 2011).
cations, and deployment descriptors) could be reusedHowever, the demand for such an upfront definition
for the new DSML. also adds to the development overhead of a DSML.
From a DSML integration perspective, however, Adapter models mimic the metamodels of the source
there are major barriers to reusing model transforma- DSMLs. This, however, impedes the definition of ad-
tions (Wimmer et al., 2012). One barrier for M2T ditional M2T transformations that are specific to the
generator templates, in particular, is the conformance integrated DSML. Yet, additional transformations are
relation between M2T transformations and a given required to glue the different artifacts that are gener-
metamodel. Consider the template sketch in Figure ated for the integrated DSML.
1. The transformation template which accompanies |n this paper, we suggest an approach to over-
classB contains a variable assignment expression, come the above limitations of M2T transformation
with the right-hand side calling opr opertyB of an = templates for DSML integration. Ouransformation
instance ofB (assuming thay stores an instance of - rewriting techniqueallows for the automated modi-
B). This way, the template is confined to a metamodel fication of transformation templates to fix important

containing a corresponding clas syntactical mismatches between templates and the
@ o) n composeq DSML (Wimmer et al., 2010). In_scenario
[ClassA |[ClassB | | [ClassA |[ClassB | [ClassA | [Class B | (b) from Figure 1, for exa_rrjple, the naming dlfferen_ce
[-propertyA | [-propertyB]| | [“propertyA | [-propertyB] = [-propertyA | [-propertyB] would be tackled by rewriting the template expression
et/ st \i"a"s"”?"” / i based on tracing data of the class composition, using
el [CGmssC [CaseC] the new property nam opert yC.
Propery®L 5 | Lprope® Our current prototype supports three higher-order
<conform; “°°"fi:;pl;te»)§f%7 rewriting operations (retyping, association retarget-
ing, and property renaming). Note, however, that
var x = y-propertyB; our approach allows for arbitrary rewriting opera-
tions. Semantic heterogeneity in metamodel-model
Figure 1: Syntactical metamodel conformance. relations (Wimmer et al., 2010) and types of syntac-

tical heterogeneity between source and target meta-

This conformance relation is affected by the meta- models which cannot be resolved in an automated
model composition applied for DSML integration. In manner are currently not addressed by our approach.
the model composition scenarics) @nd p) in Fig- This is, for instance, the case for m:n source/tar-
ure 1, classB is composed into new classes, using 9et cardinality in scenariocf in Figure 1. Our
different composition operations. In scenari the ~ rewriting technique is applicable to M2T transfor-
conformance relation is preserved by the composition Mation languages which support a subset of the
operation; e.g., a full-property-preserving composi- meta object facility (MOF) M2T transformation lan-
tion (Herrmann et al., 2007). Hence, the template still guage (OMG MOFM2T), higher-order transforma-
applies and can be reused over instances of €lass tions (HOTSs), and basic model transformation trac-
scenariolf), however, the naming difference between ing (Object Management Group, 2008; Tisi et al.,
pr oper t yB andpr oper t yC' while Structura”y equiv_ 2009) All |mp|ementat|0n artifacts are available from
alent, breaks the conformance relation. The template http://nm.wu.ac.at/modsec.
cannot be applied to instances of cl@sfRefactoring In Section 2, we give an overview on DSML in-
a template clone would be required, for example. tegration, M2T transformations, and generator tem-

Existing reuse techniques for M2T generator tem- plates. Subsequently, we introduce our generic tem-
plates fall short on addressing such syntactical mis- plate rewriting approach in Section 3. In Section 4,
matches. For example, language-level reuse tech-we describe how our approach is then mapped to the
nigues for M2T transformation languages only pro- EMF and Epsilon infrastructures. A proof-of-concept

implementation for the Epsilon Generation Language (such as, platform-specific source code or platform
(EGL) is introduced. Section 5 gives an example of configuration and deployment documents; see Figure
how our prototype environment can be applied. We 2). The generation of these artifacts can be supported
discuss limitations as well as the pros and cons of our via M2T generators which receive a transformation
approach when compared to alternative techniques indefinition and a set of source models as the input to
Section 6. Section 7 provides an overview of related produce a transformed representation of these mod-
work and Section 8 concludes the paper. els. For the remainder of this paper, we especially fo-
cus on template-based M2T generators and the corre-
sponding generator templates (Czarnecki and Helsen,

2 TRANSFORMATIONS AND 2006). In principle, a generator template consists of
two kinds of code. On the one hand, there is tem-

TRACES FOR DSML plate code to access and to select source model data
INTEGRATION by quantifying over the model structure that is speci-

fied in a metamodel (see also Figure 2). On the other
In general, the process of integrating two or more hand, atemplate contains code to expand and to wrap
sourceDSMLs involves four major activities which ~ the selected model data into string fragments.
may be repeated a number of times to derive an

integratedtarget DSML (Hoisl et al., 2012). The we"g' ”””””””

1 instance-of

language model compositioactivity uses the lan- - e iiant [N T
guage models (e.g., the MOF or Ecore metamod- o, — {fEemeweme. !
els including corresponding metamodel-level con- ' 1 1

ngineer
enginee K

straints) of the source DSMLs as input for the def-- - o pectcaion)_[716" I'A‘Z&ngem';",;;:ﬁw }—{9' o L)
inition of a target metamodel. An important out- meae i e
put of this activity is a composition specification that i’fg“fnierg

includes, for instance, correspondence rules and/or Figure 2: M2T template models.

M2M transformations. In thébehavior composi-
lon ctly e efaora) semantcs aiachedio e Templaesbased 21 wansformatons are s
get metamodel. Depending on the behavior defi- widely supported platform integration techm_que in
nition correspoﬁding composition operations are ap- contemporary MDD. tool chalns_, and a variety of
plied (such as M2M transformations or code-to-code template language implementations exist, such as,
transformations). Theoncrete syntax composition Eclipse Xpand, Xtend2_, EGL, JET, or Acceleo (Rose
activity integrateé the concrete syntaxes (e.g., textual etal., 2012; Czarnecki and Helsen, 2006). For each
tree-based, tabular, or diagrammatic) of t'hé source:Of these Ianguages, M2T generators and generator

: ’ : : .~ templates can be implemented in different ways. For
DSMLs. Finally, theplatform integration composi-

- s example, one option is to use specification documents
tion activity integrates the software platforms of the P P P

source DSMLs. In particular, this activity integrates with a textual abstract syntax and a tree-based
artifacts such as M2M and M2T transformations or intermediate representation which is interpreted by

) the generator. In an alternative approach, we can use
modgl Interpreters of the source D.SMLS' 'I_'he OUIPUL 5 HSL for M2T transformations that is embedded in a
of this activity is a set of platform integration spec-

ifications which conform to the target metamodel. general-purpose scripting engine to realize generator

