

Challenges of Model-driven Modernization
An Agile Perspective

Stavros Stavru1, Iva Krasteva2 and Sylvia Ilieva3,1
1Faculty of Mathematics and Informatics, Sofia University St. Kliment Ohridski, James Bouchier Str. 5, Sofia, Bulgaria

2Rila Solutions, Acad. G. Bonchev Str., bl. 27, Sofia, Bulgaria
3IICT-BAS, Acad. G. Bonchev Str., bl. 2, Sofia, Bulgaria

Keywords: Agile Software Development, Software Modernization, Software Migration, Model-Driven Development,
Model-Driven Modernization, Systematic Review.

Abstract: Software organizations are nowadays facing increased demand for modernizing their legacy software
systems using up-to-date technologies. The combination of Model-Driven Development and delivery
models like Cloud and Software as a Service have become a very promising approach for software
modernization that possesses a lot of advantages, including great deal of automation and reuse of system
functionality. However, the use of such new and immature technologies is very challenging and requires a
comprehensive methodology for their seamless application within the software modernization projects.
When developing such methodology, questions on whether agile methods and techniques should be
incorporated and what could be the benefits and implications from that become of particular interest. To
help answering these questions, the paper evaluates the potential of agile methods and techniques to address
the challenges of Model-Driven Modernization. The challenges are extracted through a systematic review of
the existing body of literature on Model-Driven Development and Software Modernization, and the
evaluation is conducted through the Delphi technique. As a result, a ranked list of applicable agile
techniques is proposed and suggestions for their use in Model-Driven Modernization are made.

1 INTRODUCTION

Software organizations are continuously pressured
by their dynamic and highly competitive
environments to modernize. As rebuilding legacy
systems from scratch could require a huge
investment in time and efforts, new and more
lightweight modernization approaches are needed.
With the growing popularity of Service-Oriented
Architecture, the reuse of a legacy system by
exposing its functionality through services was
identified as a feasible and very promising
modernization approach. This resulted in various
service-oriented methodologies which were partially
or specifically focused on software reuse. Such
methodologies include the Service Migration and
Reuse Technique developed by Carnegie Mellon and
Software Engineering Institute (Lewis et al., 2005),
Service-Oriented Analysis and Design and Service-
Oriented Modeling and Architecture proposed by
IBM (Arsanjani, 2004); (Zimmermann et al., 2004),
Service Architecture Engineering (Butler, 2007),

Service Oriented Development of Applications
published by Gartner (Plummer, 2001) and the SOA
Migration Framework (Razavian and Lago, 2009).
Although Service-Oriented approaches were notable
improvement in terms of time and effort needed to
modernize, there were still many issues, mostly
concerned with the lack of in-depth knowledge on
the migrated system and its obsolete and
heterogeneous technologies and platforms. To
overcome these challenges, model-driven techniques
and tools were also incorporated. By turning models
into primary artefacts of the modernization process,
researchers and practitioners were expecting to
automate or semi-automate many of the
cumbersome activities, including the extraction of
knowledge from the legacy system, the development
of component architectures and detailed platform
specific design, and even the generation of specific
platform implementations. However, model-driven
methodologies for software modernization are still
scarce. They were mostly part of a small number of
industrial and research projects, such as MOMOCS

219Stavru S., Krasteva I. and Ilieva S..
Challenges of Model-driven Modernization - An Agile Perspective.
DOI: 10.5220/0004317502190230
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 219-230
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

(www.momocs.org), SOAMG (www.soamig.de),
MOOSE (www.moosetechnology.org), MoDisco
(www.eclipse.org/modisco), and various initiatives
of the Object Management Group, including
Architecture-Driven Modernization (ADM) and
Model Driven Architecture (MDA). However, they
provide only partial support for Model-Driven
Modernization (MDM) or are in their earliest stage.

REMICS (REuse and Migration of legacy
systems to Interoperable Cloud Services) is an EU
FP7 research project with the objective of supporting
the modernization of legacy systems to service
clouds by providing a model-driven methodology
and tools. REMICS proposes to improve existing
model-driven approaches (such as OMG’s MDA and
ADM) and extend them when needed to provide a
holistic view to migration that covers the whole
process with a methodology, tools, languages and
transformations (Mohagheghi et al. 2010).

