
Higher-order Rewriting of Model-to-Text Templates
for Integrating Domain-specific Modeling Languages

Bernhard Hoisl1,2, Stefan Sobernig1, and Mark Strembeck1,2
1Institute for Information Systems and New Media, WU Vienna, Vienna, Austria 

2Secure Business Austria Research (SBA Research), Vienna, Austria

Keywords: Domain-specific Modeling Language, M2T, Code Generation, Higher-order Transformation, Eclipse Model-
ing Framework, Epsilon.

Abstract: Domain-specific modeling languages (DSMLs) are commonly used in model-driven development projects. In
this context, model-to-text (M2T) transformation templates generate source code from DSML models. When
integrating two (or more) DSMLs, the reuse of such templates for the composed DSML would yield a number
of benefits, such as, a reduced testing and maintenance effort. However, in order to reuse the original templates
for an integrated DSML, potential syntactical mismatches between the templates and the integrated metamodel
must be solved. This paper proposes a technology-independent approach to template rewriting based on
higher-order model transformations to address such mismatches in an automated manner. By considering
M2T generator templates as first-class models and by reusing transformation traces, our approach enables
syntactical template rewriting. To demonstrate the feasibility of this rewriting technique, we built a prototype
for Eclipse EMF and Epsilon.

1 INTRODUCTION

A domain-specific modeling language (DSML) pro-
vides modeling abstractions and notations to describe
the concepts and activities in a business domain (e.g.,
health care or banking) or a technical domain (e.g.,
access control or workflow specification). DSMLs
commonly focus on narrow domain fragments and
system concerns only, such as schedule management
for power suppliers or security properties of business
process data (Spinellis, 2001).

The benefits of DSMLs include reduced develop-
ment times for DSML-based software products, an
improved time-to-market, as well as reductions in de-
velopment and delivery costs; e.g., for developer or
customer trainings (Bettin, 2002). However, the de-
velopment of a DSML and corresponding tool support
most often requires substantial efforts that add to the
overall costs of the underlying software development
project (White et al., 2009; Krueger, 1992). Thus,
benefits of a domain-specific development approach
only realize over time.

As a result, the costs of DSML development are
strong drivers for reusing DSMLs as design artifacts,
both during the life cycle of a single software prod-
uct and for multiple software products (White et al.,

2009; Krueger, 1992). For a single software product,
the development of a tailored DSML can be justified if
the underlying software product is subject to frequent
modifications or if the respective project demands for
multiple and rapidly available prototypes. While a
DSML would generate significantly more benefits if
it was used in the development of different software
products, this reuse is often barred by the narrow do-
mains covered by DSMLs. In this situation, one op-
tion is to start from a joint metamodel and to refine
this metamodel, the corresponding structural and be-
havioral semantics, as well as the DSML notation to
cover an extended domain.

To develop a software product using two or more
pre-existing DSMLs, with each DSML defining a
subsystem of the product, integrating the correspond-
ing DSMLs into a new consolidated DSML is an im-
portant design option (Vallecillo, 2010). Consider,
for example, modeling the billing domain in a power
supply company which covers company-specific ac-
counting and branch-specific schedule management.
Provided that compatible DSMLs for both tasks (i.e.,
accounting and schedule management) are available
(e.g., based on the same metamodeling infrastruc-
ture), their integration is a viable strategy; e.g., via
product line techniques (White et al., 2009). Simi-

Hoisl B., Sobernig S. and Strembeck M..
Higher-order Rewriting of Model-to-Text Templates for Integrating Domain-specific Modeling Languages.
DOI: 10.5220/0004321100490061
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 49-61
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



larly, in security-critical domains integrating security-
related DSMLs can support the systematic composi-
tion of different security concerns (Hoisl et al., 2012).

In addition to reusing the domain-specific lan-
guage models through metamodel composition
(Kalnina et al., 2010; Object Management Group,
2008), the model-to-text (M2T) transformations
available for the source DSMLs could be applied to
models of the new DSML. This way, generator ar-
tifacts (such as platform code, configuration specifi-
cations, and deployment descriptors) could be reused
for the new DSML.

From a DSML integration perspective, however,
there are major barriers to reusing model transforma-
tions (Wimmer et al., 2012). One barrier for M2T
generator templates, in particular, is the conformance
relation between M2T transformations and a given
metamodel. Consider the template sketch in Figure
1. The transformation template which accompanies
class B contains a variable assignment expression,
with the right-hand side calling onpropertyB of an
instance ofB (assuming thaty stores an instance of
B). This way, the template is confined to a metamodel
containing a corresponding classB.

Class A
-propertyA

Class C

-propertyA

-propertyB

(a)

«transform»

(c)

Class B
-propertyB

(b)

Class A
-propertyA

Class C
-propertyC

«transform»

Class B
-propertyB

Class A
-propertyA

Class B
-propertyB

Class C'

-propertyA

-propertyB

Class C''
-propertyB

var x = y.propertyB;

Figure 1: Syntactical metamodel conformance.

This conformance relation is affected by the meta-
model composition applied for DSML integration. In
the model composition scenarios (a) and (b) in Fig-
ure 1, classB is composed into new classes, using
different composition operations. In scenario (a) the
conformance relation is preserved by the composition
operation; e.g., a full-property-preserving composi-
tion (Herrmann et al., 2007). Hence, the template still
applies and can be reused over instances of classC. In
scenario (b), however, the naming difference between
propertyB andpropertyC, while structurally equiv-
alent, breaks the conformance relation. The template
cannot be applied to instances of classC. Refactoring
a template clone would be required, for example.

Existing reuse techniques for M2T generator tem-
plates fall short on addressing such syntactical mis-
matches. For example, language-level reuse tech-
niques for M2T transformation languages only pro-

vide reuse capabilities at the block level (e.g. for
entire template or function blocks) rather than at
the expression level. Furthermore, most M2T trans-
formation languages lack the ability to use generic
transformations to abstract from different, but struc-
turally compatible metamodels. Generic transfor-
mation techniques, as available for some model-
to-model (M2M) transformation languages, require
an upfront definition in terms of parametric tem-
plates and explicit bindings (Cuadrado et al., 2011).
However, the demand for such an upfront definition
also adds to the development overhead of a DSML.
Adapter models mimic the metamodels of the source
DSMLs. This, however, impedes the definition of ad-
ditional M2T transformations that are specific to the
integrated DSML. Yet, additional transformations are
required to glue the different artifacts that are gener-
ated for the integrated DSML.

In this paper, we suggest an approach to over-
come the above limitations of M2T transformation
templates for DSML integration. Ourtransformation
rewriting techniqueallows for the automated modi-
fication of transformation templates to fix important
syntactical mismatches between templates and the
composed DSML (Wimmer et al., 2010). In scenario
(b) from Figure 1, for example, the naming difference
would be tackled by rewriting the template expression
based on tracing data of the class composition, using
the new property namepropertyC.

Our current prototype supports three higher-order
rewriting operations (retyping, association retarget-
ing, and property renaming). Note, however, that
our approach allows for arbitrary rewriting opera-
tions. Semantic heterogeneity in metamodel-model
relations (Wimmer et al., 2010) and types of syntac-
tical heterogeneity between source and target meta-
models which cannot be resolved in an automated
manner are currently not addressed by our approach.
This is, for instance, the case for m:n source/tar-
get cardinality in scenario (c) in Figure 1. Our
rewriting technique is applicable to M2T transfor-
mation languages which support a subset of the
meta object facility (MOF) M2T transformation lan-
guage (OMG MOFM2T), higher-order transforma-
tions (HOTs), and basic model transformation trac-
ing (Object Management Group, 2008; Tisi et al.,
2009). All implementation artifacts are available from
http://nm.wu.ac.at/modsec.