Sometimes this composition step requires the ener_templates via_scripts, ~ Such “generator template
; : P Step req 9 scripts” are then evaluated by the language interpreter
ation of glue artifacts to realize a system-level com-

osition; e.g., via pipelining, language extension, or (Zdun, 2010).
gont-ena iﬁgt;é’g;rati(?np(spingiis 2%01? ’ To abstract from such implementation details and

The artifacts defined in the language model com- to_benefit from generator templates as first-class mod-
position activity serve as the input for platform in- eling eleme_nts, our approach focuses on the mode|
tegration. In the remainder of this paper, we focus representatlons. of generator templates. _In other
on M2T generator templates, M2M transformations, words, we consider generator templates as instances

and transformation traces. Below, we discuss each of(z); aég?ﬁgﬂﬁ:lnhﬁ;fgmpl:ﬁ?;ﬁ?g?ﬁét(s;z ':a'\?;[_e
these artifact types in more detail. ')

able in different template languages, our approach re-
M2T Generator Templates as Models. Platform quires only a generic subset of the features defined
integration as described above (Hoisl et al., 2012) through the MOFM2T specification (Object Manage-
includes the generation of platform-specific artifacts ment Group, 2008). In this way, the approach is

portable to contemporary M2T template languages. the transformed models at the M3 level (see Figure
3). Note, however, that we neither define restrictions
on the time the traces are recorded (allowing, for ex-
ample, partial evaluation of transformation rules, and
runtime tracing) nor do we require a specific tracing
engine: Built-in tracing, traces generated by trans-
formation rules, as well as internal or external trace
stores are supported.

M2M Transformations. In our approach we con-
sider M2M transformations at the M1 and M2 mod-
eling levels (see Figure 3). First, we compose the
core language models of two (or more) source meta-
models into a target metamodel. This composition is
achieved via transformations that refer to the corre-
sponding metamodel structures (M3). Second, M1
models of respective generator templates (see also

Figure 2) are transformed into new M1 template mod-

els to adapt them to metamodel changes that result3 TEMPLATE SYNTAX
from the DSML integration. These M2M transforma- REWRITING

tions are higher-order model transformations (HOTS):
Transformations receiving input/output models which

h | Jel : f ; Before introducing our template rewriting approach,
are themselves model representations of transtorma, e st first review the types of potential mismatch

tions; probably even expressed in the same transfor-p oy een gifferent DSML metamodels in more detail.
mation language (Tisi et al'_’ 2010). . We consider MOF-compliant metamodels. Regarding
Note that the programming model thatis used by & \2T template language concepts, we use the corre-
certain M2M transformation language (e.g. relational, sponding MOFM2T terminology for explanatory pur-
operational mappings, hybrid) is transparent to our poses (Object Management Group, 2008).
approach (Czarnecki and Helsen, 2006). Neverthe- Figure 4 provides a sketch of DSMLand DSML
less, to demonstrate our approachwe use hybrid transg being composed into DSMC using an M2M trans-
formation rules as supported by, for instance, the At- tormation definition. The mismatch problem can then
las Transformation Language (ATL) and the Epsilon 4 restated as questioktow can we make the gen-
Transformation Language (ETL) in our examples. gator templatesh and B apply to instances of the

e composed metamode€l rather than to instances of
1 ‘ Vo] metamodel®A and B, respectively? To answer this
% (;;}u‘::gulge e pr } w2 deﬁn‘mm on | gt W’fﬁgu;e e % _qges_tion, we must est_ablish some background: F_irst,
! T istancoo A i " Fisarcodt | it is important to identify the types of structural dif-
s [gonoras | (MI?;%Z'LQEZELM ferences encountered during metamodel composition.
H o et || | ; More specifically, we must collect the details about
S e T SR S— i the structural differences and make them accessible to
| I the template transformation. Then, the elements of a
s —— generator template which are affected by these struc-

tural differences must be highlighted. Finally, corre-
sponding transformations of the generator templates
must be defined. The objective of template rewriting
Transformation Traces. Even though our approach s the transformation of the source templatasBg)

is generic and does not require a specific variant of into derivatives & , B') which refer to metamode!
M2M transformations, we assume that a transforma- directly (see Figure 4).

tion history is available. This history includes trans-

Figure 3: M2M transformations and traces.

formation traces that document the M2M transforma- T T
tions between language models (the M2 level in Fig- [z i) [[] [] [,
ure 3). In particular, each transformation trace estab- appnﬂ s o . o

lishes a persistent link between a source and a tar-

3o
e K "
Transformation| < | Transformation|
. Trace o
definition definition

get model element which are connected via a model =

transformation operation (merging, extension, renam- '/ S

. . Metamodel C | Template A’} | Template B'}

ing). Moreover, each transformation trace refers to a P e
corresponding transformation rule. In order to intro- Vo o s E { eeeee awes S, Poes
spect on these traces (for example, to identify the kind ey — Tomplate © L oot

of transformation operation performed), transforma- - -)
tion traces must be represented as first-class mod- Figure 4: M2T template rewriting for DSML integration.
els. In other words, each trace must be an instance

of a dedicated trace metamodel that complies with Metamodel Composition. When composing the

source metamodel# @ndB in Figure 4), the DSML tages. To begin with, it is minimalistic and imple-
engineer can choose from a variety of model com- mentable for several M2M transformation engines. In
position operations when defining the transformation, addition, it turns our template rewriting approach ag-
only limited by the M2M transformation language’s nostic about the actual composition operations used.
capacity (Vallecillo, 2010). These includaodel
mergersusing merge operators with different prece-
dence and conflict resolution schemes, operating at
different granularity levels (package, metaclass). In
a model extensigrsubsets of either language model
enter the new metamodel as disjoint sets to comple-
ment each otherModel refinementsealize is-kind-

of dependencies between all or selec_ted_ elemagls O%Suitable for state-based differentiation. The tracing
the source metamodeldviodel interfacinginvolves

. . o scheme can be achieved by storing the transformed el-
introducing model elements specific to the new meta-

dement couples as instances of a simplistic trace model
model as a structural glue between elements merge

from the source metamodels. Wybrid composition (see Figure 5). Instances dface refer to asour ce
) S . metamodel element and ar get metamodel element
can involve any combination of the above operations.