Agile methods have been successfully applied in
software industry in the recent decade (Dyba and
Dingsoyr, 2009). During that period their adoption
has span from small development projects with low
risk and criticality to large distributed projects in
critical application domains such as banking and
automotive industry. Recently, a number of studies
on the applicability of agile methods and techniques
in the areas of Model-Driven Development,
Software Modernization, Service-Oriented
Architecture and Cloud Computing have been
published (Qumer and Henderson-Sellers, 2007);
(Abbattista et al., 2009); (Picek, 2009); (Prakash,
2010); (Zhang and Patel, 2011); (Matinnejad, 2011).
This paper further enlarges the existing body of
research by answering the following research
questions:
RQ1: Which agile techniques could add value to a
given MDM methodology on the Service Clouds?
RQ2: How do agile techniques address the
challenges of MDM on the Service Clouds?

In order to answer the above questions we propose a
systematic approach for reviewing the challenges for
MDM on the Service Clouds and an evaluation of
various agile techniques in terms of their potential to
address these challenges. The challenges that were
reviewed are extracted from four fields related to
MDM and Service Clouds, namely Model-Driven
Development, Software Modernization, Service-
Oriented Architecture and Cloud Computing. In
order to provide particular focus for this study, we
present only the first two fields in this paper, while
the challenges from the other two fields are
presented in (Stavru et al., 2012). The three main
contributions of this paper are: (1) the identification

and systematization of the challenges for MDM; (2)
the discussion on the possible implications of these
challenges on the incorporation of agile methods and
techniques into the MDM process; and (3) the
recommendation of agile techniques which could
address the identified challenges.

The paper is organised as follows: Section 2
describes the methodology used for conducting
literature review and evaluating agile techniques;
Section 3 presents the challenges from the fields of
Model-Driven Development and Software
Modernization, extracted by the review process and
relevant for the MDM on the Service Clouds;
Section 4 discusses the results of the evaluation of
agile techniques and their potential to address the
identified challenges; and Section 5 concludes the
paper and outlines directions for future research.

2 METHODOLOGY

The methodology used to assess Agile Software
Development in the context of MDM consists of two
consecutive phases. During the first phase, the
challenges of both fields of Model-Driven
Development and Software Modernization were
extracted, analyzed and synthesized through a
systematic literature review (Brereton et al., 2007).
Then, in the second phase, using the Delphi method
(Helmer and Helmer-Hirschberg, 1983), various
agile techniques (taken from XP and Scrum) were
evaluated by a panel of experts for their potential to
address the identified challenges. The methodology
and its phases are thoroughly described in the next
paragraphs.

2.1 Review

Systematic review provides an analytical review
scheme, which is necessary for evaluating the
contribution of a given body of literature. It employs
an objective, transparent and reproducible procedure
for the identification, appraisal, selection and
synthesis of studies highly relevant to specific
research questions and thus improves the quality of
the review process and its outcome (Brereton et al.,
2007).

The systematic review, presented in this paper,
was conducted following the approach proposed by
Kitchenham (Kitchenham, 2004), taking into
account also her guidelines on performing
systematic reviews in software engineering
(Kitchenham, 2007). Given the review objective for
providing a comprehensive overview and a

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

220

conceptual, rather than an empirical, consolidation
of the literature in regard to the challenges of MDM,
the data analysis was limited to descriptive, rather
than statistical (meta-analysis) methods and data
synthesis was conducted using qualitative methods
(or meta-ethnographic methods in particular). The
report of the conducted review will be briefly
summarized as it involves an extensive research
which cannot be presented within the limits of this
paper.

Articles were eligible for inclusion in the review
based on their relevance to the review objectives,
which are: (1) they describe the current state of
research and practice in Model-Driven Development
and / or Software Modernization; and (2) they
identify and discuss different challenges these areas
poses to both academia and industry. The relevance
was evaluated by reviewing the abstracts of the
articles and grading them as either relevant or
irrelevant. The inclusion was also restricted by the
type of the study, including only review articles and
excluding theoretical (conceptual) or empirical
studies. No restrictions were made in regard to the
publication year of the articles thus covering all the
years available in the included electronic database at
the time of the review (1 January, 2012). Other
exclusion criteria used were: (1) the article does not
have an abstract or the abstract is not available from
the included electronic database; (2) the access to
the full text of the article is restricted; and (3) the
full text of the article is not available in English.