In Section 2, we give an overview on DSML in-
tegration, M2T transformations, and generator tem-
plates. Subsequently, we introduce our generic tem-
plate rewriting approach in Section 3. In Section 4,
we describe how our approach is then mapped to the
EMF and Epsilon infrastructures. A proof-of-concept



implementation for the Epsilon Generation Language
(EGL) is introduced. Section 5 gives an example of
how our prototype environment can be applied. We
discuss limitations as well as the pros and cons of our
approach when compared to alternative techniques in
Section 6. Section 7 provides an overview of related
work and Section 8 concludes the paper.

2 TRANSFORMATIONS AND
TRACES FOR DSML
INTEGRATION

In general, the process of integrating two or more
sourceDSMLs involves four major activities which
may be repeated a number of times to derive an
integratedtarget DSML (Hoisl et al., 2012). The
language model compositionactivity uses the lan-
guage models (e.g., the MOF or Ecore metamod-
els including corresponding metamodel-level con-
straints) of the source DSMLs as input for the def-
inition of a target metamodel. An important out-
put of this activity is a composition specification that
includes, for instance, correspondence rules and/or
M2M transformations. In thebehavior composi-
tion activity the behavioral semantics attached to the
source metamodels are composed to match the tar-
get metamodel. Depending on the behavior defi-
nition corresponding composition operations are ap-
plied (such as M2M transformations or code-to-code
transformations). Theconcrete syntax composition
activity integrates the concrete syntaxes (e.g., textual,
tree-based, tabular, or diagrammatic) of the source
DSMLs. Finally, theplatform integration composi-
tion activity integrates the software platforms of the
source DSMLs. In particular, this activity integrates
artifacts such as M2M and M2T transformations or
model interpreters of the source DSMLs. The output
of this activity is a set of platform integration spec-
ifications which conform to the target metamodel.
Sometimes this composition step requires the gener-
ation of glue artifacts to realize a system-level com-
position; e.g., via pipelining, language extension, or
front-end integration (Spinellis, 2001).

The artifacts defined in the language model com-
position activity serve as the input for platform in-
tegration. In the remainder of this paper, we focus
on M2T generator templates, M2M transformations,
and transformation traces. Below, we discuss each of
these artifact types in more detail.

M2T Generator Templates as Models. Platform
integration as described above (Hoisl et al., 2012)
includes the generation of platform-specific artifacts

(such as, platform-specific source code or platform
configuration and deployment documents; see Figure
2). The generation of these artifacts can be supported
via M2T generators which receive a transformation
definition and a set of source models as the input to
produce a transformed representation of these mod-
els. For the remainder of this paper, we especially fo-
cus on template-based M2T generators and the corre-
sponding generator templates (Czarnecki and Helsen,
2006). In principle, a generator template consists of
two kinds of code. On the one hand, there is tem-
plate code to access and to select source model data
by quantifying over the model structure that is speci-
fied in a metamodel (see also Figure 2). On the other
hand, a template contains code to expand and to wrap
the selected model data into string fragments.

...
...

Metamodel
(M2, language model)

Meta-metamodel
(M3)

instance-of

instance-of

define

platform integration

refers to M2T metamodel

(M2, template model)

instance-of

instance-of

M2T model instance

(M1, template)

Model

(M1, specification) Platform artifacts

(code, config, ...)

define

DSML

engineer

Domain

modeler define

DSML

engineer

ap
pl

ie
s 

to

generates

Figure 2: M2T template models.

Template-based M2T transformations are a
widely supported platform integration technique in
contemporary MDD tool chains, and a variety of
template language implementations exist, such as,
Eclipse Xpand, Xtend2, EGL, JET, or Acceleo (Rose
et al., 2012; Czarnecki and Helsen, 2006). For each
of these languages, M2T generators and generator
templates can be implemented in different ways. For
example, one option is to use specification documents
with a textual abstract syntax and a tree-based
intermediate representation which is interpreted by
the generator. In an alternative approach, we can use
a DSL for M2T transformations that is embedded in a
general-purpose scripting engine to realize generator
templates via scripts. Such “generator template
scripts” are then evaluated by the language interpreter
(Zdun, 2010).

To abstract from such implementation details and
to benefit from generator templates as first-class mod-
eling elements, our approach focuses on the model
representations of generator templates. In other
words, we consider generator templates as instances
of a conceptual M2T template metamodel (see Figure
2). Rather than including all features that are avail-
able in different template languages, our approach re-
quires only a generic subset of the features defined
through the MOFM2T specification (Object Manage-
ment Group, 2008). In this way, the approach is



portable to contemporary M2T template languages.

M2M Transformations. In our approach we con-
sider M2M transformations at the M1 and M2 mod-
eling levels (see Figure 3). First, we compose the
core language models of two (or more) source meta-
models into a target metamodel. This composition is
achieved via transformations that refer to the corre-
sponding metamodel structures (M3). Second, M1
models of respective generator templates (see also
Figure 2) are transformed into new M1 template mod-
els to adapt them to metamodel changes that result
from the DSML integration. These M2M transforma-
tions are higher-order model transformations (HOTs):
Transformations receiving input/output models which
are themselves model representations of transforma-
tions; probably even expressed in the same transfor-
mation language (Tisi et al., 2010).

Note that the programming model that is used by a
certain M2M transformation language (e.g. relational,
operational mappings, hybrid) is transparent to our
approach (Czarnecki and Helsen, 2006). Neverthe-
less, to demonstrate our approach we use hybrid trans-
formation rules as supported by, for instance, the At-
las Transformation Language (ATL) and the Epsilon
Transformation Language (ETL) in our examples.

...
...

Meta-metamodel
(M3)instance-of

instance-of

Source model

(M1, specification)
...

...

instance-of

Target model

(M1, specification)

Source metamodel

(M2, language model)

Target metamodel

(M2, language model)

instance-of

...

M2 transformation

definition

M1 transformation

definition

refers to

applied to

applied to

generates

generates

refers to refers to

Trace model instance

(M1, trace)

Trace metamodel

(M2, trace model)

instance-of

refers to refers to

refers torefers to

instance-of

Figure 3: M2M transformations and traces.

Transformation Traces. Even though our approach
is generic and does not require a specific variant of
M2M transformations, we assume that a transforma-
tion history is available. This history includes trans-
formation traces that document the M2M transforma-
tions between language models (the M2 level in Fig-
ure 3). In particular, each transformation trace estab-
lishes a persistent link between a source and a tar-
get model element which are connected via a model
transformation operation (merging, extension, renam-
ing). Moreover, each transformation trace refers to a
corresponding transformation rule. In order to intro-
spect on these traces (for example, to identify the kind
of transformation operation performed), transforma-
tion traces must be represented as first-class mod-
els. In other words, each trace must be an instance
of a dedicated trace metamodel that complies with

the transformed models at the M3 level (see Figure
3). Note, however, that we neither define restrictions
on the time the traces are recorded (allowing, for ex-
ample, partial evaluation of transformation rules, and
runtime tracing) nor do we require a specific tracing
engine: Built-in tracing, traces generated by trans-
formation rules, as well as internal or external trace
stores are supported.