. o which is paired during metamodel composition. In
In our approach, we restrict the composition oper-

. - addition, a reference to tife ansf or mat i on is stored
ations so that structural semantics of the source meta-

models are preserved. Thus, itis assured that the cod ST T e e el
. P : ’ j?rovides the context for the introspection expressions
artifacts generated based on the composed metamod

are semantically. equivalent to the code artifacts gen- in Listing 1. This tracing scheme is sitable for de-
erated with M2T templates of the individual source B0 (EReppPRAd MEkuoUEN o4 FIENDRESE the

metamodels. The source-target cardinality can be ei_context of model composition (i.e., composition op-
ther 1:1 or n:l' Either the elgment (classy attribute erations violating defined structural semantic preser-
etc.) i.s resér'ved in the target model or a’ set of ele: vation conditions, such as, m:n cardinality of source/-
) ISP : 9 target element mappings). Traces can be used to inter-
ments is merged into one new element. " .)
rupt the rewriting process and to aid the debugging of

Our template rewriting ap_proach considers the ef- allowed composition operations (Amar et al., 2008).
fects of metamodel composition as changes between

two model states across predefined model correspon-g v
dences, rather than as a sequence of transformatiorg | Exrossion
operations. State-based differentiation refers to com-

puting the changes between the source and targe I
models after the completed composition, by contrast- § | Sonae [<—¢ sox o] Temme e .
ing the source and target metamodels at the M2 level. Temﬁ:.a.i.” — ? T ‘ a :
Listing 1 presents two examples of state-based differ- = L inecaton ﬁ (tonon_o* =
entiation to identify element name changes, defined g | ?p(] el | ‘Typ) |

as OCL expressions over two couples of source and L % ez e s
target elements of two MOF-compliant metamodels. [ey o S |
The two introspection definitionssRenamedC ass T

andi sRenanedPr operty reflect important cases for T] ey |
M2T template rewriting, to be reconsidered later in

Trace Models. To make state differences between
source and target metamodels computable, the corre-
spondences between metamodel elements established
during the metamodel composition must be preserved
at metamodel composition time (Paige et al., 2011).
Alternative tracing techniques, such as, implicit trac-
fing or model annotation (Drivalos et al., 2008), are not

Variable-
Declaration
(from OCL)

OperationCall-
Exp
(from OCL)

ModelProperty-
CallExp
(from OCL)

Templﬁmode\ (M

Trace model Language m

Figure 5: Excerpts from MOF and MOFMZ2T.

this section.
Listing 1: State-based differentiation. Template Models. Based on the transformation data
1 def: |sRenameddl ass (source : NamedEl ement . gained from introspecting the transformation traces,
2 target : NamedEl ement) : Bool ean
2 - source. ool 15K miot (l aes) and the templ_ates are to be adap_ted _(e.g., a templaie
4 target . ocl I sKindOf (Cl ass) and to be derived from templata in Figure 4). To rep-
5 target.name != source.name .
0 resent M2T generator templates as first-class mod-
7 def: isRenamedProperty(source : NamedElement, els, we consider them instances of a subset of the
8 target : NamedEl ement) : Bool ean .
9 = source. oclIsKindOf (Property) and MOFM2T reference language (see Figure 5).
10 target. ocl|sKindOf (Property) and H H
1 target.name 1= Source. name In MOFM2T, transformations are structured in

Mbdul es (e.g., for namespace or public/private part
definitions) which can contain a number oém
A state-based technique has a number of advan-pl ates (see Figure 5). ATenpl ate as a special-

ized Bl ock contains string production expressions pressions as the navigation path in these expres-
(Tenpl at eExpr essi ons) with placeholders for data sions changes. To rewrite these navigation paths
to be extracted from modelgenpl at es can be in- according to the renaming, the operty attributes
voked withPar anet er s and can returiRar anet er s. of theseCQc| Expr essi ons are adjusted.

They realize function-style language elements (Wim- All three rewriting operations may occur repeat-
mer et al.,, 2012). ATenpl ate can override other edly for identical pairs of transformed source and tar-
templates, with the overriding template being invoked get metamodel element types, depending on the num-
in place of the shadowed template. T&npl at eEx- ber of state-based differences computed from the set
pressi on, among others, represents expressions for of Traces. Corresponding transformations must be
calls to model elements, for declaring and managing defined in an M2M transformation definition which
variables, for declaring control statements, and for ex- operates on the source templatésg) based on a set
panding to strings. Aenpl at el nvocat i on specifies of Traces to produce syntactically adapted template
an invocation of &enpl at e. As Tenpl at el nvoca- model instancesA, B’ ; see Figure 4).

tion is a specializing classifier Genpl at eExpr es-

si on, Tenpl at es can be invoked from within other

Tenpl ates. A TypedMbdel specifies aninputmodel 4 EPSILON/EMF PROTOTYPE

(aPackage) to be referenced and accessed throughout

theTenpl at eExpr essi ons. TheTypes containedby gased on our notion of template rewriting (see Sec-
the Package represent the domain of model element g, 3) we introduce a prototypical realization of this

types available to th&enpl at es. These type refer- = re\yriting technique for the EMF and the Epsilon fam-

ences are primary rewriting targets. ily of model transformation languages. In this tech-

Template ‘Model Transformations. ' Metamodel - Nelogy projection, MOF-compliant DSML models

changes as identified by state-based differentiation '€ @Pproximated by Ecore metamodels. To perform
(i sRenamedd ass andi sRenamedPr oper t y in List- Ignguage model comp05|t|pn, as .d_efscnbed in Sec-
ing 1) affect the M2T generator templates syntacti- tion 3, we use transformation definitions expressed
cally in two ways. First, block expressions (variants I Epsilon task languages. M2T generator templates
of Ccl Expressi ons) maintain references toypes are represented b_y EGL transformations. To obtain
(as can be learned from Figure 5). This is the case M0del representations of EGL templates, we map the
for Parameters of Tenpl ates and for type-aware respectlve MOFM2T cqncepts to.thelr correspond-
template expressions, in particular type annotations N9 language concepts in the Epsilon language fam-
in Var i abl eDecl arati ons and type annotations for 1Iy- The Epsilon language runtime provides a built-

parameters of operation call€pgr at i onCal | Exp). in tracing facility for capturing transformation cor-.
Second, navigatingc! Expr essi ons, such ashbd- respondences between Ecore metamodels as required

el PropertyCal | Exp may refer to renamed meta- for our rewriting approach (Kolovos et al., 2012).

model elements (e.g?r operty). From these syntac- Ecore Metamodel Composition. In the EMF/Ep-
tical dependencies, three rewriting requirements fol- sjlon toolkit, metamodel composition is divided into
low for pairs of source and target metamodel ele- three tasks: (1) matching, (2) copying, and (3) merg-
ments, which are represented by a sefidce in- ing metamodels. The first task (matching) is per-
stances (see Figure 5): formed via the Epsilon Comparison Language (ECL)
Retyping: References to dype named after a re- and has the source metamodels, as _vveII as c_ompari—
named sourc€l ass must be replaced by the target SOn rules provided by the DSML engineer as inputs.
a ass name. During copying, the unmodified metamodel elements
. . o (i.e., which do not match any comparison rule) are
Association Retargetmg{Vhen anAssoci ation be- copied into the target metamodel of the composed
tween t_vvoCI asses is redirected and receives another g1 This can be achieved using the ETL. The third
target (i.e., @ oper ty owned by anothed ass), the step in an Epsilon-specific DSML composition ap-

correspondingndTypes must be modified. Thus, the yjieq merge rules defined by the DSML engineer on
returnType of the expression must be adapted and set oo men triples of the source metamodels and the tar-

to the _nevvend_Typ_e. Note that the name of a corre- get metamodel. The output of this 3-pass transforma-
sponding navigation reference (€.g., a property call o 5, s 5 composed DSML metamodel and transfor-
retrleveﬁan e(ljement) in navigatirg| Expr essi ons mation traces, to be used for state-based differentia-
Is not affected. tion (see Section 3).