The search strategy included both journals and
conference papers, and was limited to the Scopus
electronic database. Scopus is the largest abstract
and citation database of research literature and
quality web sources, which ensured the coverage of
nearly 18,000 titles from more than 5,000
publishers. The titles of both journals and
conference papers were searched using the following
search terms:
(1) Model-Driven Development - (“Model-Driven”
AND (Challenges OR Review OR Landscape OR
Roadmap OR “State of”));
(2) Software Modernization - (“Software” AND
(Modernization OR Migration OR Legacy OR
Transformation) AND (Challenges OR Review OR
Landscape OR Roadmap OR “State of”).

Applying the search strategy resulted in an initial
pool of 43 articles, 35 articles for Model-Driven
Development and 9 for Software Modernization.
Some additional articles, not covered by the search
strategy, were also included as being recommended
by the research community. Thus, by using the
inclusion and exclusion criteria the initial pool of

articles was limited to 26 articles. Their full texts
were thoroughly examined in order to extract the
challenges of Model-Driven Development and
Software Modernization, which are presented in the
subsequent sections.

2.2 Evaluation

The methodology used to evaluate various agile
techniques in terms of their potential to address the
challenges of MDM was the Delphi technique. This
technique is frequently used for eliciting consensus
from within a group of experts and has many
advantages over other methods of using panel
decision making (Helmer and Helmer-Hirschberg,
1983). Various researchers have found that one of
the major advantages of using it as a group response
is that consensus will emerge with one
representative opinion from the experts (Linstone
and Turoff, 1975); (Helmer and Helmer-Hirschberg,
1983). Other advantages include its simplicity,
anonymity, controlled feedback from the interaction,
etc. (Yousuf, 2007). Some limitations include that
judgments are derived from the subjective opinions
of experts and may not be representative, it requires
adequate time and participant commitment, its
validity extremely depends on the expertise and
experience of the panellists, etc. (Yousuf, 2007).
However, Linstone (Linstone and Turoff, 1975)
recommends the Delphi technique when the
examined issue does not allow the use of analytical
techniques but can benefit from the subjective
judgments on a collective basis, which is our case.

The process followed was the one proposed by
Pfeiffer (Pfeiffer, 1968) and included three
subsequent phases. During the first phase
(recommendation phase), a questionnaire was sent to
a panel of experts (with an average of 9 years of
both academic and industrial experience in Agile
Software Development), asking them to review the
list of challenges extracted by the review process
and make subjective judgment and recommendations
on which agile techniques (from Scrum and XP)
could be used to address these challenges. From
each expert a list of agile techniques was obtained.
During the second phase (evaluation phase), a
consolidated list of agile techniques was created
based on the individual recommendations of the
experts. The list was then sent to each expert to
further specify their level of agreement (using
standard five-point Likert rating scale for
agreement) on the potential of each technique to
address each of the listed challenges. During the
third phase (consensus phase) the consolidated list,

Challenges�of�Model-driven�Modernization�-�An�Agile�Perspective

221

together with experts’ ratings was sent once again in
order to discuss big differences in ratings. It was
decided that an agile technique would be considered
as having the potential to address a specific
challenge only if the final level of agreement from
each expert is either “Agree” or “Strongly Agree”.
After a number of iterations for clarifications and
argumentation, a consensus was gained, resulting in
a sorted list of agile techniques and the challenges
they could address.

3 CHALLENGES OF MDM

The challenges identified by the review process were
sorted into two categories:

(1) Organizational challenges – These are process-
and people-oriented challenges from all levels of the
organization, including: (1) strategic challenges (e.g.
organizational restructuring and evaluation of
business context); (2) managerial challenges (e.g.
competence acquisition and lack of commitment and
support); and (3) operational challenges (e.g. etc.
lack of process models, interoperable tools and
integrated development environments);

(2) Technical challenges – These are product- and
technology-oriented challenges related to the
specification, design, implementation and
verification of the modernized system.

As the focus of this study was on MDM, we
expected that not all of the challenges discussed by
the reviewed articles would be relevant. For that
reason, we limited the extraction of challenges to
only these challenges which are applicable either in
general or in the context of MDM, excluding
challenges which are applicable only in very specific
contexts (e.g. embedded and safety-critical systems).

3.1 Challenges of Model-Driven
Development

Total of 18 reviews were thoroughly examined in
order to extract the challenges relevant to Model-
Driven Development (MDD). As many challenges
were found, they were further consolidated into total
of 12 challenges, 7 of which were organizational and
5 were technical challenges. A summary of these
challenges, together with their references, is
presented in Table 1.

Table 1: Challenges of Model-Driven Development.