3 TEMPLATE SYNTAX
REWRITING

Before introducing our template rewriting approach,
we must first review the types of potential mismatch
between different DSML metamodels in more detail.
We consider MOF-compliant metamodels. Regarding
M2T template language concepts, we use the corre-
sponding MOFM2T terminology for explanatory pur-
poses (Object Management Group, 2008).

Figure 4 provides a sketch of DSMLA and DSML
B being composed into DSMLC using an M2M trans-
formation definition. The mismatch problem can then
be restated as question:How can we make the gen-
erator templatesA and B apply to instances of the
composed metamodelC rather than to instances of
metamodelsA and B, respectively?To answer this
question, we must establish some background: First,
it is important to identify the types of structural dif-
ferences encountered during metamodel composition.
More specifically, we must collect the details about
the structural differences and make them accessible to
the template transformation. Then, the elements of a
generator template which are affected by these struc-
tural differences must be highlighted. Finally, corre-
sponding transformations of the generator templates
must be defined. The objective of template rewriting
is the transformation of the source templates (A, B)
into derivatives (A’, B’) which refer to metamodelC
directly (see Figure 4).

Model
(M1, spec)

Code

artifact C

Metamodel C
(M2, DSML C)

Metamodel A
(M2, DSML A)

Metamodel B
(M2, DSML B)

instance of

Template C

Template A
(M1)

Template B
(M1)

refers to refers to

Code

artifact A'

Code

artifact B'

gluesglues

Template A'

(M1)

Template B'

(M1)

executesexecutes

generates

Code

artifact A

Code

artifact B

generatesgenerates

generatesgenerates

applies to

Transformation

definition

applies 

to

applies 

to

generates

Transformation

definition

applies 

to

Trace

generates
refer to

variant of variant of

ge
ne
rat

es

us
es

Figure 4: M2T template rewriting for DSML integration.

Metamodel Composition. When composing the



source metamodels (A andB in Figure 4), the DSML
engineer can choose from a variety of model com-
position operations when defining the transformation,
only limited by the M2M transformation language’s
capacity (Vallecillo, 2010). These includemodel
mergersusing merge operators with different prece-
dence and conflict resolution schemes, operating at
different granularity levels (package, metaclass). In
a model extension, subsets of either language model
enter the new metamodel as disjoint sets to comple-
ment each other.Model refinementsrealize is-kind-
of dependencies between all or selected elements of
the source metamodels.Model interfacinginvolves
introducing model elements specific to the new meta-
model as a structural glue between elements merged
from the source metamodels. Ahybrid composition
can involve any combination of the above operations.

In our approach, we restrict the composition oper-
ations so that structural semantics of the source meta-
models are preserved. Thus, it is assured that the code
artifacts generated based on the composed metamodel
are semantically equivalent to the code artifacts gen-
erated with M2T templates of the individual source
metamodels. The source-target cardinality can be ei-
ther 1:1 or n:1: Either the element (class, attribute
etc.) is preserved in the target model or a set of ele-
ments is merged into one new element.

Our template rewriting approach considers the ef-
fects of metamodel composition as changes between
two model states across predefined model correspon-
dences, rather than as a sequence of transformation
operations. State-based differentiation refers to com-
puting the changes between the source and target
models after the completed composition, by contrast-
ing the source and target metamodels at the M2 level.
Listing 1 presents two examples of state-based differ-
entiation to identify element name changes, defined
as OCL expressions over two couples of source and
target elements of two MOF-compliant metamodels.
The two introspection definitionsisRenamedClass
andisRenamedProperty reflect important cases for
M2T template rewriting, to be reconsidered later in
this section.

Listing 1: State-based differentiation.
1 def: isRenamedClass (source : NamedElement ,
2 target : NamedElement ) : Boolean
3 = source.oclIsKindOf (Class) and
4 target.oclIsKindOf (Class) and
5 target.name != source.name
6
7 def: isRenamedProperty (source : NamedElement ,
8 target : NamedElement ) : Boolean
9 = source.oclIsKindOf (Property ) and

10 target.oclIsKindOf (Property ) and
11 target.name != source.name

A state-based technique has a number of advan-

tages. To begin with, it is minimalistic and imple-
mentable for several M2M transformation engines. In
addition, it turns our template rewriting approach ag-
nostic about the actual composition operations used.

Trace Models. To make state differences between
source and target metamodels computable, the corre-
spondences between metamodel elements established
during the metamodel composition must be preserved
at metamodel composition time (Paige et al., 2011).
Alternative tracing techniques, such as, implicit trac-
ing or model annotation (Drivalos et al., 2008), are not
suitable for state-based differentiation. The tracing
scheme can be achieved by storing the transformed el-
ement couples as instances of a simplistic trace model
(see Figure 5). Instances ofTrace refer to asource
metamodel element and atarget metamodel element
which is paired during metamodel composition. In
addition, a reference to theTransformation is stored
along with the element couple. TheTrace concept
provides the context for the introspection expressions
in Listing 1. This tracing scheme is suitable for de-
tecting unsupported heterogeneity situations in the
context of model composition (i.e., composition op-
erations violating defined structural semantic preser-
vation conditions, such as, m:n cardinality of source/-
target element mappings). Traces can be used to inter-
rupt the rewriting process and to aid the debugging of
allowed composition operations (Amar et al., 2008).

Assocation
(from MOF)

Template

TypedModel
(from QVT)

Block

Parameter
(from MOF)

1..*

Template-

Expression

Template-

Invocation

1..*

0..*

1

0..*

0..*

0..*

overrides

Module

ModuleElement

1..*

0..* 0..*

0..*
extends

body
0..*

0..*

depends

on

Package
(from MOF)

Type
(from MOF)

1..*

0..*

0..*

0..1

0..1

0..*

nested

Package

NamedElement
(from MOF)

Class
(from MOF)

Property
(from MOF)

0..* 0..1

2..*

1..*

/endType

...

T
e
m

p
la

te
 m

o
d
e
l 
(M

O
F
M

2
T
)

L
a
n
g
u
a
g
e
 m

o
d
e
l

Trace
(from QVT)

Transformation
(from QVT)

ta
rg
et

so
ur

ce 1 1

0..1

0..1
0..11

T
ra

c
e
 m

o
d
e
l

Ocl-

Expression
(from OCL)

Variable-

Declaration
(from OCL)

ModelProperty-

CallExp
(from OCL)

...

OperationCall-

Exp
(from OCL)

Operation
(from MOF)

0..*

0..1

0..1

0..1

0..1

Figure 5: Excerpts from MOF and MOFM2T.

Template Models. Based on the transformation data
gained from introspecting the transformation traces,
the templates are to be adapted (e.g., a templateA’ is
to be derived from templateA in Figure 4). To rep-
resent M2T generator templates as first-class mod-
els, we consider them instances of a subset of the
MOFM2T reference language (see Figure 5).