Property Renaming: A renamed Property The introspection operationssRenamedC ass

(i sRenanedProperty) affects navigatingCcl Ex- andi sRenamedProperty translate into the Epsilon

Orchestration-

Workflow

(rom Workflow
o

Epsilon)

Object Language (EOL) equivalents for Ecore meta-
models in Listing 2, to compute the state-based differ-
ences between the source and the target metamodels

Statement
(from EOL)

e
1

Expression
(from EOL)

OperationDefinition
(from EOL)

Module
o oY (fomEOL)

]
o
l Block

Listing 2: State-based differentiation for Ecore metamod- .
eIS . > (from EQOE)

VariableD
Expression
(from EOL)

Template model

1 operation isRenamedCl ass(source : Ecore! EObject , Formal-
2 target : Ecore! EObject) : lPropertyCaHExpressionl lMe(hodCallExpress\'onl
B60| can (. “‘:D;EOL) (from EOL) (from EOL)
3 return source.isKindOf (Ecore! ECl ass) and = property Y 1
4 target.isKindOf (Ecore! ECl ass) and 8 EReferen }_(><L.=. Eler ‘
5 target.name <> source.name; E & (from Ecore) (from Ecore)
6 } g PARS 1
7 = l EDataType |& EAttribute p|EStructuralFeature EClass ‘
& r fror COre .
8 operation isRenamedProperty(source : Ecore! EObject , = {omEeoe) | (ftom Ecore) (tomEcore) Jor o (tomBoore)
target : Ecore! EObject) : . .
Bool ean { Figure 6: Excerpt from the Ecore metamodel for the Epsilon
10 return source.isKindOf (Ecore! EReference) and |anguage fam||y
11 target.isKindOf (Ecore! EReference) and
12 target.name <> source.nane;
13 }

5 must be mapped to their Epsilon correspondences

Minimal Ecore Trace Model. To provide a model in Figure 6. Some Epsilon concepts suchMas-
representation of transformation traces (as sketchedul € andBl ock are directly compliant with MOFM2T.
in Figure 5 in Section 3), we realized a custom trace Nevertheless, some EGL concepts deviate from the
metamodel for our prototype. Listing 3 gives the MOFM2T metamodel structure: For example, Ep-
metamodel definitionConposi ti onLi nk is the cor- silon distinguishes betwee#t at ements and Ex-
responding concept @f ace in Figure 5. pressions. In contrast, the MOFM2T specification
(Object Management Group, 2008) summarizes text
production rules ofenpl at es as specialized expres-
sions (Tenpl at eExpr essi on). Generally speaking,
2 package Gamoeel 1] ontrace the complete EOL/EGL metamodel exceeds the do-
3 o main coverage of the MOFM2T metamodel because
4 class ConmpositionLink { . z . .
5 ref EObject source; Epsilon provides an integrated collection of several
5 ref EObject target; task-specific languages. For our prototype, however,
only a subset of the Epsilon metamodel was relevant
During the metamodel composition step (see above),(see Figure 6). The resulting concept mapping used
transformation correspondences obtained from thefor our prototype is shown in Table 1.
Epsilon tracing machinery are stored @mposi -
tionLink instances. Eacionposi ti onLi nk stores
a pair of source and targetbj ect s extracted from

Listing 3: Trace metamodel in EMFatic textual syntax.

prefix="

1 @anespace(uri =" ConpositionTrace",

Table 1: Mappings between MOFM2T and Epsilon.

the Epsilon tracing sources (ECL match, ETL trans- MOFM2T Epsilon

) - Associ ation ERef erence
formation, and EML merge traces). In this custom gk Bl ock
metamodel, references to the respective merge andyzss Ed ass

transformation rules are omitted for brevity. VodeTl Proper t yCal T Expr

PropertyCal | Expression

Modul e

Modul e

Ecore Metamodel for EGL Templates. EGL tem- Nanede enent

ENarmedEl enent

plates are natively processed by an ANTLR-based perat T onCal TExpr

Met hodCal I Expr essi on

parser and transformed into an abstract syntax treepg ameter

For mal Par anet er

(AST) structure. Currently, Epsilon neither provides Broperty

EAttribute

EMF metamodel representations of its language fam- Tenpl at e

COperationDefinition

ily, nor the tooling to perform round-tripping between Tenpl at eExpr essi on

St at enent , Expr essi on

ASTs and any model representation. Therefore, we Tenpl atel nvocati on

Feat ureCal | Expressi on

Type, EDat aType

extended an early prototype for EOL model represen- 1ype
tations (Wei, 2012) to cover EGL language concepts. 1yPedModel

Mbdel , Model El enent Type

We extracted the language abstractions from (Kolovos ¥2' ! 3! éDeclaration

Vari abl eDecl ar ati on-
Expr essi on

et al., 2012) and by screening the Epsilon code base
for missing details.

ETL Transformations on EGL Template Models.