Challenge

1. Organizational challenges

O1 Lack of Process Models

Due to its early adoption stage, there is still scarce
availability of process models, methods and techniques
to guide the adoption and implementation of MDD
(Wagelaar, 2008, Teppola et al., 2009, Straeten et al.,
2009, Mohagheghi et al., 2009, Rivera et al., 2009).

O2 Acquisition of Competencies and Expertise

For an organization adopting MDD, thorough
understanding of the underlying technologies remains
highly critical. Therefore the acquisition of
competencies and expertise is a major driver for the
successful implementation of MDD. However the
acquisition of competencies and expertise in the context
of MDD is a cumbersome process due to the significant
technological threshold and steep learning curve
involved, and the lack of expertise available on the
labour market (Rios et al. 2006, Hailpern and Tarr
2006, France and Rumpe 2007, Streitferdt et al. 2008,
Teppola et al. 2009, Straeten et al. 2009, Kolovos et al.
2009, Mohagheghi et al. 2009, Lauder et al. 2010).

O3 Restructuring of Software Development Team

MDD requires redefining existing roles and
responsibilities (e.g. introducing roles as domain
experts, language and transformation specialists,
implementation / platform experts, etc.) and thus force
the restructuring of the traditional software
development team (Rios et al. 2006, Teppola et al.
2009, Lauder et al. 2010).

O4 Restructuring of Software Development Lifecycle

MDD changes the importance (e.g. automates some
activities and tasks) and the scope (e.g. introduce new
activities and tasks) of many of the phases in the
traditional software development lifecycle and thus
requires a restructured lifecycle (Rios et al. 2006,
Teppola et al. 2009).

O5 Reliance on High Level Models

In MDD high level models become the primary
artefacts as executable code and tests are automatically
(or semi-automatically) generated. This requires change
in the mindset of the traditional software engineers (e.g.
to think in terms of models, to be knowledgeable on the
problem domain, etc.) and the heavy reliance on
computer-based technologies to transform models into
running systems (Rios et al. 2006, France and Rumpe
2007, Chunying and Kang 2007, Zhu et al. 2008,
Streitferdt et al. 2008, Straeten et al. 2009, Teppola et
al. 2009, Vangheluwe 2011).

O6 Emphasizing Technology rather than Humans

Development environments and tools (and their
capabilities) play a key role in the successful
implementation of MDD. People are still seen from a
technological perspective through roles in the
processes. Thus the social aspect in MDD is still
ignored (Streitferdt et al. 2008).

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

222

Table 1: Challenges of Model-Driven Development.
(cont.)

O7 Immature Tools, Lack of integrated Development
Environments and Off-the-Shelf Infrastructure

Organizations adopting MDD have to provide their own
infrastructure (such as meta-models, model
transformations), configuration tools, build processes or
to address incompatible tools and development
environments (France and Rumpe 2007, Chunying and
Kang 2007, Wagelaar 2008, Streitferdt et al. 2008,
Teppola et al. 2009, Kolovos et al. 2009, Mohagheghi
et al. 2009, Rivera et al. 2009, Hailpern and Tarr 2006,
Loniewski et al. 2010, Tajali et al. 2011).

T1 Management of Models

While models at varying levels of abstractions are
created, evolved, analyzed and transformed, many
integration (e.g. versioning, merging, etc.), consistency
(between different models and levels of abstractions,
interrelations and dependencies, etc.) and scalability
(e.g. scaling beyond a few tens of thousands of model
elements per model) issues arise (Hailpern and Tarr
2006, France and Rumpe 2007, Streitferdt et al. 2008,
Teppola et al. 2009, Straeten et al. 2009, Kolovos et al.
2009, Tajali et al. 2011, Vangheluwe 2011).

T2 Transformation of Models

Synchronization transformation technologies are
required to “ripple” the results of transformations to
related views or to address the round-trip problems
between the models (incl. generated code), together
with new procedures for verifying the correctness of
these model transformations, etc. (Hailpern and Tarr
2006, France and Rumpe 2007, Streitferdt et al. 2008,
Teppola et al. 2009, Straeten et al. 2009, Kolovos et al.
2009, Rivera et al. 2009, Tajali et al. 2011, Vangheluwe
2011).

T3 Design of the Modeling Languages

The design of the modeling language is identified as
one of the major aspects related to modularity in
modeling. But how the modeling language should be
defined remains an open research topic, including
issues as how to provide support for creating and
manipulating problem-level abstractions as first-class
modeling elements in a language (the abstraction
challenge), what aspects of the semantics of the
modeling language need to be formalized and how this
should be done, etc. (Hailpern and Tarr 2006, France
and Rumpe 2007, Conmy and Paige 2007, Teppola et
al. 2009, Straeten et al. 2009, Kolovos et al. 2009,
Vangheluwe 2011).