In MOFM2T, transformations are structured in
Modules (e.g., for namespace or public/private part
definitions) which can contain a number ofTem-
plates (see Figure 5). ATemplate as a special-



ized Block contains string production expressions
(TemplateExpressions) with placeholders for data
to be extracted from models.Templates can be in-
voked withParameters and can returnParameters.
They realize function-style language elements (Wim-
mer et al., 2012). ATemplate can override other
templates, with the overriding template being invoked
in place of the shadowed template. ATemplateEx-
pression, among others, represents expressions for
calls to model elements, for declaring and managing
variables, for declaring control statements, and for ex-
panding to strings. ATemplateInvocation specifies
an invocation of aTemplate. As TemplateInvoca-
tion is a specializing classifier ofTemplateExpres-
sion, Templates can be invoked from within other
Templates. A TypedModel specifies an input model
(aPackage) to be referenced and accessed throughout
theTemplateExpressions. TheTypes contained by
thePackage represent the domain of model element
types available to theTemplates. These type refer-
ences are primary rewriting targets.

Template Model Transformations. Metamodel
changes as identified by state-based differentiation
(isRenamedClass andisRenamedProperty in List-
ing 1) affect the M2T generator templates syntacti-
cally in two ways. First, block expressions (variants
of OclExpressions) maintain references toTypes
(as can be learned from Figure 5). This is the case
for Parameters of Templates and for type-aware
template expressions, in particular type annotations
in VariableDeclarations and type annotations for
parameters of operation calls (OperationCallExp).
Second, navigatingOclExpressions, such as,Mod-
elPropertyCallExp may refer to renamed meta-
model elements (e.g.,Property). From these syntac-
tical dependencies, three rewriting requirements fol-
low for pairs of source and target metamodel ele-
ments, which are represented by a set ofTrace in-
stances (see Figure 5):

Retyping: References to aType named after a re-
named sourceClass must be replaced by the target
Class name.

Association Retargeting:When anAssociation be-
tween twoClasses is redirected and receives another
target (i.e., aProperty owned by anotherClass), the
correspondingendTypes must be modified. Thus, the
returnType of the expression must be adapted and set
to the newendType. Note that the name of a corre-
sponding navigation reference (e.g., a property call to
retrieve an element) in navigatingOclExpressions
is not affected.

Property Renaming: A renamed Property
(isRenamedProperty) affects navigatingOclEx-

pressions as the navigation path in these expres-
sions changes. To rewrite these navigation paths
according to the renaming, theproperty attributes
of theseOclExpressions are adjusted.

All three rewriting operations may occur repeat-
edly for identical pairs of transformed source and tar-
get metamodel element types, depending on the num-
ber of state-based differences computed from the set
of Traces. Corresponding transformations must be
defined in an M2M transformation definition which
operates on the source templates (A, B) based on a set
of Traces to produce syntactically adapted template
model instances (A’, B’; see Figure 4).

4 EPSILON/EMF PROTOTYPE

Based on our notion of template rewriting (see Sec-
tion 3), we introduce a prototypical realization of this
rewriting technique for the EMF and the Epsilon fam-
ily of model transformation languages. In this tech-
nology projection, MOF-compliant DSML models
are approximated by Ecore metamodels. To perform
language model composition, as described in Sec-
tion 3, we use transformation definitions expressed
in Epsilon task languages. M2T generator templates
are represented by EGL transformations. To obtain
model representations of EGL templates, we map the
respective MOFM2T concepts to their correspond-
ing language concepts in the Epsilon language fam-
ily. The Epsilon language runtime provides a built-
in tracing facility for capturing transformation cor-
respondences between Ecore metamodels as required
for our rewriting approach (Kolovos et al., 2012).

Ecore Metamodel Composition. In the EMF/Ep-
silon toolkit, metamodel composition is divided into
three tasks: (1) matching, (2) copying, and (3) merg-
ing metamodels. The first task (matching) is per-
formed via the Epsilon Comparison Language (ECL)
and has the source metamodels, as well as compari-
son rules provided by the DSML engineer as inputs.
During copying, the unmodified metamodel elements
(i.e., which do not match any comparison rule) are
copied into the target metamodel of the composed
DSML. This can be achieved using the ETL. The third
step in an Epsilon-specific DSML composition ap-
plies merge rules defined by the DSML engineer on
element triples of the source metamodels and the tar-
get metamodel. The output of this 3-pass transforma-
tion is a composed DSML metamodel and transfor-
mation traces, to be used for state-based differentia-
tion (see Section 3).

The introspection operationsisRenamedClass
and isRenamedProperty translate into the Epsilon



Object Language (EOL) equivalents for Ecore meta-
models in Listing 2, to compute the state-based differ-
ences between the source and the target metamodels.

Listing 2: State-based differentiation for Ecore metamod-
els.
1 operation isRenamedClass (source : Ecore!EObject ,
2 target : Ecore!EObject) :

Boolean {
3 return source.isKindOf (Ecore!EClass) and
4 target.isKindOf (Ecore!EClass) and
5 target.name <> source.name;
6 }
7
8 operation isRenamedProperty (source : Ecore!EObject ,
9 target : Ecore!EObject ) :

Boolean {
10 return source.isKindOf (Ecore!EReference ) and
11 target.isKindOf (Ecore!EReference ) and
12 target.name <> source.name;
13 }

Minimal Ecore Trace Model. To provide a model
representation of transformation traces (as sketched
in Figure 5 in Section 3), we realized a custom trace
metamodel for our prototype. Listing 3 gives the
metamodel definition.CompositionLink is the cor-
responding concept ofTrace in Figure 5.

Listing 3: Trace metamodel in EMFatic textual syntax.
1 @namespace(uri ="CompositionTrace ", prefix ="

CompositionTrace ")
2 package CompositionTrace ;
3
4 class CompositionLink {
5 ref EObject source;
6 ref EObject target;
7 }

During the metamodel composition step (see above),
transformation correspondences obtained from the
Epsilon tracing machinery are stored asComposi-
tionLink instances. EachCompositionLink stores
a pair of source and targetEObjects extracted from
the Epsilon tracing sources (ECL match, ETL trans-
formation, and EML merge traces). In this custom
metamodel, references to the respective merge and
transformation rules are omitted for brevity.

Ecore Metamodel for EGL Templates. EGL tem-
plates are natively processed by an ANTLR-based
parser and transformed into an abstract syntax tree
(AST) structure. Currently, Epsilon neither provides
EMF metamodel representations of its language fam-
ily, nor the tooling to perform round-tripping between
ASTs and any model representation. Therefore, we
extended an early prototype for EOL model represen-
tations (Wei, 2012) to cover EGL language concepts.
We extracted the language abstractions from (Kolovos
et al., 2012) and by screening the Epsilon code base
for missing details.

Figure 6 presents an excerpt of the extended
Ecore metamodel. In this technology projection, the
M2T template model concepts introduced in Figure

OperationDeclaration
(from EOL)

Formal-

Parameter
(from EOL)

Type
(from EOL)

Orchestration-

Workflow
(from Workflow)

Module
(from EOL)

Model
(from EMC) 1..* 0..*

0..* 0..1

Block
(from EOL)

nested

Statement
(from EOL)

Expression
(from EOL)

FeatureCallExpression
(from EOL)

0..*

0..1

0..*

0..1

0..1

0..*

0..1

0..*

0..1

0..*

1

0..*

0..*0..*

0..*

0..*

ModelElementType
(from EOL)

type: String

PropertyCallExpression
(from EOL)

MethodCallExpression
(from EOL)

OperationDefinition
(from EOL)

VariableDeclaration-

Expression
(from EOL)

EReference
(from Ecore)

EClass
(from Ecore)

EStructuralFeature
(from Ecore)

EAttribute
(from Ecore)

EDataType
(from Ecore)

ENamedElement
(from Ecore)

0..* 0..1

2..*

property 1

eA
ttr
ib
ut
eT
yp
e

1

T
e
m
p
la
te
 m
o
d
e
l 
(E
p
s
ilo
n
)

L
a
n
g
u
a
g
e
 m

o
d
e
l

Figure 6: Excerpt from the Ecore metamodel for the Epsilon
language family.

