
Modular and Distributed Verification of SysML Activity Diagrams

Messaoud Rahim1, Ahmed Hammad2 and Malika Ioualalen3

1Sciences and Technology Faculty, Yahia Fares University, Medea, Algeria
2Institut FEMTO-ST, UMR CNRS 6174, Besancon, France

3LSI, Computer Science Department, USTHB, Algiers, Algeria

Keywords: SysML, Activity Diagram, Places Bordered Petri Nets, Distributed Model-checking.

Abstract: Model-based development for complex system design has been used to support the increase of systems com-
plexity. SysML is a modeling language that allows a system description with various integrated diagrams, but
SysML lacks formality for the requirement verification. Translating SysML-based specification into Petri nets
allows to enable rigorous system analysis. However, for complex systems, we have to deal with the state space
explosion problem. In this paper, we propose new approach to allow a modular and distributed verification of
SysML Activity Diagram basing on the derived Petri net.

1 INTRODUCTION

The System Modeling Language (SysML) is UML
profile that can be used to specify graphically
all aspects of complex systems(Friedenthal et al.,
2008). Nevertheless, despite the various advantages
of SysML, it remains a semi-formal language with-
out possibilities of formally verifying the models
described by it. Industrial safety-related standards
strongly recommend the use of formal methods to val-
idate critical systems. For that purposes, it is needed
to use SysML in conjunction with formal method to
provide formal verification of the specified system.
Several approaches based on mapping SysML be-
havioural diagrams to Petri nets have been proposed
(Carneiro et al., 2008; Andrade et al., 2009; Linhares
et al., 2007). The aim of these approaches was to pro-
vide a way to verify the specified system with a Model
checking technique. However, in the case of complex
systems, we have to deal with the state space explo-
sion problem to analyse the resulting Petri net. A way
to overcome the state space explosion is the use of
modular analysis. Another way that had gained inter-
est, in the recent years is the use of distributed pro-
cessing (Kristensen and Petrucci, 2004; Barnat and
Rockai, 2008).

In this paper, we propose a global approach for
performing a modular and distributed verification of
the SysML activity diagram. Basing on composite
activities, we derive places-bordered Petri net mod-
ule for each activity. The verification of the system

can concern only one simple activity or the global
SysML activity diagram. For the second case, and
in order to deal with the state space explosion prob-
lem, we propose to adapt the distributed verification
process using a cluster of computing nodes(Boukala
and Petrucci, 2011; Abid and Zouari, 2007) for ver-
ifying the derived modular Petri net. For mapping
a SysML activity diagram into places-bordered Petri
net, we propose a translation rule for the call behav-
ior action. The translation of the other basic SysML
activity constructs is inspired from previous works.

The rest of this paper is organized as follows: in
Section 2, we discuss related works. In Section 3,
we present the SysML activity diagram. In Section
4, we give a definitions of places bordered Petri net.
In section 5, we present the mapping technique. We
present the modular and distributed verification pro-
cess in Section 6. Finally, in Section 7, we conclude
and we outline some ideas for future works.

2 RELATED WORKS

The most proposed approaches concerning the for-
mal specification of SysML diagrams have used Petri
net models due to their expressiveness and formal-
ity (Linhares et al., 2007; Carneiro et al., 2008; An-
drade et al., 2009). To our knowledges, this work is
the first that considers the composite structure of the
SysML activity diagram for a verification purposes.

202 Rahim M., Ahmed H. and Malika I..
Modular and Distributed Verification of SysML Activity Diagrams.
DOI: 10.5220/0004320602020205
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 202-205
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

The composite and modular verification approaches
aim to take benefit from some information about the
components of the system and the way they commu-
nicate. Modular Petri nets allow designers to specify
a system as communicating modules. Modules com-
municate using shared transitions or fusion places.
The work presented in (Valmari, 1994) proposes a
compositional verification method for Petri net com-
posed of place bordered subnets. The verification ap-
proach used in this work is based on Model checking
technique. However, for complex system, we have
to overcome the state space explosion problem. Sev-
eral recent approaches use distributed processing en-
vironments to extend the size of the state space to be
constructed(Boukala and Petrucci, 2011). This work
proposes to adapt these approaches combined with a
modular analysis to verify a SysML activity diagrams.

3 THE SysML ACTIVITY
DIAGRAM

In SysML(OMG, 2010), an activity is a formalism
for describing behaviour that specifies the transfor-
mation of inputs to outputs through a controlled se-
quence of actions. The basic constructs of an activity
are actions and control nodes as illustrated in Figure
1. Actions are the building blocks of activities, each
action can accept inputs and produces outputs, called
tokens. These tokens can correspond to anything that
flows such as information or physical item (e.g., wa-
ter, signal). Control nodes include fork, join, decision,

Figure 1: Activity diagram basic constructs.

merge, initial, activity final, and flow final. A call
behavior action permits to invoke an activity when it
starts, and passes the tokens from its input pins to the
input parameter nodes of the invoked activity.