T4 Quality of Models

MDD poses many challenges to software quality in
terms of localizing issues and troubleshooting (incl.
model-level debugging), fixing bugs in running
systems, ensuring correctness and reliability of test
cases, conducting performance and reliability analysis,
simulation, validation, model checking, etc.
(Pfadenhauer et al. 2005, Chunying and Kang 2007,
Zhu et al. 2008, Teppola et al. 2009, Straeten et al.
2009, Rivera et al. 2009).

Table 1: Challenges of Model-Driven Development.
(cont.)

T5 Integration Of Legacy / Handcrafted Code

In MDD there could be the case that software
engineers, after performing model-to-code
transformations, have to integrate generated code with
handcrafted or legacy code. This could results in
refactoring of the generated and foreign code, as well as
writing glue code (France and Rumpe 2007, Streitferdt
et al. 2008, Kolovos et al. 2009, Mohagheghi et al.
2009).

The descriptive analysis of the extracted

challenges revealed that organizational and technical
challenges were almost equality considered within
the reviewed literature. Organizational challenges
were examined by 89% of the reviewed articles with
an average of 5.4 articles per organizational
challenge, while the same numbers for technical
challenges were 75% and 7.4 respectively. The most
cited organizational challenge was the lack of
mature tools, integrated development environments
and off-the-shelf infrastructure (O7) with total of 11
citations (or 61% of the reviewed articles), followed
by competence acquisition (O2) and the reliance on
high level models (O5) with 10 (56%) and 8 (44%)
citations respectively. In terms of technical
challenges, model transformations (T2) have been
cited the most (by total of 11 articles or 61% of all
articles), followed by model management (T1) and
language challenges (T3) with 9 (50%) and 7 (39%)
citations respectively. Further analysis revealed
three reasons for observing the extracted
organizational challenges: (1) the early adoption
stage of Model-Driven Development (O1, O2, O7);
(2) its technology intensive nature (O2, O6); and (3)
the significant organizational change needed when
moving from traditional to model-driven software
development (O2, O3, O4, O5). The reasons for
observing the technical challenges were mostly
associated with the use of new and innovative
technologies, where high level abstractions are used
for specifying, designing, implementing and
verifying complex software systems.

The challenges in Table 1 have various
implications on the incorporation of agile methods
and techniques into the MDM process. Model-
Driven Development, by emphasizing technology
rather than humans (O6), shifts the focus on
integrated development environments, tools and
technologies and sees them as the primary factor for
success. This contradicts with the agile philosophy,
which postulates that people are the most valuable
asset of the organization and human/social aspects
are the key for the successful software development.

Challenges�of�Model-driven�Modernization�-�An�Agile�Perspective

223

Another implication is that there are many
prerequisites before models can be turned into fully
operational (or working) software system, even if
the software system provides only limited (but still
valuable) functionality. Example of such
prerequisites, which are requiring considerable time
and effort, are: (1) the definition of the problem
domain (O5); (2) the specification of the domain
language, transformation language, etc. (T3); (3) the
provision of infrastructure (such as meta-models,
model transformations), configuration tools and
build processes (O7); (4) the integration of legacy
and / or handcrafted code (T5); and many others. All
these prerequisites pose some limitations on the
extent to which agile methods and techniques could
be incorporated. In Agile Software Development,
working software is the only recognized measure of
progress and the rapid delivery is the ultimate goal,
so not having working software in the early stage of
the development lifecycle could be problematic.
Also, having so many prerequisites could threaten
the effectiveness of using short increments (2 - 4
weeks) and the possibility of delivering potentially
shippable products. This could result in reduced
customer value (e.g. through delayed time to market)
and untimely customer feedback (e.g. receiving the
feedback too late in the development lifecycle). The
challenges related to the management and
transformation of models (T1, T2) could
significantly hinder organization's ability to respond
to change due to the extensive and time-consuming
efforts needed for securing model integration,
consistency, scalability, transformation, etc. T1 and
T2, together with ensuring model quality (T4), could
also result in redundant documentation and
architecture, which could further delay the delivery
of working software. Probably the biggest
implication for incorporating agile methods and
techniques is that Model-Driven Development
emphasize on models rather than on coding and
testing (O5), and requires restructuring of the
traditional software development teams and
lifecycles (O3, O4). This could further hamper the
agile implementation into MDM because many of
the existing agile techniques might need significant
modifications (e.g. pair programming to be adapted
as pair modeling). Such possible modifications were
already discussed in the work of Zhang and Patel
(Zhang and Patel, 2011).