5 must be mapped to their Epsilon correspondences
in Figure 6. Some Epsilon concepts such asMod-
ule andBlock are directly compliant with MOFM2T.
Nevertheless, some EGL concepts deviate from the
MOFM2T metamodel structure: For example, Ep-
silon distinguishes betweenStatements and Ex-
pressions. In contrast, the MOFM2T specification
(Object Management Group, 2008) summarizes text
production rules ofTemplates as specialized expres-
sions (TemplateExpression). Generally speaking,
the complete EOL/EGL metamodel exceeds the do-
main coverage of the MOFM2T metamodel because
Epsilon provides an integrated collection of several
task-specific languages. For our prototype, however,
only a subset of the Epsilon metamodel was relevant
(see Figure 6). The resulting concept mapping used
for our prototype is shown in Table 1.

Table 1: Mappings between MOFM2T and Epsilon.

MOFM2T Epsilon
Association EReference
Block Block
Class EClass
ModelPropertyCallExpr PropertyCallExpression
Module Module
NamedElement ENamedElement
OperationCallExpr MethodCallExpression
Parameter FormalParameter
Property EAttribute
Template OperationDefinition
TemplateExpression Statement, Expression
TemplateInvocation FeatureCallExpression
Type Type, EDataType
TypedModel Model, ModelElementType
VariableDeclaration VariableDeclaration-

Expression

ETL Transformations on EGL Template Models.
Finally, assuming the availability of model repre-
sentations of source EGL templates and of transfor-
mation traces (CompositionLink instances), equiv-



alents to the template-to-template transformations as
defined in Section 3 must be defined based on the
mappings shown in Table 1. Note that these transfor-
mations apply to any occurrence of EGL templates to
be adapted. The definitions below are generic in this
sense and must be bound to the concrete templates un-
der transformation. These M2M transformations are
expressed in ETL.

Retyping, Association Retargeting.In Epsilon, the
type of a model element acting as an input to a trans-
formation is represented by theModelElementType
metaclass. To change the type reference owned by
a template element (e.g., an expression) or to retar-
get an association (i.e., anEReference in Ecore), the
respectivetype attribute of the correspondingMod-
elElementType element must be changed to match
the name of the target metamodel metaclass (see Fig-
ure 6). The corresponding ETL rule is depicted in
lines 10–20 of Listing 4.

Property Renaming.An EReference in Ecore repre-
sents a navigation axis from oneEClass to another
by pairing the opposite metaclasses. Therefore, to re-
flect a renamedEReference in the template model,
the property attribute of aPropertyCallExpres-
sion element must be adapted (see Figure 6). The
ETL rule for this transformation is defined in lines
22–32 of Listing 4.

Listing 4: EGL snippet creating ETL rewrite rules.
1 for (l in links) {
2 var src : Ecore!EObject ; var trgt : Ecore!EObject ;
3 src = l.source;
4 trgt = l.target;
5 if (src.name <> trgt.name) {
6 etl = etl + TemplateFactory .prepare(renameElement (

src , trgt)).process ();
7 }
8 }
9

10 @template
11 operation renameElement (src : Ecore!EClass , trgt : Ecore

!EClass) { %]
12 rule retype [%= src.name%]2[%= trgt.name%]
13 transform s : egl_in!ModelElementType
14 to t : egl_out!ModelElementType
15 extends Type
16 {
17 guard : s.type == "[%=src.name%]"
18 t.type = "[%=trgt.name%]";
19 }
20 [% }
21
22 @template
23 operation renameElement (src : Ecore!EReference , trgt :

Ecore!EReference ) { %]
24 rule rename [%= src.name%]2[%= trgt.name%]
25 transform s : egl_in!PropertyCallExpression
26 to t : egl_out!PropertyCallExpression
27 extends FeatureCallExpression
28 {
29 guard : s.property == "[%=src.name%]"
30 t.property = "[%=trgt.name%]";
31 }
32 [% }

As mentioned above, the two M2M transforma-
tion rules must be instantiated for a concrete set of
EGL template models (e.g., to reflect the concrete el-

ement names). As shown in Listing 4, the ETL rules
are themselves generated by instantiating an M2T
EGL template for a given set of transformation traces.
For demonstration purposes, the top-level EGL script
processes the available traces retrieved from the pre-
ceeding metamodel composition in lines 1–8, to dis-
patch to the expanded ETL transformation rules for
each pair of source and target elements with name
mismatches (see line 5 in Listing 4).

Epsilon Composition and Rewriting Procedure.A
process flow view of the overall composition and
transformation steps is presented in Figure 7. This
Eclipse-specific process flow realizes the abstracted
scheme shown in Figure 4. Two activities must
be performed as the prerequisites for applying the
actual rewriting to the M2T EGL templates: 1)
The DSML metamodel composition in three Epsilon-
specific steps (matching, copying, merging) and 2)
the transformation of M2T EGL templates into their
model representations—that is, the instances of the
metamodel depicted in Figure 6. The trace model
generated during the metamodel composition and
the instantiated ETL rewrite rules enter the actual
template-to-template transformation along with the
EGL template models. The rewritten EGL template
models are finally serialized into EGL script repre-
sentations to be applied to the composed metamodel
at the end of this process (this last step is not shown
in Figure 7).

This process flow can be automated in Epsilon
by providing a specific build script which turns the
flow into a sequence of Epsilon-specific Apache Ant
tasks (Kolovos et al., 2008). Such anOrchestra-
tionWorkflow defines the sequence of tasks, such as,
Model loading orModule invocation (see Figure 6).
Alternatively, such a process flow can be realized by
instrumenting the Epsilon and EMF APIs in a piece
of Java glue code.

5 AN INTEGRATION SCENARIO

In this section, we describe a composition scenario of
two DSMLs to exemplify the integration process. We
run through the whole process of applying one higher-
order rewrite rule1. The first DSML models system
audits (referred to as DSMLA, hereafter) by provid-
ing abstractions for audit events and audit rules. The
second DSML (DSMLB, hereafter) allows for mod-
eling generic state machines. The scenario integrates
the two DSMLs into a composed DSMLC capable of

1All software artifacts as well as the complete example
can be obtained from http://nm.wu.ac.at/modsec.



Metamodel

DSML 1

Metamodel

DSML 2

Trace

metamodel

Match elements
(ECL)

Comparison

rules

Match trace

Copy elements
(ETL)

Merge elements
(EML)

Transformation

rules
Transformation trace

Merge trace

Merge

rules

Composed metamodel

Generate trace

model

Match trace

Generate higher-order

M2M rewrite rules
(EGL)

Trace model

Rewrite M2T

transformation models
(ETL)

Higher-order

rewrite rules

M2T transformation

metamodel (EOL, EGL)

Metamodel

DSML 1

Metamodel

DSML 2

Metamodel DSML 1
Metamodel DSML 2

Rewritten M2T transformation

model DSML 1

Rewritten M2T transformation

model DSML 2
M2T transformation

model DSML 1

{stream}

M2T transformation

model DSML 2

{stream}

Higher-order rewriting of M2T templates

Figure 7: Process of higher-order rewriting of M2T templates.

modeling a reactive distributed system with auditing
support. Both DSMLs provide M2T generator tem-
plates written in EGL to generate Java code. The ob-
jective is to reuse these EGL templates for models of
DSML C through syntax rewriting. For this scenario,
we explain the application of a particular higher-order
rewriting rule to a template specific to DSMLA.