Figure 6 presents an excerpt of the extended Finally, assuming the availability of model repre-
Ecore metamodel. In this technology projection, the sentations of source EGL templates and of transfor-
M2T template model concepts introduced in Figure mation traces@nposi ti onLi nk instances), equiv-

alents to the template-to-template transformations asement names). As shown in Listing 4, the ETL rules
defined in Section 3 must be defined based on theare themselves generated by instantiating an M2T
mappings shown in Table 1. Note that these transfor- EGL template for a given set of transformation traces.
mations apply to any occurrence of EGL templates to For demonstration purposes, the top-level EGL script
be adapted. The definitions below are generic in this processes the available traces retrieved from the pre-
sense and must be bound to the concrete templates uneeeding metamodel composition in lines 1-8, to dis-
der transformation. These M2M transformations are patch to the expanded ETL transformation rules for
expressed in ETL. each pair of source and target elements with name

Retyping Association Retargetingln Epsilon, the ~ Mismatches (see line 5 in Listing 4).

type of a model element acting as an input to a trans- gpsjlon Composition and Rewriting Procedure.A
formation is represented by tidel El ement Type process flow view of the overall composition and
metaclass. To change the type reference owned byiransformation steps is presented in Figure 7. This
a template element (e.g., an expression) or to retar-gclipse-specific process flow realizes the abstracted
get an association (i.e., &Ref erence in Ecore), the scheme shown in Figure 4. Two activities must
respectivet ype attribute of the correspondiridhd- be performed as the prerequisites for applying the
el El ement Type element must be changed to match gctyal rewriting to the M2T EGL templates: 1)
the name of the target metamodel metaclass (see Fig-The pSML metamodel composition in three Epsilon-
ure 6). The corre_spondmg ETL rule is depicted in specific steps (matching, copying, merging) and 2)
lines 10-20 of Listing 4. the transformation of M2T EGL templates into their
Property RenamingAn ERef erence in Ecore repre- . model representations—that is, the instances of the
sents a navigation axis from orfi€l ass to another =~ metamodel depicted in Figure 6. The trace model
by pairing the opposite metaclasses. Therefore, to re-generated during the metamodel composition and
flect a renamedRef er ence in the template model, the instantiated ETL rewrite rules enter the actual
the property attribute of aPropertyCal | Expres- template-to-template transformation along with the
si on element must be adapted (see Figure 6). The EGL template models. The rewritten EGL template
ETL rule for this transformation is defined in lines models are finally serialized into EGL script repre-

22-32 of Listing 4.

Listing 4: EGL snippet creating ETL rewrite rules.

for (I in links) {

sentations to be applied to the composed metamodel
at the end of this process (this last step is not shown
in Figure 7).

This process flow can be automated in Epsilon

1
2 . Ef | EObj ect ; trgt : E | EObj ect ; .y
3 stc ol sources oL VAT TOh T REOTETERIEC by providing a specific build script which turns the
4 trgt = |.target; H H _ S
5 it (src.name <> trgt.name) { flow into a sequence of Epsilon-specific Apache Ant
6 etl = etl . Tetrr)p)l ateFacto(r)y. prepare(renamekl ement (tasks (Kolovos et al., 2008). Such &nchestra-
src, r . process N . .
7 s ti onVr kf | ow defines the sequence of tasks, such as,
8} Mobdel loading orMdul e invocation (see Figure 6)
9 8) .
10 @enpl ate | | Alternatively, such a process flow can be realized by
o AT (re ¢ EeoretEClass, trgt Eeore instrumenting the Epsilon and EMF APIs in a piece
12 rule retype[%src.name% 2[%trgt.name%
13 transforms : egl_in! Model El enent Type Of Java glue COde'
14 tot : egl_out! Mdel El ement Type
15 extends Type
16 {
17 guard : s.type == "[%src.name%"
I Ctype = DGl nam 5 AN INTEGRATION SCENARIO
19
20 [% }
i; @emplate In this section, we describe a composition scenario of
23 operatéon rleEnsnfeEI emen)l ({srnz . Ecore! EReference, trgt : two DSMLs to exemp"fy the integration process. We
core! ererence . .
24 rule rename[%src. namedq 2[%=trgt . namedq run through the whole process of applying one higher-
25 transforms : egl_in!PropertyCall Expression H t
% tot : egl outlPropertyCallBxpressi on ordgr rewrite rulé. The first DSML models system
g; extends FeatureCal | Expression audits (referred to as DSMA, hereafter) by provid-
29 guard : s.property == "[Y%esrc.namedq" ing abstractions for audit events and audit rules. The
30 t.property = "[%trgt.name%q";

}
32 [%)}

As mentioned above, the two M2M transforma-
tion rules must be instantiated for a concrete set of

second DSML (DSMLB, hereafter) allows for mod-
eling generic state machines. The scenario integrates
the two DSMLs into a composed DSML capable of

1All software artifacts as well as the complete example

EGL template models (e.g., to reflect the concrete el- can be obtained from http://nm.wu.ac.at/modsec.

ﬁigher-order rewriting of M2T templates

Metamodel
DSML 2

Metamodel
DSML 1

Comparison Match elements

rules

Metamodel DSML 1
Match trace i Metamodel DSML 2

Transformation Transformation trace
rules Copy elements
(ETL)

Metamodel
DSML 1 []

Merge =]
rules =

Trace
metamodel

Match trace

Composed metamodel

N

Rewritten M2T transformation Rewritten M2T transformation \

model DSML 1 model DSML 2

M2T transformation
model DSML 1
{stream}

I
M2T transformation
model DSML 2
{stream}

Rewrite M2T
transformation models
(ETL)

Higher-order
rewrite rules

M2T transformation
metamodel (EOL, EGL)

Figure 7: Process of higher-order rewriting of M2T tempgate

modeling a reactive distributed system with auditing
support. Both DSMLs provide M2T generator tem-

plates written in EGL to generate Java code. The ob-
jective is to reuse these EGL templates for models of di t El enent’

DSML Cthrough syntax rewriting. For this scenario,
we explain the application of a particular higher-order
rewriting rule to a template specific to DSM\.

In DSML A for system audits, aAudi t Rul e sub-
scribes to &i gnal type and, when aAudi t Event
is triggered, checks the correspondi@andi ti ons
against the publishe$i gnal occurrence (see Figure
8). If all Condi ti ons evaluate to true, a notification
action will be executed to perform audit-related tasks,
such as generating an entry in an audit trail or notify-
ing the system administrator—not displayed in Figure
8; for details see (Hoisl and Strembeck, 2012).

v |
NamedElement Signal 0.. : AuditEvent
—name:String | ~data: String | publish
[r [é subscribe | 0..* auditEvents | 0..*
0.
Condition conditions AuditRule EventSystem
auditRules

|
Figure 8: DSMLA—auditing in event-based systems.

For DSML B, we have chosen a state/transition
pattern (see Figure 9) for its communicability in an

example. In a state machir&,ansi ti ons model the
change from oné&t at e to another. ATransi tion is
triggered by arkvent .
| transition
states
StateMachine State 1 0.1| Transition
0..*
$ target
¢ 0. | events
NamedElement
- < Event

- name : String

Figure 9: DSMLB—a state/transition behavioral system.

DSML Metamodel Composition. In this step, we
merge theAudi t Event element from DSMLA and

the Event element from DSMLB into a unifiedAu-
element of the composed DSMC
(see Figure 10). Thereby, we connect both DSMLs
structurally by merging these two core concepts into
one concept of DSMIC. Otherwise, the metamodel
composition preserves all structural semantics present
in the source DSMLs (inheritance, attributes, refer-
ences).