Although there are many implications for
incorporating agile methods and techniques into
Model-Driven Development, they seem to share
some common values. For example, using models as
the primary artifacts in the development process is

promising to increase the customer value (trough
better understanding of the problem domain from all
parties, incl. engineers; closer customer
collaboration and effective requirements elicitation
and prioritization; etc.) and the organization's ability
to respond to change (by changing only the high
level models and automatically distributing the
changes to the implementation / testing code).
However, in Model-Driven Development there is
still no special attention on individuals and
interactions, customer collaboration and working
software – values central to Agile Software
Development.

3.2 Challenges of Software
Modernization

A total of 8 reviews in the field of Software
Modernization were examined. The extracted
challenges were further consolidated into 11
challenges, including 7 organizational challenges
and 4 technical. They are shown in Table 2.

Table 2: Challenges of Software Modernization.

Challenge

Organizational challenges

O1 Definition of Business Context

Software modernization (as a heavy initiative) to be
successful needs to be considered in regard to the
specific business / organizational context and aligned
with the existing business goals and strategies, project
constraints as time / budget, organizational
stakeholders, etc. Thus evaluating the feasibility of the
modernization initiative (e.g. through pilot
modernizations, prototypes, etc.) should be an
inevitable part of the modernization process (Lewis et
al., 2005, Mohagheghi and Sæther, 2011).

O2 Lack of Business Commitment

Software modernization success also depends on how
well the modernization efforts are justified in terms of
business value and the extent to which these efforts are
supported by all organizational stakeholders, including
customers and management. This requires additional
efforts in order to motivate the various stakeholders and
gain their commitment (Lewis et al., 2005, Teppe,
2009).

O3 Resistance to Change

Legacy systems are often critical for business (these
systems are matured, heavily used, and constitute
massive corporate assets), so stakeholders (incl.
business people, customers, etc.) could be sensitive
about the modernization process and might resist too
many changes due to higher risk (Chowdhury and
Iqbal, 2004, Lewis et al., 2005, Al-Azzoni et al., 2011).

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

224

Table 2: Challenges of Software Modernization. (cont.)

O4 Acquisition of Competencies and Expertise

The software users must be re-trained and equipped to
use and understand the new applications and platforms
effectively. The same holds for the whole software
development team, which has to be re-trained to use the
modernization tools as well as the new technologies,
languages, platforms, etc. that are involved (Teppe
2009).

O5 Increased Risk Due to New Technologies

New technologies should be prior evaluated for both
business and technical feasibility as they might have
tremendous impact on the successful modernization of
the legacy systems (Lewis et al. 2005).

O6 Lack of in-depth Knowledge

It might be the case that there's a lack of in-depth
knowledge regarding the functional / non-functional
aspects and requirements for a given legacy system
(due to incomplete, inadequate, out-of-date or missing
documentation, the people who developed the system
had left the organization, etc.), while the target system
is expected to reflect the source system as it is
(Chowdhury and Iqbal 2004, Kvam et al. 2005, Al-
Azzoni et al. 2011).

O7 Lack of Support

The business people and customers might provide
limited or no assistance during the modernization
process. They might not have the time or possibility to
re-evaluate their business needs in order to re-evaluate
the source system and extend its functionality. Also
they might point the source systems as the ultimate
source for requirements (Lewis et al. 2005, Teppe
2009).

Technical challenges

T1 Extracting Business and Technical Knowledge from
Legacy Systems

The need to extract business and technical knowledge
could be problematic due to incomplete, inadequate,
out-of-date architectural and design documentation, low
quality of source code, lack of unit / acceptance tests,
etc. This requires additional efforts (manual or semi-
automated) and could become a time consuming
activity (Chia-Chu and Bayrak 2006).

T2 Ensuring Behavioural Equivalence between Source
and Target Systems

Additional efforts are also needed in order to secure the
behavioural equivalence (in terms of functionality)
between the source and target systems (Lewis et al.
2005, Chia-Chu and Bayrak 2006, Torchiano et al.
2008).

T3 Co-existence of Source and Target Systems

Additional issues arise when the source and target
systems should co-exist not only during the
modernization process but also when it is finalized (e.g.
integration issues, replication of efforts, data, utilization
of resources, etc.)