In DSML A for system audits, anAuditRule sub-
scribes to aSignal type and, when anAuditEvent
is triggered, checks the correspondingConditions
against the publishedSignal occurrence (see Figure
8). If all Conditions evaluate to true, a notification
action will be executed to perform audit-related tasks,
such as generating an entry in an audit trail or notify-
ing the system administrator—not displayed in Figure
8; for details see (Hoisl and Strembeck, 2012).

AuditEvent
Signal

data : String

AuditRuleCondition EventSystem

NamedElement

name : String
publish

0..*

subscribe 0..*

conditions

0..*

auditEvents 0..*

auditRules

0..*

Figure 8: DSMLA—auditing in event-based systems.

For DSML B, we have chosen a state/transition
pattern (see Figure 9) for its communicability in an
example. In a state machine,Transitions model the
change from oneState to another. ATransition is
triggered by anEvent.

StateMachine State Transition

Event
NamedElement

name : String

states

0..*

transition

0..1

events0..*

target

1

Figure 9: DSMLB—a state/transition behavioral system.

DSML Metamodel Composition. In this step, we
merge theAuditEvent element from DSMLA and
theEvent element from DSMLB into a unifiedAu-
ditElement’ element of the composed DSMLC
(see Figure 10). Thereby, we connect both DSMLs
structurally by merging these two core concepts into
one concept of DSMLC. Otherwise, the metamodel
composition preserves all structural semantics present
in the source DSMLs (inheritance, attributes, refer-
ences).

AuditEvent'

DSML C

AuditEvent

DSML A

Event

DSML B

«merge» «merge»
:CompositionLink:CompositionLink

target target

source source

Figure 10: DSML composition via element merge.

This concept merge is defined by the ECL com-
parison rule shown in Listing 5. Therein, a match is
defined iff the corresponding metamodel elements of
the two DSMLs are namedAuditEventandEvent, re-
spectively (line 5)2.

Listing 5: ECL comparison rule forAuditEvent’.
1 rule AuditEventandEvent2AuditEvent ’
2 match l : EventSystem !EClass
3 with r : StateMachine !EClass {
4 compare :
5 l.name = ’AuditEvent ’ and r.name = ’Event ’
6 }

For all elements missed by the rule in Listing 5,
a direct copy operation into the target metamodel is
defined via an ETL transformation (not shown). All
elements matching the above ECL rule are processed

2Please note that we show only relevant code parts in the
example listings (excerpts).



by the merge operation in Listing 6. Therein, a new
element name is constructed (line 5) and all proper-
ties, references, and inheritance relations (lines 6–7)
from both the DSMLA and the DSMLB metamodels
are transferred into the newly created element in the
target metamodel. This preserves the n:1 source/tar-
get cardinality (see Section 3).

Listing 6: EML merge rule forAuditEvent’.
1 rule MergeAuditEvent
2 merge l : EventSystem !EClass
3 with r : StateMachine !EClass
4 into t : EventSystemStateMachine !EClass {
5 t.name = l.name + "’";
6 t.eStructuralFeatures ::= l.eStructuralFeatures +

r.eStructuralFeatures ;
7 t.eSuperTypes ::= l.eSuperTypes + r.eSuperTypes ;
8 }

Ecore-based Trace Model.The merge and the trans-
formation yield an instance of the trace metamodel
(see Listing 3, Section 4). In Figure 10, the two re-
sulting instances ofCompositionLink are illustrated,
recording pairs of transformation sources and trans-
formation targets: (AuditEvent, AuditEvent’) and
(Event, AuditEvent’).

Ecore-based Template Model.Listing 7 shows an
example code snippet of an EGL template. For now,
only line 1 is of interest: A loop is defined iterating
over allAuditEvents in anEventSystem. The return
type of the referenceEventSystem.auditEvents is
defined asAuditEvent. In the composed DSMLC,
the corresponding concept isAuditEvent’. To reuse
this snippet for DSMLC, the type annotation of the it-
erator variableae must be modified toAuditEvent’.

Listing 7: EGL code snippet with typed iterator.
1 [% for (ae : AuditEvent in EventSystem .auditEvents ) {
2 for (signal in ae.publish) {
3 out.println(’private Signal ’ + signal.name + ’;’);
4 }
5 } %]

For applying syntactical rewrite rules, the EGL
template (Listing 7) needs to be transformed into its
model representation. Listing 8 shows the corre-
sponding instance model representation of line 1 of
Listing 7 (simplified).

Listing 8: EGL model representation.
1 <statements xsi:type="dom:ForStatement ">
2 <iterator name="ae">
3 <type xsi:type="dom:ModelElementType " type="AuditEvent

"/>
4 </iterator >
5 <iterated xsi:type="dom:PropertyCallExpression "

property ="auditEvents ">
6 <target xsi:type="dom:NameExpression " name="

EventSystem "/>
7 </iterated >

EGL Template Model Transformation. The ab-
stracted higher-order rewrite rules documented in

Listing 4, Section 4, must be instantiated using the
trace model shown in Figure 10. The ETL rewrite
rule generated by this template instantiation for the
DSML A elementAuditEvent is reproduced in List-
ing 9. All other rewrite rules are omitted due to space
limitations. The rule in Listing 9 resets thetype prop-
erties ofModeElementType instances, which equal to
AuditEvent, to the valueAuditEvent’.

Listing 9: ETL higher-order rewrite rule.
1 rule renameAuditEvent2AuditEvent ’
2 transform s : egl_in!ModelElementType
3 to t : egl_out!ModelElementType
4 extends Type {
5 guard : s.type == "AuditEvent "
6 t.type = "AuditEvent ’";
7 }

Applying this rule to the EGL model as shown in
Listing 8 results in an EGL model which is corrected
for the changed type name. Line 3 of Listing 10 shows
that the type of the iterator variable namedae was
effectively changed toAuditEvent’.

Listing 10: Rewritten EGL model representation.
1 <statements xsi:type="dom:ForStatement ">
2 <iterator name="ae">
3 <type xsi:type="dom:ModelElementType " type="AuditEvent

’"/>
4 </iterator >
5 <iterated xsi:type="dom:PropertyCallExpression "

property ="auditEvents ">
6 <target xsi:type="dom:NameExpression " name="

EventSystem "/>
7 </iterated >

To be able to execute the rewritten EGL template,
in a last step, the EGL model representation in List-
ing 10 is serialized back into EGL template code (see
Listing 11). Line 1 shows the changed type of the
loop iterator namedae. This type conforms to the
composed DSML metamodelC (see Figure 10). The
rewritten EGL code template can be executed over
models of DSMLC.

Listing 11: EGL snippet with changed iterator type.
1 [% for (ae : AuditEvent ’ in EventSystem .auditEvents ) {
2 for (signal in ae.publish) {
3 out.println(’private Signal ’ + signal.name + ’;’);
4 }
5 } %]

6 DISCUSSION

Our approach to rewriting M2T generator templates
syntactically is motivated by examining barriers to
reusing DSMLs, in general, and to reusing DSML-
based M2T transformations for platform integration,
in particular. An important barrier results from M2T
transformation languages lacking the capacity of ab-
stracting from certain structural conditions of a con-
crete metamodel (Wimmer et al., 2012).