DSML C
target target
AuditEvent'
:CompositionLink - 3 :CompositionLink
«merge» ./ *, «merge»
DSML A : DSMLB] ™,
2 \
o I AuditEvent | | Event I Souree

Figure 10: DSML composition via element merge.

This concept merge is defined by the ECL com-
parison rule shown in Listing 5. Therein, a match is
defined iff the corresponding metamodel elements of
the two DSMLs are namedluditEventandEvent re-
spectively (line 53.

Listing 5: ECL comparison rule fokudi t Event ' .

1 rule AuditEventandEvent 2Audit Event ’
2 match | : EventSystem! ECl ass

3 withr : StateMachine!EClass {

4 conpare :

5 | .name = ' AuditEvent’
6}

and r.name = 'Event’

For all elements missed by the rule in Listing 5,
a direct copy operation into the target metamodel is
defined via an ETL transformation (not shown). All
elements matching the above ECL rule are processed

2please note that we show only relevant code parts in the
example listings (excerpts).

by the merge operation in Listing 6. Therein, a new Listing 4, Section 4, must be instantiated using the
element name is constructed (line 5) and all proper- trace model shown in Figure 10. The ETL rewrite
ties, references, and inheritance relations (lines 6—7)rule generated by this template instantiation for the
from both the DSMLA and the DSMLB metamodels =~ DSML A elementAudi t Event is reproduced in List-
are transferred into the newly created element in the ing 9. All other rewrite rules are omitted due to space
target metamodel. This preserves the n:1 source/tardimitations. The rule in Listing 9 resets thgpe prop-
get cardinality (see Section 3). erties ofVbdeEl enent Type instances, which equal to
Audi t Event , to the valuéhudi t Event ' .
Listing 6: EML merge rule foRudi t Event ' .

rul e MergeAuditEvent

Listing 9: ETL higher-order rewrite rule.

1

2 merge |‘: EventSysFemi ECl ass 1 rule renameAudit Event 2Audi t Event '

3 withr o StateMachine!EClass 2 transforms : egl_in! Mdel El ement Type

4 intot : EventSystemStateMachine!EClass { 3 tot : egl_out!Nodel El ement Type

5 t.name = |.name + "'"; 4 extends Type {

6 t.eStructural Features ::= |.eStructural Features + 5 guard : s.type == "AuditEvent "
r.eStructural Features; 6 t.type = "AuditEvent ' ";

7 t.eSuperTypes ::= |.eSuperTypes + r.eSuperTypes; 71 '

8}

Applying this rule to the EGL model as shown in
Ecore-based Trace ModelThe merge and the trans- Listing 8 results in an EGL model which is corrected
formation yield an instance of the trace metamodel for the changed type name. Line 3 of Listing 10 shows
(see Listing 3, Section 4). In Figure 10, the two re- that the type of the iterator variable namag was
sulting instances ddonposi ti onLi nk areillustrated, - effectively changed téudi t Event’ .

recording pairs of transformation sources and trans-

formation targets: Audi t Event , Audi t Event’) and Listing 10: Rewritten EGL model representation.

1 <statements xsi:type="dom: ForStatement ">

(Event , Audit Event ™). p TS L LIRES
.. 3 <type xsi:type="dom: Model El ement Type" type="AuditEvent

Ecore-based Template Model.Listing 7 shows an s

exam_ple Co_de Snlppet Of an EGL template'_ For nOW, g :/illlererafnegr :si :type="dom: PropertyCal | Expression"

only line 1 is of interest: A loop is defined iterating property="auditEvents"> _

. . <target xsi:type="dom: NameExpression" name="
over allAudi t Event s in anEvent Syst em The return Event System"/ >
type of the referencBEvent Syst em audi t Event s is 7o TTenEdg

defined asiudi t Event. In the _compos?d DSMC, To be able to execute the rewritten EGL template,
the corresponding conceptAadi t Event’ . Toreuse j, g |ast step, the EGL model representation in List-
this snippet for DSMLC, the type annotation of the it- jhq 10 s serialized back into EGL template code (see

erator variabl@e must be modified téudi t Event ’ . Listing 11). Line 1 shows the changed type of the
T . . . loop iterator namede. This type conforms to the
- Listing 7 EGL COd? snippet with “’Ped fterator. composed DSML metamod€l(see Figure 10). The
3 o e e ey oy o System auditEvente) rewritten EGL code template can be executed over
3 out.println(’ private Signal ' + signal.name + ';"); mOdelS Of DSMLC
4)
5) %

Listing 11: EGL snippet with changed iterator type.

For applylng Syntactical rewrite rules, the EGL [%for (ae : AuditEvent’ in EventSystem. auditEvents) {
for (signal in ae.publish) {

1
template (Listing 7) needs to be transformed into its § out printin(’ private Signal ' + signal . name + ')
model representation. Listing 8 shows the corre- .
sponding instance model representation of line 1 of
Listing 7 (simplified).

Listing 8: EGL model representation. 6 DISCUSSION

1 <statements xsi:type="dom: ForStatement ">
2 <iterator name="ae">

}
14

3 <type x/s>| :type="dom Model El ement Type" type="AuditEvent Oour ap_proach to re_/vriting M2T gen_erator templates
4 <literator> ‘ syntactically is motivated by examining barriers to
5 <iterated xsi:type="dom: PropertyCallExpression" . . .
property="auditEvents"> _ reusing DSMLs, in general, and to reusing DSML-
6 <‘a’geév:nsl'S?y‘sylpeenj,"/dfm: NameExpression® name=" based M2T transformations for platform integration,
7 <iterated> in particular. An important barrier results from M2T
transformation languages lacking the capacity of ab-
EGL Template Model Transformation. The ab- stracting from certain structural conditions of a con-

stracted higher-order rewrite rules documented in crete metamodel (Wimmer et al., 2012).

While variants of template genericity (Cuadrado composing a DSML (e.g., the rewrite rules). Only
etal., 2011; Varr6 and Pataricza, 2004) help decouplewhen the source DSMLs are modified, the compos-
from early bound references to concrete model ele- ing transformation definition must be updated. M2T
ment types, naming differences affecting navigational transformations specific to the integrated DSML can
axes are not addressed, for example. Therefore, ounvary independently from the generated M2T transfor-
approach can complement M2T template genericity. mations. This allows for generating different kinds
Given that generic transformations can also be imple- of patch code; e.g., pipelining or language extension
mented using HOTs on M2T templates, there is even (Spinellis, 2001).

a shared implementation vehicle.