Table 2: Challenges of Software Modernization. (cont.)

T4 Overcome Obsolete and/or Heterogeneous
Technologies (both Software and Hardware)

It could be the case that the legacy system is based on
obsolete and heterogeneous technologies and platforms,
which makes harder the modernization process to new
technologies / platforms due to limited possibilities for
reuse (in terms of design, architecture, implementation
details, test suits and etc.). Example is migration from
procedural programming paradigm to object-oriented
programming paradigm, or migration from a mixture of
COBOL/Delphi/.NET/C# based system to pure Java
based system and etc.

The descriptive analysis of the extracted

challenges revealed that organizational challenges
are prevailing within the reviewed literature.
Organizational challenges were examined by 75% of
the reviewed articles with an average of 2 articles
per organizational challenge, while the same
numbers for technical challenges were 38% and 1
respectively. The most cited organizational
challenges were the resistance to change (O3) and
the lack of in-depth knowledge (O6) with total of 3
citations each (38%), followed by the definition of
business context (O1) and the lack of business
commitment (O2) with 2 citations (25%)
respectively. In terms of technical challenges,
ensuring behavioural equivalence (T2) have been
cited the most, by total of 3 articles (38%), followed
by extracting business and technical knowledge
from legacy systems (T1) with only one citation.
The co-existence of source and target systems (T3)
and the overcoming obsolete and/or heterogeneous
technologies (T4) were not cited in any of the
reviewed articles. They were additionally included
by the authors, based on their own experience with
software modernization in real industrial settings.
The dominance of organizational values within the
reviewed literature could be explained by the
significant organizational change, required by the
modernization process, which affects crucial
business assets of the organization. So how this
change will be introduced and managed within the
organization becomes an arduous task. The technical
challenges on the other hand are context specific
(depend on the specific technology / platform /
programming language / etc. of the source and target
systems), although there are some general technical
challenges relevant to any software modernization
initiative (Table 2).

Software Modernization and its challenges
further affect the way agile methods and techniques
could be incorporated into the MDM process.
Challenges as lack of business commitment (O2)

Challenges�of�Model-driven�Modernization�-�An�Agile�Perspective

225

and support (O7) could negatively impact customer
collaboration, which is one of the key success
factors for the implementation of Agile Software
Development. The co-existence of source and target
systems (T3) could reduce the customer value (in
terms of new functionality, improved quality, etc.)
as it could shift the focus from enhancing the
modernized system to keeping both source and
target systems aligned and synchronized. The
increased risk (e.g. failure due to inappropriate
selection of technologies and process models) (O5)
and stakeholders’ sensitiveness to the modernization
process (e.g. crucial business assets are being
changed), could lead to significant change resistance
and organizational rigidness. This could limit
organization's ability to respond to change.

Although there are some implications for
incorporating agile methods and techniques in the
context of Software Modernization, our analysis
revealed that they are no significant obstacles for
scaling Agile Software Development for
modernizing complex software systems.

4 RESULTS

The present section discusses the results of the
evaluation of agile techniques based on the Delphi
method. The results are shown in Table 3, where the
techniques are sorted by the total number of
challenges they are expected to address (shown in
brackets next to the technique’s name).

The agile techniques with the highest potential to
address the challenges of MDM (total of 18
challenges) were Small Releases (from XP), Sprints
(from Scrum) and Cross-Functional Teams (Table
3). One of the arguments for Small Releases and
Sprints was (1) receiving rapid feedback, including
feedback from the process (e.g. the adequacy of
team roles and responsibilities, and the development
lifecycle), from the product (e.g. the effectiveness of
the problem domain, modeling languages, model
transformations, etc. and the quality of the models)
and from the people (e.g. lack of commitment and
support). Another argument was (2) increasing the
organizational responsiveness to change by allowing
changes to happen in each subsequent increment
(e.g. refinement of the problem domain, modeling
languages, model transformations, etc. and changes
in the infrastructure, build processes, tools and
integrated environments, etc.). Among the other
arguments for incorporating Small Releases and
Sprints were: (3) gaining commitment and support
through frequent communication, increased visibility

and traceability, etc.; (4) effective competency
acquisition through learning by doing; (5) reducing
risk through early detection of potential issues; (6)
early delivery of customer value; and etc.

