
Engineering Model Recommender Foundations
From Class Completion to Model Recommendations

Andreas Ganser and Horst Lichter
Software Construction, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Keywords: Model Completion, Model Recommendation, Model Repository, Model Reuse, MDE, MDD, EMF.

Abstract: Reuse has been widely carried out successfully, but not with models in Model Driven Engineering. Reasons
seem manifold and conceptual issues and poor tool support are among them. A closer look at the tools available
shows that models are often held in repositories which merely exceed versioning and indexing support. But
model reuse requires mature approaches and tool support to become successful.
We created a solid conceptual foundation and found recommendations as one solution, which in turn need
appropriate data. We engineer these data subsequently and explain our design rationales. In a nutshell, we
create a knowledge library comprising of elements which are connected on generic, semantic, and syntactic
level. This knowledge library forms an enhanced knowledge graph enabling chain recommendations.

1 SETTING THE SCENE

Software development has been becoming more and
more complex and increasing “IT-demand” is un-
likely to put this to an end. Unsurprisingly, numerous
approaches emerged to handle increasing complex-
ity in order to try to ease the challenges in develop-
ment. One of these approaches is Model-Driven De-
velopment (MDD) and it suggests the Unified Mod-
eling Language (UML) as a language to formulate ar-
tifacts. The reasons why UML is used might be, be-
cause “especially for larger and distributed projects,
UML modeling is believed to contribute to shared un-
derstanding of the system and more effective commu-
nication” (Chaudron et al., 2012).

A closer look at MDD unveils, that it describes a
means for designing and developing software at a rel-
atively high level of abstraction. This means, that ob-
jects from the real world are mapped to abstract arti-
facts called models (Muller et al., 2009), (Rodriguez-
Priego et al., 2010), (Muller et al., 2012). As a conse-
quence, information needs to be omitted while model-
ing. This is why modelers often needs to reason if an
entity can or does contribute to the overall solution. In
other words, to find the appropriate level of abstrac-
tion became the major challenge in modeling. But the
challenge starts in domain modeling already. If the
domain model is not met precisely, the entire system
under development is at the verge of failing. Briand
et al. investigated this and recommend to “build a do-

main model as early as possible” (Briand et al., 2012).
Another common way to approach development

risks and improve quality is reuse. Looking back into
computer science history, reuse has been applied for
a long time already. It was done by approaching re-
curring problems by applying conserved solutions or
best practices. Functions are probably one of the sim-
plest examples for reuse. Of course, MDD addresses
reuse on a conceptual level. Surprisingly, though,
only few efforts are undertaken in industries or re-
search to bolster model reuse. Existing approaches
barely offer more than simple repository functional-
ity which merely suits a modelers needs.

We believe, that the domain of model reuse is
not well understood, and, consequently, approaches
and tools offer potential for improvement. Model
repositories and model management are available for
decades already (sec. 2), but all these do not seem
to address the modeler’s needs (any more), or we,
to the best of our knowledge, are not aware it. It
seems, that a well designed knowledge library con-
necting its elements could bolster model reuse. This
is why we would like to fill this gap, by provid-
ing the foundations in terms of engineering the do-
main (sec. 3), modeling the domain (sec. 4), organiz-
ing the data (sec. 4.2), enhancing the data (sec. 4.3),
and discussing the benefits (sec. 5). These results led
to a solid framework in form of an enhanced knowl-
edge graph for tool support which is discussed as an
evaluation of the ideas and concepts presented below.

135Ganser A. and Lichter H..
Engineering Model Recommender Foundations - From Class Completion to Model Recommendations.
DOI: 10.5220/0004320801350142
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 135-142
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED STATE OF THE ART

We distinguish model reuse in terms of model repos-
itories and model management, both including re-
trieval mechanism. This adheres to definitions of
repositories in general (IEEE Computer Society and
ISO/IEC, 2012). But we intend to go one step further
and take into account recommender systems.

2.1 Model Repositories

Most approaches in model reuse store models and of-
fer powerful querying. The most prominent systems
are contrasted to our system subsequently.