4 PLACES-BORDERED PETRI
NETS

Formally a Petri net is (Valmari, 1994):
Definition 1. A Petri net is triplet: PN = (P;T;W).
Where: P is finite set of places, T is finite set of tran-
sitions, (P\T = /0) and W : (PXT)[(T XP)! N is
a weight function, W (p; t) (resp. W (t; p)) gives the
weight of the arc from p to t (resp. from t to p).

Usually, an initial marking is associated with the
Petri net:

Definition 2. A marked Petri net (PN;M0), is a Petri
net PN with an initial marking M0 : P!N. The initial
marking of a place p 2 P is M0(p).

To compose a large Petri net from smaller pieces,
we define a places-bordered Petri (Valmari, 1994). A
places-bordered Petri net modules interface with each
other via common places, called border places.

Definition 3. A places-bordered Petri net module is
the 4-tuple NC = (P;T;W;B). where : P, T , and W
are as in a Petri net, B� P is the set of border places.

5 THE MAPPING TECHNIQUE

Basing on the previous works that propose a map-
ping of UML and SysML activity diagram to Petri
nets (N. Yang and Qian, 2010; Andrade et al., 2009;
Staines, 2008), our technique defines a mapping for
the call behavior actions and propose to map the
SysML activity diagram to modular Petri net with
border places. The mapping we propose is activity
based decomposition. The decomposition is guided
by the call behavior actions which permits to facili-
tate the mapping of a SysML activity diagram even
it includes several composite activities. The Petri net
derived from the SysML activity diagram is a set of
places-bordered Petri net modules, each one repre-
sents an activity instance.

5.1 Mapping Initial and Final Nodes

Initial node represents the start point of an activity.
As illustrated in figure 2, to map the initial node, we
use one transition (t in Act) with one input place and
two output places. The input place (en Act) is used to
enable the execution of the activity. The first output
place (on Act) is used to indicate that we are execut-
ing the activity and the second output place (Ctl out)
is used to represent the control flow.

Activity final represents the end point of an activ-
ity. As illustrated in figure2, to map final node, we
use one transition (t out Act) with two input places
and one output place. The first input place (on Act)
represents that we are executing the activity and the
second input place (Ctl in) represents the output flow
enabling the termination of the activity. The output
place (end Act) is used to indicate that the activity is
terminated.

Modular�and�Distributed�Verification�of�SysML�Activity�Diagrams

203

Figure 2: Mapping initial and final activity node.

5.2 Mapping Actions and Object Flows

As illustrated in the figure 3, for mapping an ac-
tion with control and data flow into Petri net, places
are used to represent the input and the output flows
(in A;Ctl in A;out A;Ctl out A;) and one transition
(Exec A) is used to represent the action.
For mapping an object flow that connects output pin
of one action A to the input pin of another action B,
we fusion the place (Out A) that represents the out-
put pin of the action A with the place (In B) which
represents the input pin of the action B.

Figure 3: Mapping simple action and Object flows between
actions.

5.3 Mapping Routing Object Flows

For mapping a fork node 4 we use a transition
t A f ork that represents the split operation with out A
as input place and in B with in C as output places. For
mapping a join node 4 we use a transition t AB join
that represents the synchronisation between out A and
out B as input places and in C as output place.

Figure 4: Mapping join and fork nodes.

5.4 Mapping Call Behavior Action

To map A call behavior action we consider that the
invoked activity is already mapped into places bor-
dered Petri net module. As presented in Figure 5,
the mapping of a call behavior action A that in-
vokes an activity Act with one input and one output
flow is places bordered Petri net module which has
in act;en Act;out Act and end Act as border places
with the Petri net module that represents the calling
activity. The transition t Abact is used to pass all in-
put flows of the call behavior action to the invoked
activity and to enable its execution. When the called
activity terminates, we use the transition t Aeact to
pass all output flows of the invoked activity to the call
behavior action.

Figure 5: Mapping call behavior action.

6 THE MODULAR AND
DISTRIBUTED VERIFICATION
PROCESS

As described in the mapping technique, the resulting
Petri net is set of place bordered Petri net modules.
Modular verification is enabled by the fact that each
Petri net module specifies the behavior of an activ-
ity. A simple activity can be verified by using only
its related Petri net module. For verifying a compos-
ite activity we have to use its related Petri net mod-
ule and all the Petri net modules corresponding to
their call behavior actions. A modular and distributed
verification can be used to perform the analysis of a
complex composite activities. The main step in the
model-checking is the construction of the state space.
In order to construct the state space of the Petri net
derived from the SysML activity diagram we decom-
pose the state space construction problem into a num-
ber of distributed tasks. The decomposition is guided
by the SysML activities. The approach we propose
is parallel objects based (Kale and Zheng, 2009). For
constructing the state space, we use one main task to
initialize the state space construction process, and a
set of parallel tasks which we call activity tasks to
explore and store the state space. Activity tasks are
used to encode a place bordered Petri net modules.
Each Petri net module is assigned to an activity task
which explores independently the internal states of
the module. Activity tasks encapsulate informations
about transitions and border places. They perform
the exploration of a given state, the storing of internal
successors state, seek for previously explored states
and invoke the storing of external states. Each activ-
ity task encapsulates a hash table that is used to store
a fragments of the state space. From a logical point of
view, we consider all the processing nodes as a unique
computing node. The activity tasks are viewed as an
arrays of parallel Tasks. Physically, all the tasks are
mapped over the physical nodes. The mapping is done