In addition, our approach contributes to capturing
M2T transformation logic independently froma par- 7 RELATED WORK
ticular transformation language or engine. This plat-
form abstraction (Wimmer et al., 2012) contributes to The approach presented in this paper relates to exist-
the reusability of M2T transformations, as they can be ing work in two areas. First, we distinguish between
migrated to another language environment. By pro- three relevant language- and model-lenlse tech-
viding a precise definition of our approach in terms of niques for generator templates
the MOFM2T specification (see Sections 3 and 4), we Higher-Order Transformation (HOT)Our syntax

establish such an M2T platform abstraction. rewriting approach takes two M2T transformation

Another barrier to M2T transformation reuse is models (EGL templates) as input and produces two
the lack of contextual information about the con- modified M2T transformations (EGL templates) by
ditions and requirements of reuse (Wimmer et al., applying an M2M transformation (via ETL) over
2012).. While not fully elaborated in this paper, we ' these two transformation models. Hence, we apply
enumerate working assumptions on the structural se-HQOTs for transformation modification¢Tisi et al.,
mantics of metamodel transformations (e.g., cardinal- 2009). In recent years, a variety of alternative HOT
ity classes supported) in Section 3. These working application scenarios have attracted attention, includ-
assumptions can be formalized into executable pre-ing transformation analysis, transformation gener-
and post-conditions (e.g., OCL expressions) stored atation, and transformation composition (Tisi et al.,
the model-level. The conditions can then be evalu- 2009). In addition, language-level support for HOTs
ated based on the transformation traces generated durhas been improved (Oldevik and Haugen, 2007; Tisi
ing metamodel composition to establish whether the et al., 2010). However, related work has concen-
rewriting transformations are applicable. trated on specific transformation platforms, for in-

One critique of using HOTs (Tisi et al., 2009) stance, ATL (Tisi et al., 2010), rather than on HOTs
is that they expose the engineer to the internals of in a technology-independent manner.

the transformation language (Tisi et al., 2010) and Generic TemplatesGeneric templates abstract from
thus hinder reuse. In the case of M2T transformation the under]ying metamodel and contain transformation
models, this model complexity bears the risk of de- ryles which refer to abstracted metamodel types in
railing the widely opaque text production expressions terms of type variables (Cuadrado et al., 2011; Varro
so that the platform artifacts are emitted malformed. and Pataricza, 2004). The type variables are then late-
In our approach, the M2T generator templates are phound to specific model element types at transforma-
represented by comparatively small metamodel do- tion runtime. This form of type parametrization must
mains (i.e., subsets of MOFM2T and the Correspond- be emp|oyed by the DSML engineer r|ght from the
ing EGL mapping). On top, the HOTs remain com- peginning to construct the generator templates in a
pletely hidden from the DSML engineer because they reusable manner. Some approaches also require the
are themselves generated by template instantiation onexplicit definition of bindings for type variables and
the tracing data (see Section 3). This is a compromisestryctural adapters against a concrete metamodel to
balancing between automation and a limited Support Cope with types of structural heterogeneity in meta-
for metamodel heterogeneity. models. This certainly adds to the initial effort of con-
The degree of DSML and M2T transformation structing the supporting transformations for a DSML.
reuse is directly related to the relative effort caused Our approach differs as we do not base the rewrit-
by the generative environment (transformation adjust- ing of templates on placeholder variables or adapters,
ments, manual configuration, automation of the gen- but we rather extract the changes from a trace model.
eration tasks). To improve the reuse degree, this ex-This offers the benefit of automation and of unantici-
tra effort must be minimal. In our approach, most of pated reuse of generator templates. At the same time,
the artifacts are only specified or generated once uponour approach is limited in its expressiveness to handle

metamodel heterogeneity (see Section 3). Because8 CONCLUSIONS
both approaches use HOTs as implementation vehi-
cle, they can complement each other. Transformation|n this paper, we present an approach to rewriting
genericity has not been documented for M2T genera- M2T generator templates syntactically for reusing
tor templates so far. them in DSML integration. By considering M2T
generator templates as first-class models and reusing
M2M transformation traces, we developed a rewrit-
ing approach based on higher-order model transfor-
€mations (HOTSs). This approachis independentfrom a
concrete transformation platform and the documenta-
tion in terms of the MOFM2T specification facilitates
uptake in MOFM2T-compliant transformation lan-
guages. To demonstrate the feasibility of this rewrit-
ing technique, we provide a prototype implementa-
tion and a DSML integration example based on the
Eclipse EMF project and the Epsilon language family.
As a side product, we so contributed to constructing a
metamodel for the M2T-specific parts of the Epsilon
language infrastructure.

In our future work, we will extend our prototype
to support a wider range of metamodel-level compo-
sition-operations (e.g., extends, alternatives). More-
over, we will evaluate the applicability of our ideas
to other transformation languages with HOT support
(e.g., ATL).

Adapter Models. To establish metamodel confor

use of intermediate models which adapt model ac-
cesses by the generator template to match the origi-
nal metamodel structure. To mimic the original meta-
model, an adapter model consists of relational expres-
sions which bind to the transformed metamodel and
return model values according to the declared corre-
spondences (Morin et al., 2009). Adapter models pro-
vide for unanticipated template reuse, however, as for
M2T transformations the generated platform artifacts
would not reflect the derived or newly introduced do-
main concepts. This increases the cognitive distance
for the integrating DSML engineer. The generation
of glue code using M2T transformations is restricted
because concept correspondences between the inte-
grated DSML and the source DSMLs can not be lever-
aged in code generation.

The second related area is #mecoding of tracing

datato be used in model transformations. ACKNOWLEDGEMENTS

Modeled Traces. Traces captured along the trans- This work has partly been funded by the Austrian Re-
formation process can be stored irs@paratetrace search Promotion Agency (FFG) of the Austrian Fed-
model or can battachedto the source/target model, eral Ministry for Transport, Innovation and Technol-
e.g., via model annotations (Paige et al., 2011; Amar 09y (BMVIT) through the Competence Centers for
et al., 2008). The complexity of traces depends on Excellent Technologies (COMET K1) initiative and
their scope (e.g., only selected or all rules) and the the FIT-IT program.

tracing data needed. For our approach, it is suffi- The authors would like to thank William Wei and
cient to store trace links between source and target el-Dimitris Kolovos for their valuable advice on various
ements. Besides, the trace metamodel can be definedEpsilon issues.

for more general or very specific purposes, such as our

template rewriting scenario (Drivalos et al., 2008).