First, MOOGLE, a model search engine, spe-
cializes in XMI persisted model files omitting tags
and indexing only relevant content (Lucrdio et al.,
2010). It distinguishes itself from other model reposi-
tories with advanced search options, browsing func-
tionality, and claims to be the most user friendly
tool using a website interface. Our system differs
from MOOGLE, because we seamlessly integrate our
back-end in Eclipse, interlink the stored models and
can integrate MOOGLE elements through URIs.

Second, ReMoDD is the “Repository for Model
Driven Development” from Colorado State Univer-
sity (France et al., 2007). It has mostly documen-
tary purpose and aims to offer models to a commu-
nity. Hence, the models are not connected as in our
system. But, since the data is externally accessible,
we can refer to these models via URIs.

Third, the “Model Repository”, which was de-
veloped by University of Leipzig, is slightly differ-
ent. It uses almost the same technologies as we do
but follows a different approach (Uni-Leipzig, 2012).
The Model Repository handles model data as graphs
and mirrors this entirely in a graph structure. Hence,
classes become nodes and associations become edges.
In contrast, we handle entire models in a node and use
the graph structure as a meta structure which connects
the nodes, i.e. the models with each other.

Last, AMOR (Altmanninger et al., 2008), the
“adaptable model versioning repository”, follows a
research approach investigating conflicts between
model versions and approaches how to resolve them.
It is a closely related project to modelCVS (G. Kap-
pel, 2005), and SMoVer, a semantic model version
control system (Altmanninger, 2008). A survey on
model versioning approaches summarizes such sys-
tems (Altmanninger et al., 2009). Our system is dif-
ferent, since we use the results for our evolution and
quality extension and build on top of it, but conflict
resolution and versioning are not our primary con-
cerns.

2.2 Model Management

Other approaches in model reuse are summarized as
model management. This has been under research for
a long time already. Hence, a survey from the early
nineties (Bharadwaj et al., 1992), which is on math-
ematical models, already categorizes model manage-
ment in database-, knowledge-, and graph-based sys-
tems. Our system belongs in all of these categories.
A glance at generic database model management by
Melnik (Melnik, 2004) shows that relationships be-
tween models were not considered.

One issue often addressed in model man-
agement is checking models while editing, e.g.
SmartEMF (Hessellund, 2007). It considers consis-
tency checking, validating operations while editing,
and evolution support. We, in contrast, see our ap-
proach as editing support in domain modeling and do
not consider these aspects except for evolution.

Another issue is categorizing models, as e.g. ex-
plained in a facet library (Schmidt et al., 2010).
Schmidt et al. introduce a system which supports
faceted classification and faceted browsing. This idea
is similar to categories as known from web shops, e.g.
Amazon. We have such a mechanism as well, but go
beyond and interlink our models and offer grouping
which is more generic.

Architecturally speaking, the universal repository
architecture attempts to handle systems on a more
generic level. These attempts have been undertaken
in the nineties (Iyengar, 1998) but with different tech-
nologies. Petro et al. have build a reuse reposi-
tory which remains in one domain fostering domain
specific software architectures (DSSA) (Petro et al.,
1995). We look at a broader, more common perspec-
tive, and see this as a special case of our system. What
we do not address, though, is mappings between re-
quirements and artifacts yet.

In general, our system was inspired by code com-
pletion as offered by JDT in Eclipse. This was re-
cently enhanced by Code Recommenders (Weimer
et al., 2009), (Eclipse, 2012a). This is a more clever
code completion which includes rankings for code
suggestions derived from the editing context. Due to
that, recommender systems are related as well as con-
text management (Jannach et al., 2010), (Ricci et al.,
2010), (Bettini et al., 2010).

3 ENGINEERING FOUNDATIONS

We started our project with a vision which was ignited
by looking at content assist in Eclipse. Getting this for
classes was the very first idea long ago ...