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

204

Figure 6: Logical and physical view of the application ar-
chitecture.

when we create the tasks. The Figure 6 presents an
example using four (4) computing nodes.

The state space is the basic model on which most
verifications are built. The constructed state space is
modular. It can be used to verify behavioural proper-
ties in the hole activity diagram or just on some ac-
tivities. The properties to verify can be basic such
as reachability, deadlocks, liveness and home state.
We can adopt the approach presented in (Boukala and
Petrucci, 2011) to verify such properties in the dis-
tributed and modular state space. Functional prop-
erties have to be extracted and translated from the
SysML requirements diagram to temporal logic such
as LTL and CTL. Various works have been proposed
to verify LTL and CTL formulas in distributed and
modular state space (Latvala and Makela, 2004).

7 CONCLUSIONS

The paper presents a modular and distributed verifica-
tion approach for formally verifying complex systems
described by SysML activity diagrams. A technique
for mapping the SysML activities to Petri net have
been proposed. The mapping is guided by the call be-
havior actions. The modular verification is enabled
by analysing each activity using its related Petri net
module. For enabling the verification of complex and
composite activities a modular and distributed verifi-
cation technique have been proposed to overcome the
state space explosion problem. As future works, it is
important to consider the process of extracting prop-
erties as temporal logic formulas from the SysML
requirement diagram to complete the approach pre-
sented in this paper.

REFERENCES

Abid, C. A. and Zouari, B. (2007). A distributed verification
approach for modular petri nets. In proc. of the 2007
summer computer simulation conference, pages 681–
690.

Andrade, E., Macie, P., Callou, G., and Nogueira, B. (2009).
A methodology for mapping sysml activity diagram to

time petri net for requirement validation of embedded
real-time systems with energy constraints. In proc.
ICDS’09, pages 266–271.

Barnat, J. and Rockai, P. (2008). Shared hash tables in par-
allel model checking. In Electronic Notes in Theoret-
ical Computer Science 198(1), proc. of the 6th Inter-
national Workshop on PDMC 2007.

Boukala, M. and Petrucci, L. (2011). Distributed verifica-
tion of modular systems. In in Proc. of CompoNet and
SUMo.

Carneiro, E., Maciel, E., Callou, P., and Tavares, G. (2008).
Mapping sysml state machine diagram to time petri
net for analysis and verification of embedded real-time
systems with energy constraints. In proc. ENICS08,
pages 1–6.

Friedenthal, S., Moore, A., and Steiner, R. (2008). Omg
systems modeling language (omg sysml) tutorial. In
INCOSE.

Kale, L. V. and Zheng, G. (2009). Charm++ and ampi:
Adaptive runtime strategies via migratable objects.
In In M. Parashar, editor, Advanced Computational
Infrastructures for Parallel and Distributed Applica-
tions, page 265282. Wiley-Interscience.

Kristensen, S. and Petrucci, L. (2004). An approach to dis-
tributed state space exploration for coloured petri nets.
In In Proc. 25th Int. Conf. Application and Theory of
Petri Nets (ICATPN2004), Bologna, Italy, pages 474–
483.

Latvala, T. and Makela, M. (2004). Ltl model checking for
modular petri nets. In In proc. of ICATPN’04, pages
298–311.

Linhares, M.-V., de Oliveira, R.-S., Farines, J.-M., and
Vernadat, F. (2007). Introducing the modeling and
verification process in sysml. In proc. 12th IEEE
ETFA’2007, pages 344–351.

N. Yang, H. Yu, H. S. and Qian, Z. (2010). Mapping uml
activity diagrams to analyzable petri net models. In
Proc. of the 10th IEEE Int. Conf. on Quality Software,
pages 369–372.

OMG (2010). Omg systems modeling language (omg
sysml) version 1.2. In http://www.omg.org.

Staines, T. S. (2008). Intuitive mapping of uml 2 activity
diagrams into fundamental modeling concept petri net
diagrams and colored petri nets. In 15th Annual IEEE
Int. Conf. and Workshop on the Engineering of Com-
puter Based Systems, ECBS 2008, pages 191–200.

Valmari, A. (1994). Compositional analysis with place-
bordered subnets. In Proc. of the 15th Int. Conf. on
Application and Theory of Petri Nets, pages 531–547.

Modular�and�Distributed�Verification�of�SysML�Activity�Diagrams

205