While variants of template genericity (Cuadrado
et al., 2011; Varró and Pataricza, 2004) help decouple
from early bound references to concrete model ele-
ment types, naming differences affecting navigational
axes are not addressed, for example. Therefore, our
approach can complement M2T template genericity.
Given that generic transformations can also be imple-
mented using HOTs on M2T templates, there is even
a shared implementation vehicle.

In addition, our approach contributes to capturing
M2T transformation logic independently from a par-
ticular transformation language or engine. This plat-
form abstraction (Wimmer et al., 2012) contributes to
the reusability of M2T transformations, as they can be
migrated to another language environment. By pro-
viding a precise definition of our approach in terms of
the MOFM2T specification (see Sections 3 and 4), we
establish such an M2T platform abstraction.

Another barrier to M2T transformation reuse is
the lack of contextual information about the con-
ditions and requirements of reuse (Wimmer et al.,
2012). While not fully elaborated in this paper, we
enumerate working assumptions on the structural se-
mantics of metamodel transformations (e.g., cardinal-
ity classes supported) in Section 3. These working
assumptions can be formalized into executable pre-
and post-conditions (e.g., OCL expressions) stored at
the model-level. The conditions can then be evalu-
ated based on the transformation traces generated dur-
ing metamodel composition to establish whether the
rewriting transformations are applicable.

One critique of using HOTs (Tisi et al., 2009)
is that they expose the engineer to the internals of
the transformation language (Tisi et al., 2010) and
thus hinder reuse. In the case of M2T transformation
models, this model complexity bears the risk of de-
railing the widely opaque text production expressions
so that the platform artifacts are emitted malformed.
In our approach, the M2T generator templates are
represented by comparatively small metamodel do-
mains (i.e., subsets of MOFM2T and the correspond-
ing EGL mapping). On top, the HOTs remain com-
pletely hidden from the DSML engineer because they
are themselves generated by template instantiation on
the tracing data (see Section 3). This is a compromise
balancing between automation and a limited support
for metamodel heterogeneity.

The degree of DSML and M2T transformation
reuse is directly related to the relative effort caused
by the generative environment (transformation adjust-
ments, manual configuration, automation of the gen-
eration tasks). To improve the reuse degree, this ex-
tra effort must be minimal. In our approach, most of
the artifacts are only specified or generated once upon

composing a DSML (e.g., the rewrite rules). Only
when the source DSMLs are modified, the compos-
ing transformation definition must be updated. M2T
transformations specific to the integrated DSML can
vary independently from the generated M2T transfor-
mations. This allows for generating different kinds
of patch code; e.g., pipelining or language extension
(Spinellis, 2001).

7 RELATED WORK

The approach presented in this paper relates to exist-
ing work in two areas. First, we distinguish between
three relevant language- and model-levelreuse tech-
niques for generator templates.
Higher-Order Transformation (HOT).Our syntax
rewriting approach takes two M2T transformation
models (EGL templates) as input and produces two
modified M2T transformations (EGL templates) by
applying an M2M transformation (via ETL) over
these two transformation models. Hence, we apply
HOTs for transformation modifications(Tisi et al.,
2009). In recent years, a variety of alternative HOT
application scenarios have attracted attention, includ-
ing transformation analysis, transformation gener-
ation, and transformation composition (Tisi et al.,
2009). In addition, language-level support for HOTs
has been improved (Oldevik and Haugen, 2007; Tisi
et al., 2010). However, related work has concen-
trated on specific transformation platforms, for in-
stance, ATL (Tisi et al., 2010), rather than on HOTs
in a technology-independent manner.

Generic Templates.Generic templates abstract from
the underlying metamodel and contain transformation
rules which refer to abstracted metamodel types in
terms of type variables (Cuadrado et al., 2011; Varró
and Pataricza, 2004). The type variables are then late-
bound to specific model element types at transforma-
tion runtime. This form of type parametrization must
be employed by the DSML engineer right from the
beginning to construct the generator templates in a
reusable manner. Some approaches also require the
explicit definition of bindings for type variables and
structural adapters against a concrete metamodel to
cope with types of structural heterogeneity in meta-
models. This certainly adds to the initial effort of con-
structing the supporting transformations for a DSML.
Our approach differs as we do not base the rewrit-
ing of templates on placeholder variables or adapters,
but we rather extract the changes from a trace model.
This offers the benefit of automation and of unantici-
pated reuse of generator templates. At the same time,
our approach is limited in its expressiveness to handle



metamodel heterogeneity (see Section 3). Because
both approaches use HOTs as implementation vehi-
cle, they can complement each other. Transformation
genericity has not been documented for M2T genera-
tor templates so far.

Adapter Models. To establish metamodel confor-
mance for generator templates, another strategy is the
use of intermediate models which adapt model ac-
cesses by the generator template to match the origi-
nal metamodel structure. To mimic the original meta-
model, an adapter model consists of relational expres-
sions which bind to the transformed metamodel and
return model values according to the declared corre-
spondences (Morin et al., 2009). Adapter models pro-
vide for unanticipated template reuse, however, as for
M2T transformations the generated platform artifacts
would not reflect the derived or newly introduced do-
main concepts. This increases the cognitive distance
for the integrating DSML engineer. The generation
of glue code using M2T transformations is restricted
because concept correspondences between the inte-
grated DSML and the source DSMLs can not be lever-
aged in code generation.

The second related area is theencoding of tracing
data to be used in model transformations.

Modeled Traces. Traces captured along the trans-
formation process can be stored in aseparatetrace
model or can beattachedto the source/target model,
e.g., via model annotations (Paige et al., 2011; Amar
et al., 2008). The complexity of traces depends on
their scope (e.g., only selected or all rules) and the
tracing data needed. For our approach, it is suffi-
cient to store trace links between source and target el-
ements. Besides, the trace metamodel can be defined
for more general or very specific purposes, such as our
template rewriting scenario (Drivalos et al., 2008).

Delta Models. Delta models are generated by com-
paring the input and output models of an M2M trans-
formation (ex-post). The creation of delta models (or
difference models) is comparable to diff tools for text
artifacts. In contrast to model traces, delta models
are an indirect method. Traces are not directly cap-
tured at transformation time, the actual transforma-
tion correspondences at the element level cannot be
reconstructed. This black-box encoding of tracing
data (Diskin et al., 2011) is not suitable for a rewriting
approach which requires exact knowledge of source
and target correspondences.

8 CONCLUSIONS

In this paper, we present an approach to rewriting
M2T generator templates syntactically for reusing
them in DSML integration. By considering M2T
generator templates as first-class models and reusing
M2M transformation traces, we developed a rewrit-
ing approach based on higher-order model transfor-
mations (HOTs). This approach is independent from a
concrete transformation platform and the documenta-
tion in terms of the MOFM2T specification facilitates
uptake in MOFM2T-compliant transformation lan-
guages. To demonstrate the feasibility of this rewrit-
ing technique, we provide a prototype implementa-
tion and a DSML integration example based on the
Eclipse EMF project and the Epsilon language family.
As a side product, we so contributed to constructing a
metamodel for the M2T-specific parts of the Epsilon
language infrastructure.