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

136

3.1 Model Completion Vision

We transformed our idea of “Class Completion” into
a paper prototype (figure 1). It shows a class diagram
in the top left corner, which comprises of few classes.
Now, the question is how to continue from here? Why
not ask a supporting system (see center)?

name : EString
ingredients : EString

Cocktail
name : EString
ingredients : EString

name : EString
Ingredient

name : EStringingredients2..*

ingredients0..*

name : EString
gender : Gender
chat(Person)

Person
name : EString
gender : Gender
chat(Person)

date : EDate
start(EDate)
end(null)

Party
date : EDate
start(EDate)
end(null)

blend()

Bartender

blend()

party1
guests0..* host0..1

Figure 1: Realization of “Class Completion” Vision.

Invoking Crtl+Space should open a query bar
provided by the supporting system and while typ-
ing Cock the supporting system should query a
database and provide suggestions in a drop down list.
These suggestions should be preview-able by step-
ping through the list. Placing the selected suggestion
into the current canvas should be possible as well. For
example, figure 1 shows how the supporting system
finds three suggestions which are not alphabetically
ordered on purpose. This is why figure 1 lists the most
related entry Cocktail first.

Hence, filling the list needs to consider the envi-
ronment of the query. In our example, the Bartender
is the determining element which causes the list show-
ing Cocktail atop. This is due to the supporting sys-
tem knowing, that a Bartender blends Cocktails and
this information is preserved in the database. Con-
sequently, placing the Cocktail elements provided by
the suggestion should reestablish as much knowledge
as possible. Hence, we use the term recommendation
from here on.

3.2 Model Completion Use Cases

Starting with a vision to get “class completion”, we
extended the idea to “model completion” and identi-
fied the use cases depicted in figure 2. It only shows
an excerpt of the actual diagram but everything nec-
essary to understand the requirements.

In more detail, the Store Model use case allows
a Modeler to extract some elements from a class di-
agram and store them in the system. While doing
so, the Modeler can describe the model by setting a
name, purpose, description, and so on. Moreover, the
Modeler can link the model with other models.

The Query Recommendations use case describes

Figure 2: Excerpt of Use Case Diagram.

how the system reacts on queries. But, this requires
configured recommendation strategies, which can
be achieved through the Configure Recommender
Strategies use case. Since, the architecture of the
recommender system is not the main focus of this pa-
per, we do not go into further details here. Essentially,
the configuration and querying allows multiple strate-
gies for multiple data sources providing recommen-
dations for multiple editors on a flexible architecture.
This means, the architecture is open for other ser-
vices. For example, we implemented a recommender
strategy which bases on WordWebOnline (Wordweb
Software, 2012). Querying displays the parsed web-
site in the drop down menu and, e.g. confirming
a ”House” as ”type of Building” inserts an abstract
class Building and a class House on the canvas which
are connected by inheritance.

Note, that the use case Edit Model is most essen-
tial for this paper, but the other use cases contributed
to its requirements; often in a sense that they require
a specialization of Edit Model.

Moreover, we analyzed users and actors which are
not all shown in figure 2. First, Domain Experts
model the domain concepts, describe, and review
models. The Programmers view and review models
since they are the ones who tailor the generated source
code in the end. Last, Modelers are involved in al-
most every use case.

3.3 Model Completion Architecture

We subdivided the model completion system into five

Engineering�Model�Recommender�Foundations�-�From�Class�Completion�to�Model�Recommendations

137

Recommender
System

Context
Manager

Model
Evolution

Model
Mining

Figure 3: Architectural Overview.

components as illustrated in figure 3. It comprises
of a core, which is the knowledge library, and of
surrounding components; each of which maps to an
Eclipse Feature. Before we go into details regard-
ing the knowledge library, we briefly explain the other
components and how they evolved. This will help un-
derstanding design rationales.

We build the components as follows. First, we
added storing and querying support. Second, we
extended the querying to a recommender system.
Roughly at the same time, we added evolution as-
pects, so we could add model mining, and the context
manager.

The simple querying was quickly extended to a
flexible recommender system because our knowledge
library offered much more than just exporting the key
word matches. In fact, the underlying knowledge
graph enabled us right away to attach properties on
edges and nodes. But to get the most out of such an
enhanced knowledge graph requires a recommender
system which is configurable in at least two ways.
First, multiple recommender strategies are needed to
serve different recommendation requirements, and,
second, multiple user interface support is needed, so
recommendations can be applied in different editors.