REFERENCES

Delta Models. Delta models are generated by com-

paring the input and output models of an M2M trans- Amar, B., Leblanc, H., and Coulette, B. (2008). A

Traceability Engine Dedicated to Model Transforma-

formation (ex-post). The creation of delta models (or tion for Software Engineering. IRroc. of the 4th
difference models) is comparable to diff tools for text ECMDA Traceability Workshgprolume WP09-09 of
artifacts. In contrast to model traces, delta models CTIT Workshop Proceedingpages 7-16. Centre for
are an indirect method. Traces are not directly cap- ~ relematics and Information Technology (CTIT), Uni-

tured at transformation time, the actual transforma- .versr[y of Twente. . .)
Bettin, J. (2002). Measuring the Potential of Domain-

tion correspondences at the element level cannot be S ; _

. . . Specific Modelling Techniques. IfProc. of the
reconstructed. This black-box encoding of tracing 2nd Domain-Specific Modelling Languages Work-
data (Diskin et al., 2011) is not suitable for a rewriting shop pages 39—44. Helsinki School of Economics.

approach which requires exact knowledge of source cuadrado, J. S., Guerra, E., and de Lara, J. (2011). Generic
and target correspondences. Model Transformations: "Write Once, Reuse Every-

where”. InTheory and Practice of Model Transforma-
tions volume 6707 oLNCS pages 62—77. Springer.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approachelBM Sys-
tems Journagl45(3):621-646.

Diskin, Z., Xiong, Y., and Czarnecki, K. (2011). From
State- to Delta-Based Bidirectional Model Transfor-
mations: the Asymmetric CaseJournal of Object
Technology10:6:1-25.

Drivalos, N., Paige, R. F., Fernandes, K. J., and Kolovos,
D. S. (2008). Towards Rigorously Defined Model-to-
Model Traceability. IrProc. of the 4th ECMDA Trace-
ability Workshop volume WPQ09-09 ofCTIT Work-
shop Proceedingpages 17—-26. Centre for Telemat-
ics and Information Technology (CTIT), University of
Twente.

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., and
Volkel, S. (2007). An Algebraic View on the Seman-
tics of Model Composition. IrProc. of the 3rd Eu-
ropean Conference on Model Driven Architecture—
Foundations and Applicationsolume 4530 o£ NCS
pages 99-113. Springer.

Hoisl, B. and Strembeck, M. (2012). A UML Extension
for the Model-driven Specification of Audit Rules.
In Proc. of the 2nd International Workshop on Infor-
mation Systems Security Engineeringlume 112 of
LNBIP, pages 16—30. Springer.

Hoisl, B., Strembeck, M., and Sobernig, S. (2012). To-
wards a Systematic Integration of MOF/UML-based
Domain-specific Modeling Languages. Pnoc. of the
16th IASTED International Conference on Software
Engineering and Applicationpages 337-344. ACTA
Press.

Kalnina, E., Kalnins, A., Celms, E., and Sostaks, A.
(2010). Graphical Template Language for Transfor-
mation Synthesis. IBoftware Language Engineering
volume 5969 oLNCS pages 244-253. Springer.

Kolovos, D., Rose, L., Paige, R., and Garcia-Dominguez
A. (2012). The Epsilon Book. Available
at: http://www.eclipse.org/epsilon/doc/book/. Last ac-
cessed: 30.11.2012.

Kolovos, D. S., Paige, R. F.,, and Polack, F. A. C. (2008).
A Framework for Composing Modular and Interoper-
able Model Management Tasks. Rroc. of the 1st
ECMFA Workshop on Model Driven Tool and Process
Integration pages 79-90. Frauenhofer IRB.

Krueger, C. W. (1992). Software ReuseCM Computing
Surveys24(2):131-183.

Morin, B., Perrouin, G., Lahire, P., Barais, O., Van-
wormhoudt, G., and Jézéquel, J.-M. (2009). Weav-
ing Variability into Domain Metamodels. IRroc. of
the 12th International Conference on Model Driven
Engineering Languages and Systepeges 690—705.
Springer.

Object Management Group (2008).
Text Transformation Language. Available at:
http://www.omg.org/spec/MOFM2T. Version 1.0,
formal/2008-01-16. Last accessed: 30.11.2012.

Oldevik, J. and Haugen, &. (2007). Higher-Order Trans-
formations for Product Lines. IRroc. of the 11th In-
ternational Software Product Line Conferengages
243-254. IEEE Computer Society.

MOF Model To

Paige, R., Drivalos, N., Kolovos, D., Fernandes, K., Power,
C., Olsen, G., and Zschaler, S. (2011). Rigorous
Identification and Encoding of Trace-Links in Model-
Driven EngineeringSoftware and Systems Modeling
10:469-487.

Rose, L. M., Matragkas, N., Kolovos, D. S., and Paige, R. F.
(2012). A Feature Model for Model-to-Text Transfor-
mation Languages. IRroc. of the 2012 ICSE Work-
shop on Modeling in Software Engineerjnmges 57—
63. IEEE Computer Society.

Spinellis, D. (2001). Notable Design Patterns for Domain-
Specific Languagedournal of Systems and Software
56(1):91-99.

M., Cabot, J., and Jouault, F. (2010). Improving
Higher-Order Transformations Support in ATL. In
Proc. of the 3rd International Conference on Theory
and Practice of Model Transformationglume 6142

of LNCS pages 215-229. Springer.

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bé&zj\l.
(2009). On the Use of Higher-Order Model Trans-
formations. InProc. of the 5th European Confer-
ence on Model Driven Architecture—Foundations and
Applications volume 5562 ofLNCS pages 18-33.
Springer.

Vallecillo, A. (2010). On the Combination of Domain Spe-
cific Modeling Languages. IRroc. of the 6th Euro-
pean Conference on Modelling Foundations and Ap-
plications volume 6138 ofLNCS pages 305-320.
Springer.

Varro, D. and Pataricza, A. (2004). Generic and Meta-
transformations for Model Transformation Engineer-
ing. InProc. of the 7th International UML Conference
Modelling Languages and Applicationsolume 3273
of LNCS pages 290-304. Springer.

Wei, W. (2012). EpsilonLabs: Epsilon Static Analysis.
Available at: http://code.google.com/p/epsilonlabs/
wiki/EpsilonStaticAnalysis. Last accessed:
30.11.2012.

White, J., Hill, J. H., Gray, J., Tambe, S., Gokhale, A. S.,
and Schmidt, D. C. (2009). Improving Domain-
Specific Language Reuse with Software Product Line
TechniqueslEEE Software26(4):47-53.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schdnbock, J., and Schwinger, W. (2010). Towards
an Expressivity Benchmark for Mappings based on a
Systematic Classification of HeterogeneitiesPhc.
of the 1st International Workshop on Model-Driven
Interoperability, pages 32—41. ACM.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schdnbock, J., and Schwinger, W. (2012). Fact
or Fiction—Reuse in Rule-Based Model-to-Model
Transformation Languages. Rroc. of the 2nd Inter-
national Conference on Model Transformationsl-
ume 7307 oLNCS pages 280-295. Springer.

Zdun, U. (2010). A DSL Toolkit for Deferring Architec-
tural Decisions in DSL-based Software Desigrfor-
mation & Software Technolog$2(7):733-748.

Tisi,