In our future work, we will extend our prototype
to support a wider range of metamodel-level compo-
sition operations (e.g., extends, alternatives). More-
over, we will evaluate the applicability of our ideas
to other transformation languages with HOT support
(e.g., ATL).

ACKNOWLEDGEMENTS

This work has partly been funded by the Austrian Re-
search Promotion Agency (FFG) of the Austrian Fed-
eral Ministry for Transport, Innovation and Technol-
ogy (BMVIT) through the Competence Centers for
Excellent Technologies (COMET K1) initiative and
the FIT-IT program.

The authors would like to thank William Wei and
Dimitris Kolovos for their valuable advice on various
Epsilon issues.

REFERENCES

Amar, B., Leblanc, H., and Coulette, B. (2008). A
Traceability Engine Dedicated to Model Transforma-
tion for Software Engineering. InProc. of the 4th
ECMDA Traceability Workshop, volume WP09-09 of
CTIT Workshop Proceedings, pages 7–16. Centre for
Telematics and Information Technology (CTIT), Uni-
versity of Twente.

Bettin, J. (2002). Measuring the Potential of Domain-
Specific Modelling Techniques. InProc. of the
2nd Domain-Specific Modelling Languages Work-
shop, pages 39–44. Helsinki School of Economics.

Cuadrado, J. S., Guerra, E., and de Lara, J. (2011). Generic
Model Transformations: ”Write Once, Reuse Every-



where”. InTheory and Practice of Model Transforma-
tions, volume 6707 ofLNCS, pages 62–77. Springer.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches.IBM Sys-
tems Journal, 45(3):621–646.

Diskin, Z., Xiong, Y., and Czarnecki, K. (2011). From
State- to Delta-Based Bidirectional Model Transfor-
mations: the Asymmetric Case.Journal of Object
Technology, 10:6:1–25.

Drivalos, N., Paige, R. F., Fernandes, K. J., and Kolovos,
D. S. (2008). Towards Rigorously Defined Model-to-
Model Traceability. InProc. of the 4th ECMDA Trace-
ability Workshop, volume WP09-09 ofCTIT Work-
shop Proceedings, pages 17–26. Centre for Telemat-
ics and Information Technology (CTIT), University of
Twente.

Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., and
Völkel, S. (2007). An Algebraic View on the Seman-
tics of Model Composition. InProc. of the 3rd Eu-
ropean Conference on Model Driven Architecture—
Foundations and Applications, volume 4530 ofLNCS,
pages 99–113. Springer.

Hoisl, B. and Strembeck, M. (2012). A UML Extension
for the Model-driven Specification of Audit Rules.
In Proc. of the 2nd International Workshop on Infor-
mation Systems Security Engineering, volume 112 of
LNBIP, pages 16–30. Springer.

Hoisl, B., Strembeck, M., and Sobernig, S. (2012). To-
wards a Systematic Integration of MOF/UML-based
Domain-specific Modeling Languages. InProc. of the
16th IASTED International Conference on Software
Engineering and Applications, pages 337–344. ACTA
Press.

Kalnina, E., Kalnins, A., Celms, E., and Sostaks, A.
(2010). Graphical Template Language for Transfor-
mation Synthesis. InSoftware Language Engineering,
volume 5969 ofLNCS, pages 244–253. Springer.

Kolovos, D., Rose, L., Paige, R., and Garcı́a-Domı́nguez,
A. (2012). The Epsilon Book. Available
at: http://www.eclipse.org/epsilon/doc/book/. Last ac-
cessed: 30.11.2012.

Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2008).
A Framework for Composing Modular and Interoper-
able Model Management Tasks. InProc. of the 1st
ECMFA Workshop on Model Driven Tool and Process
Integration, pages 79–90. Frauenhofer IRB.

Krueger, C. W. (1992). Software Reuse.ACM Computing
Surveys, 24(2):131–183.

Morin, B., Perrouin, G., Lahire, P., Barais, O., Van-
wormhoudt, G., and Jézéquel, J.-M. (2009). Weav-
ing Variability into Domain Metamodels. InProc. of
the 12th International Conference on Model Driven
Engineering Languages and Systems, pages 690–705.
Springer.

Object Management Group (2008). MOF Model To
Text Transformation Language. Available at:
http://www.omg.org/spec/MOFM2T. Version 1.0,
formal/2008-01-16. Last accessed: 30.11.2012.

Oldevik, J. and Haugen, Ø. (2007). Higher-Order Trans-
formations for Product Lines. InProc. of the 11th In-
ternational Software Product Line Conference, pages
243–254. IEEE Computer Society.

Paige, R., Drivalos, N., Kolovos, D., Fernandes, K., Power,
C., Olsen, G., and Zschaler, S. (2011). Rigorous
Identification and Encoding of Trace-Links in Model-
Driven Engineering.Software and Systems Modeling,
10:469–487.

Rose, L. M., Matragkas, N., Kolovos, D. S., and Paige, R. F.
(2012). A Feature Model for Model-to-Text Transfor-
mation Languages. InProc. of the 2012 ICSE Work-
shop on Modeling in Software Engineering, pages 57–
63. IEEE Computer Society.

Spinellis, D. (2001). Notable Design Patterns for Domain-
Specific Languages.Journal of Systems and Software,
56(1):91–99.

Tisi, M., Cabot, J., and Jouault, F. (2010). Improving
Higher-Order Transformations Support in ATL. In
Proc. of the 3rd International Conference on Theory
and Practice of Model Transformations, volume 6142
of LNCS, pages 215–229. Springer.

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bézivin, J.
(2009). On the Use of Higher-Order Model Trans-
formations. InProc. of the 5th European Confer-
ence on Model Driven Architecture—Foundations and
Applications, volume 5562 ofLNCS, pages 18–33.
Springer.

Vallecillo, A. (2010). On the Combination of Domain Spe-
cific Modeling Languages. InProc. of the 6th Euro-
pean Conference on Modelling Foundations and Ap-
plications, volume 6138 ofLNCS, pages 305–320.
Springer.

Varró, D. and Pataricza, A. (2004). Generic and Meta-
transformations for Model Transformation Engineer-
ing. InProc. of the 7th International UML Conference
Modelling Languages and Applications, volume 3273
of LNCS, pages 290–304. Springer.

Wei, W. (2012). EpsilonLabs: Epsilon Static Analysis.
Available at: http://code.google.com/p/epsilonlabs/
wiki/EpsilonStaticAnalysis. Last accessed:
30.11.2012.

White, J., Hill, J. H., Gray, J., Tambe, S., Gokhale, A. S.,
and Schmidt, D. C. (2009). Improving Domain-
Specific Language Reuse with Software Product Line
Techniques.IEEE Software, 26(4):47–53.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., and Schwinger, W. (2010). Towards
an Expressivity Benchmark for Mappings based on a
Systematic Classification of Heterogeneities. InProc.
of the 1st International Workshop on Model-Driven
Interoperability, pages 32–41. ACM.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., and Schwinger, W. (2012). Fact
or Fiction—Reuse in Rule-Based Model-to-Model
Transformation Languages. InProc. of the 2nd Inter-
national Conference on Model Transformations, vol-
ume 7307 ofLNCS, pages 280–295. Springer.

Zdun, U. (2010). A DSL Toolkit for Deferring Architec-
tural Decisions in DSL-based Software Design.Infor-
mation & Software Technology, 52(7):733–748.