The third way to configure the recommender sys-
tem component is provided by the context manage-
ment. It manages the query and insert contexts which
can be taken into account by the recommender strate-
gies. A query contexts could be an editor, a position,
a graph neighbor, or a domain glossary. The editor is
relevant, because applying a graphical recommenda-
tion into a textual editor must be prohibited. More-
over, a class must not be inserted into the name field
of a class. Instead, it is desirable that recommenda-
tions are adjusted according to neighbor models from
previously inserted models or according to a project
glossary.

The simple storing was enhanced to model min-
ing. The initial storing offered slicing for class dia-
grams preserving relationships in the knowledge li-
brary. For example, in our vision (cf. figure 1)
imagine an inserted Cocktail and a restored rela-
tionship between Bartender and Cocktail. The

storing mechanism could slice this into two mod-
els, storing them in the knowledge library, while
preserving the information about the connection be-
tween Bartender and Cocktail. This is fine, but the
knowledge library was not involved except for stor-
ing. Enhancing the storing to model mining takes this
into account.

Since reusability is barely met at once, our evolu-
tion component enhances the knowledge library with
evolution and quality aspects. Every model stored
is put under evolution and quality control, and can
evolve from a vague stage until it becomes depre-
cated. Without going into further detail, we have three
evolution stages which are bound to quality gates.
Those are assured by quick reviews and metrics.

Our incremental way building the system derived
from the architecture shown in figure 3 proved very
reasonable. This way our surrounding components
validated and evaluated our design decision let alone
the user studies we carried out.

3.4 Model Completion Concepts

From the conceptual point of view, we started “Model
Completion” as a reuse approach. Beginning with an
existing class diagram it should be possible to slice
models or extract reusable parts in terms of sets of
classes and relationships. In terms of reuse this is
a copy-and-modify approach because we do not ex-
pect modelers to use the recommendations as they are.
For example, a Cocktail as shown above could have
pricing information if used as part of a menu.

Moreover, we intend extracted models to pre-
serve external connectors as they are stored in an
enhanced knowledge graph, if possible. In the ex-
ample mentioned above, we extracted two models
(Party, Cocktail) from a model containing five
classes. These two models would represent two nodes
in a graph which are connected with an edge. The
nodes would hold the information about the models
and the edge would hold the information about the re-
lationship. This means, we use a graph and add prop-
erties to nodes and edges. Conceptually speaking this
forms an unidirectional property graph, and becomes
a weighted graph at the time of the recommendations.

From a technological point of view, we started
“Model Completion” since ecore files are commonly
used in EMF for code generation but they are often
modified in the ecore diagram editor shipped with the
Ecore Tools (cf. figure 1). This is why EMF (Stein-
berg et al., 2009) and the Ecore Tools (Eclipse, 2012b)
are our basic dependencies which were given.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

138

4 REASONING KNOWLEDGE
LIBRARY ELEMENTS

A usual knowledge library comprises of basic build-
ing blocks and meta information. Our basic build-
ing blocks are Library Elements. They can con-
tain MetaInformation which is designed as the cen-
tral extension point for the Library Elements. We
did so, because this information is supposedly gen-
erated separately in components and then linked to
MetaInformation through extension points.

4.1 Isolated Library Elements

Storing a single element in our knowledge library
results in a single LibraryElement comprising of
properties (see figure 4). A name and a list of files,
which holds at least one file, are compulsory. Provid-
ing an owner is optional. The files are defined as
a list of URIs, since this makes resource handling in
EMF much easier.

The reason why we needed to support differ-
ent files per LibraryElement was initially caused
by the ecore tools, since they keep the content (i.e.
.ecore-files) separate from the layout information
(i.e. .ecorediag-files). Moreover, we did not want to
burden our server to generate previews for class dia-
grams on the fly. This is why we choose to store png-
files which are loaded for previews as shown in fig-
ure 1. A nice side effect of this design decision is, that
the preview png-files might be manipulated separately
for e.g. highlighting certain aspects in a preview.
This, to our mind, outweighs the manual maintenance
of previews. Anyhow, previews are a specialty to
Models as the method getPreview() implies. Other
kinds of LibraryElements are not implemented so
far, but textual LibraryElements would be a very
reasonable extension. They could keep textual de-
scription of class diagrams.

For every extension which LibraryElements
might face, we want to rely on the provided libraries
and this is why we do not store related files in the
database but in the file system. This even allows
distributing file locations among servers using URIs.
Moreover, our indexing becomes much more flexible
since we can make use of the file’s native format and
implement new indexing strategy leveraging the dis-
tributors libraries.

Currently, we use the ecore tools to extract data
and put them in our indexing. Hence, we can not only
query for name and owner, but class names, attributes,
associations and so on.

So far the knowledge library distinguishes itself
from every other system available, just because it sup-

LibraryElement

name : String
files : URI
owner : String

getPurpose ()
getQualityLevel ()
getNeigbors ()

Connector

generics : String
syntactics : String
semantics : URI

Model

getPreview ()
getModel ()

Example

project : String
projectInfo : String
projectURL : URI

TemplateInformation

extensionPoints : String
extensions : String
formalDescription : String

Group

name : String
description : String

Category

name : String
description : String

1..* - members

* - groups

source 1..*
- tgtlinks

1
- src

target 1..*
- srclinks

1
- tgt

* - categories

* - elements

1 *- examples

1
* - templateInformation

1

* - subcategory

Figure 4: Basic Building Blocks and Graph Support.

ports indexing and querying through strategies. But
this is not enough to foster multiple and complex rec-
ommender strategies. Consequently, we enhanced the
structure developed so far and interlinked, grouped
and structured LibraryElemens.

4.2 Connected Library Elements

There are two different approaches to interlink
LibraryElements. First, there are meta connec-
tors like grouping and category mechanism which
associate LibraryElements to meta concepts in
order to arrange them indirectly. Second, there
are concrete connectors between LibraryElements
which establish immediate relationships between
LibraryElements. Figure 4 depicts, how these el-
ements are related. Mind, that it makes perfect sense
to generalize these connectors at a conceptual level,
but this does not reflect into the modeled domain, i.e.
there is no super-class in figure 4.

The meta connectors are Group and Category.
First of which arranges one or more LibraryElement
to a set of elements. Since several LibraryElements
often occur in groups, though they are independent,
we introduced this concept. For example, we could
have a class diagram which models a Person. This,
as a Model, could be part of a group with either a
BankAccount or ClinicalRecord or both. Clearly, a
Person becomes a client or patient, which will be de-
scribed below. But altogether, these Models do not
belong to one Group or Category.

Engineering�Model�Recommender�Foundations�-�From�Class�Completion�to�Model�Recommendations

139

The other meta connector, which is Category,
also groups LibraryElements, but as intuitively im-
plied by the name. Taking the examples from above,
the ClinicalRecord would belong to a Category
health-care and the BankAccount would belong to a
Category financing. Finding categorically related,
but not grouped LibraryElements is the purpose of
Categories.

The concrete connectors have three different
natures, namely generic, syntactic, and semantic.
Generic connectors establish a link between two
LibraryElements without providing any more de-
tails. This is reasonable, if the details are unknown
or at least one of the LibraryElements is held out-
side of the knowledge library. In case, that the details
of the connector are unknown, the generic connector
can be seen as “these two models have been used to-
gether in the past”. In our Party, Cocktail example
this would mean, that the information about the asso-
ciation between Bartender and Cocktail is not in the
knowledge library.

The second nature of concrete connectors is called
syntactic and provides additional information about a
connection between two LibraryElements. In our
above mentioned example, the syntactic information
would be the association, which would be attached to
the connector. Hence, placing the Party-Model first,
getting the Cocktail-Model recommended and plac-
ing it, would, this time, reestablish the association be-
tween Bartender and Cocktail and look like figure 5.
In fact, syntactical connectors allow much more than
that. They can hold entire bridge models. As an ex-
ample, imagine a person as a customer in one do-
main and as a patient in another domain as mentioned
above. Then it makes not much sense to adjust the
person-Model, but instead place an adapter, facade,
or proxy in the syntactical connector. This model then
actually holds all the “dangling” references.

name : EString
gender : Gender
chat(Person)

Person
name : EString
gender : Gender
chat(Person)

date : EDate
start(EDate)
end(null)

Party
date : EDate
start(EDate)
end(null)

blend()

Bartender

blend()

name : EString
ingredients : EString

Cocktail
name : EString
ingredients : EString

name : EString
Ingredient

name : EString

party1
guests0..* host0..1

cocktails1..*

ingredients2..*

ingredients0..*

Figure 5: Model Restored with Syntactic Connector Nature.

The last nature of concrete connectors is of type
semantic and puts design rationales in focus. There-
fore, the purpose of this connector is mostly docu-
mentary, but not only. For example, taking our above
example, it might be patently obvious to the mod-
eler, who has put this in the knowledge library, that

the ClinicalRecord-Model is connected to the Person-
Model via a proxy-adapter. That means, the techni-
cal connector adapts the person and at the same time
prohibits access to certain information in the Person-
Model. But is that obvious to a modeler who wants to
reuse this information and has never seen this model
before? This is why we need to enhance connectors
with this information in the mining process or manu-
ally.

A closer look at the concrete connectors unveils,
that they are easy extendable in graph structures to
hyper-edges. This means, generic connectors become
multi-generic connectors, syntactical connectors be-
come multi-syntactical connectors and so on. But
what does this mean and what are the benefits and
drawbacks?
Hyper-edges are certainly needed if we extend our
example from our vision in figure 1 with a billing-
Model. This billing-Model could have a printRe-
ceipt() method which requires a Guest and a list of
Cocktails. This means, that the billing-Model has two
dependencies from one element to two different mod-
els but a property graph allows edges of cardinality
one only. A hyper-edge would solve this problem and
simply create a hyper-edge which comprises of a set
of nodes which are supposedly connected.

Putting all these information together, the devel-
oped knowledge library offers a very flexible and
powerful source for recommender strategies. This is
due to, first, data, second, grouping and categorizing,
third, the connector concept, and, fourth, the traversal
mechanism which can benefit from each as needed.
But this needs the concepts mapped to a property
graph structure which is straight forward. Unfortu-
nately, the graph structure with its nodes and edges
are only one side of the coin, because the information
content of the nodes is rather simple so far. Due to
that, we enhanced the LibraryElements.

4.3 Enhanced Library Elements

Models stored for reuse as LibraryElements in
a property graph are a good start, but this struc-
ture proofed “only good” for recommender strate-
gies and other components. Therefore, we intro-
duced MetaInformation which can be contained in
LibraryElements. This means, MetaInformation
serves as an extension point for extra information.

As an example, we extended MetaInformation
with evolution and quality aspects as shown
in figure 6. Note, that some of the in-
formation defined in MetaInformation is ac-
cessible from LibraryElements; e.g. through
getQualityLevel() or getPurpose(). Without

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

140

going into further detail, we use the purpose as
a lightweight specification mechanism, so we have
an anchor for reviews and quality aspects as men-
tioned in section 3.3. Last of which even intro-
duces VersionInfo and attaches semantics in terms
of quality levels to LibraryElements.

MetaInformation

purpose : String
description : String
pending : Boolean
deprecated : Boolean

VersionInfo

commitID : Integer
semantics : QualityLevelType

Review

reviewtype : ReviewType
completed : Boolean

«enumeration»
QualityLevelType

vague
decent
fine

«enumeration»
ReviewType

BackHat
RedHat
YellowHat
WhiteHat
GreenHat

«enumeration»
CommentType

Hunch
Feeling
Like
Dislike
Smell
Difficulty
Danger
Request
Text

Comment

commentType : CommentType
comment : String

1

* - versionsInfo

1

* - reviews

1

* - comments

Figure 6: Additional Meta Information.

Other extensions we created are Examples and
TemplateInformation as depicted in figure 4.
While Examples are intended to guide users how to
apply a Model, TemplateInformation is intended
to generalize Models for recommendations. Simple
placeholder, linked variables, extension points, exten-
sions, and guided completion in terms of extending,
pruning or adapting are currently under research for
the template mechanism.

5 DISCUSSING BENEFITS

The developed knowledge library supports “Model
Completion” in multiple ways. First, our in-
dexing strategies support querying for name,
description, and purpose attributes. Moreover,
MetaInformation, description, LibraryElement
files-content are indexed. Consequently, depending
on how the query is formulated, certain indexed
information can be omitted. This is independent of
the graph structure, but we can limit query results
to certain ranges by that. This limitation of queries
becomes very handy during model mining, because
a query limited to class names can unveil “known”
information. Moreover, this is very useful if a query

context limits to recommendations which are actually
applicable in the editing context.

Other benefits arise due to the graph structure and
allow follow-up or chain recommendations. Going
back to our initial example from figure 1, we think of
our knowledge library containing the Cocktail-Model
with a linked Party-Model. Starting from an empty
canvas, invoking Ctrl+Space and typing Party, con-
firming the Model recommendation, gaining the can-
vas as in figure 1 a chain recommendation could im-
mediately insert the Cocktail-Model, granted there is
a very high likelihood, that this Model usually “fol-
lows” in a modeling process.

But the graph structure as designed even sup-
ports context management for recommender strate-
gies. For example, the example from our vision in
figure 1 could be completed with the Cocktail-Model
and keep the neighbors of the previously inserted
LibraryElements in an editing context. This would
hold all neighbors from the Cocktail-Model in the first
level of the history context and all the neighbors of the
Party-Model in the second level of the history context.
Now querying the recommender strategies could con-
sider the query history.

6 SUMMARY & FUTURE WORK

Starting with a vision of “Class Completion” as
shown in figure 1, we analyzed the domain, shifted
the vision to “Model Completion”, build use cases
and pointed out the major requirements. This lead
to a coarse grain architecture (figure 3) comprising of
a core, which is the knowledge library and surround-
ing components. These were taken into account, since
they had either impact on the design of the core or
they evaluated and validated the conceptual design of
the core.

The core itself was explained in detail by, first,
pointing out how isolated library elements are mod-
eled, and then extending them to interlinked library
elements. There we introduced different natures of
connectors, i.e. generic, syntactic, semantic. Finally,
we enhanced the interlinked elements with additional
concepts which foster recommender strategies and
ease their design.

The work in progress comprises of the template
mechanism, context management, and model mining.
We do so, in order to make the system as seamlessly
integrated in a development environment and support
quick starts as much as possible. Therefore, query
contexts managed by context management for recom-
mender strategies are as much of vital importance for
usability as model mining is for usefulness.

Engineering�Model�Recommender�Foundations�-�From�Class�Completion�to�Model�Recommendations

141

ACKNOWLEDGEMENTS

We would like to thank all our reviewers for their
comments! We would also like to thank Felix Bo-
huschke, Andrej Dyck, Christian Fuchs, Ruslan Rag-
imov, and Alexander Roth for their contributions.

REFERENCES

Altmanninger, K. (2008). Models in Conflict Towards a
Semantically Enhanced Version Control System for
Models. In Giese, H., editor, Models in Software
Engineering, volume 5002 of LNCS, pages 293–304.
Springer Berlin / Heidelberg.

Altmanninger, K., Kusel, A., Retschitzegger, W., Seidl, M.,
and Wimmer, M. (2008). AMOR Towards Adaptable
Model Versioning. http://www.modelversioning.org.

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. volume 5,
pages 271–304.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., and Riboni, D. (2010).
A survey of context modelling and reasoning tech-
niques. Pervasive and Mobile Computing, 6(2):161
– 180.

Bharadwaj, A., Choobineh, J., Lo, A., and Shetty, B.
(1992). Model management systems: A survey. An-
nals of Operations Research, 38:17–67. 10.1007/
BF02283650.

Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., and
Yue, T. (2012). Research-Based Innovation: A Tale
of Three Projects in Model-Driven Engineering. In
France, R., Kazmeier, J., Breu, R., and Atkinson,
C., editors, Model Driven Engineering Languages
and Systems, volume 7590 of LNCS, pages 793–809.
Springer Berlin / Heidelberg.

Chaudron, M., Heijstek, W., and Nugroho, A. (2012). How
effective is UML modeling ? Software and Systems
Modeling, pages 1–10.

Eclipse (2012a). Code Recommenders. http://
www.eclipse.org/ recommenders/.

Eclipse (2012b). Ecore Tools. http://wiki.eclipse.org/
index.php/Ecore Tools.

France, R., Bieman, J., and Cheng, B. (2007). Reposi-
tory for Model Driven Development (ReMoDD). In
Kuehne, T., editor, Models in Software Engineer-
ing, volume 4364 of LNCS, pages 311–317. Springer
Berlin / Heidelberg.

G. Kappel, G. Kramler, E. K. T. R. W. R. W. S. (2005). Mod-
elCVS - A Semantic Infrastructure for Model-based
Tool Integration. Technical Report, Johannes Kepler
University of Linz and Vienna University of Technol-
ogy.

Hessellund, A. (2007). SmartEMF: guidance in modeling
tools. In Companion to the 22nd ACM SIGPLAN con-
ference on Object-oriented programming systems and
applications companion, OOPSLA ’07, pages 945–
946, New York, NY, USA. ACM.

IEEE Computer Society and ISO/IEC (2012). SEVO-
CAB: Software and Systems Engineering Vocabulary.
http://pascal.computer.org/sev display/index.action.

Iyengar, S. (1998). A universal repository architecture using
the OMG UML and MOF. In Enterprise Distributed
Object Computing Workshop, 1998. EDOC ’98. Pro-
ceedings. Second International, pages 35 –44.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G.
(2010). Recommender Systems: An Introduction.
Cambridge University Press.

Lucrdio, D., de M. Fortes, R., and Whittle, J. (2010).
MOOGLE: a metamodel-based model search engine.
Software and Systems Modeling, 11:183–208.

Melnik, S. (2004). Generic Model Management, volume
2967 of LNCS. Springer Berlin / Heidelberg.

Muller, P.-A., Fondement, F., and Baudry, B. (2009). Mod-
eling modeling. In Schuerr, Andy and Selic, Bran, ed-
itor, Model Driven Engineering Languages and Sys-
tems, volume 5795 of LNCS, pages 2–16. Springer
Berlin / Heidelberg.

Muller, P.-A., Fondement, F., Baudry, B., and Combemale,
B. (2012). Modeling modeling modeling. Software
and Systems Modeling, 11:347–359.

Petro, J., Fotta, M., and Weisman, D. (1995). Model-
based reuse repositories-concepts and experience. In
Computer-Aided Software Engineering, 1995. Pro-
ceedings., Seventh International Workshop on, pages
60 –69.

Ricci, F., Rokach, L., Shapira, B., and Kantor, P. (2010).
Recommender Systems Handbook. Springer.

Rodriguez-Priego, E., Garca-Izquierdo, F., and Rubio, n.
(2010). Modeling Issues: a Survival Guide for a Non-
expert Modeler. In Petriu, D., Rouquette, N., and Hau-
gen, y., editors, Model Driven Engineering Languages
and Systems, volume 6395 of LNCS, pages 361–375.
Springer Berlin / Heidelberg.

Schmidt, M., Polowinski, J., Johannes, J., and Fernndez,
M. (2010). An Integrated Facet-Based Library for Ar-
bitrary Software Components. In Kuehne, T., Selic,
B., Gervais, M.-P., and Terrier, F., editors, Modelling
Foundations and Applications, volume 6138 of LNCS,
pages 261–276. Springer Berlin / Heidelberg.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd edition.

Uni-Leipzig (2012). Eclipse Model Repository. http://
modelrepository.sourceforge.net/.

Weimer, M., Karatzoglou, A., and Bruch, M. (2009). Maxi-
mum margin matrix factorization for code recommen-
dation. In Proceedings of the third ACM conference on
Recommender systems, RecSys ’09, pages 309–312,
New York, NY, USA. ACM.

Wordweb Software (2012). WordWeb Online Dictionary
and Thesaurus. http://www.wordwebonline.com/.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

142