Cross-Functional Teams (from Scrum) was also
highly recommended by the experts. Among the
arguments for using Cross-Functional Teams,
together with Whole Team and Pair Programming
(from XP), were: (1) the effective acquisition of
competencies and expertise (e.g. through daily
knowledge transfer and direct interaction); (2)
reduced risk (e.g. through homogeneous distribution
of knowledge and expertise); (3) emphasis on
human/social aspects (e.g. through empowering the
team, building trust and respect, and enhancing
collaboration and interaction between individuals);
(4) reducing complexity (e.g. all required knowledge
and expertise are within the boundaries of the team);
(5) increased responsiveness and support (e.g.
through flawless communication and collaboration,
and customer involvement); (6) securing non-
functional concerns (e.g. the quality of models and
the behavioural equivalence between the source and
target systems; etc.
Planning Game (from XP) and Sprint Planning
Meeting (from Scrum) also have strong potential for
addressing the challenges of MDM (total of 15
challenges). Experts motivated their
recommendations with: (1) active involvement of
customers or their representatives in the
development process; and (2) enhanced
collaboration between customers and the
development team. Bringing together the customer
(or customer’s representative) and the development
team before each iteration could also result in (3)
increased customer value (e.g. through effective
requirements elicitation and prioritization,
refinement of the problem domain and mutual
understanding of the business context); (4) reduced
risk for failure (e.g. due to collective estimations);
(5) gaining support and commitment from
stakeholders; (6) clarification of team roles and
responsibilities; (7) early detection and escalation of
concerns; etc. Other agile techniques, highly
recommended by the experts were Continuous
Integration and Test-Driven Development (from XP)
and Product Backlog, Spring Backlog and Daily
Scrum (from Scrum).

Based on the presented results and following the
Pareto principle (80% of the effects come from 20%
of the causes) (Pareto, 1971), we recommend that an
organization, undertaking MDM and interested in
Agile Software Development, should start with
small releases (or sprints), encourage cross-

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

226

Table 3: Agile techniques and the challenges they are expected to address.

Agile Technique MDD Challenges SM Challenges

Extreme Programming (XP)

Small Releases (18) O2, O3, O4, O7, T1, T2, T3, T4, T5 O2, O3, O4, O5, O6, O7, T1, T2, T3

Whole Team (16) O2, O3, O4, O5, O6, T4, T5 O1, O2, O3, O4, O5, O6, O7, T1, T2

Planning Game (15) O3, O4, O5, T2, T3 O1, O2, O3, O5, O6, O7, T1, T2, T3, T4

Pair Programming (13) O2, O4, O5, O7, T2, T3, T4, T5 O4, O6, T1, T2, T4

Continuous Integration (11) O4, O5, O6, O7, T1, T2, T4, T5 O3, T3, T4

Test-Driven Development (10) O4, O5, O7, T4, T5 O3, O4, T1, T2, T3

Collective Code Ownership (7) O3, O4, O5, T1, T2, T3 O6

System Metaphor (4) O2, O4, O5 O4

Sustainable Pace (4) O2, O6, O7 O4

Refactoring (3) O4, O5 T4

Simple Design (2) O4, O5 -

Coding Standards (2) O4, O5 -

Scrum

Sprint (18) O2, O3, O4, O7, T1, T2, T3, T4, T5 O2, O3, O4, O5, O6, O7, T1, T2, T3

Cross-Functional Team (18) O2, O3, O4, O5, O6, T1, T2, T3, T4, T5 O4, O5, O6, O7, T1, T2, T3, T4

Sprint Planning Meeting (15) O3, O4, O5, T2, T3 O1, O2, O3, O5, O6, O7, T1, T2, T3, T4

Product Backlog (11) T2, T3 O1, O2, O3, O5, O6, O7, T1, T2, T3

Spring Backlog (11) T2, T3 O1, O2, O3, O5, O6, O7, T1, T2, T3

Product Owner (8) O3, O4 O1, O2, O3, O6, O7, T1

Sprint Review Meeting (6) - O2, O3, O6, O7, T2, T3

Daily Scrum (4) O4, T1, T5 T4

Scrum Master (4) O3, O4 O5, O7

Scrum of Scrums (2) O4, T1 -

Sprint Retrospective (2) O2 O4

Sprint Burn Down Chart (0) - -

functional teams and incorporate planning meetings
similar to either planning game or sprint planning
meeting. This would guarantee minimum efforts for
incorporating agile into the MDM process and
maxim efficiency in terms of addressed challenges.
Next, if the organization would like to further
increase its agility, it might continue with Product /
Sprint Backlogs, Continuous Integration and On-Site
Customer. These techniques also have high potential
to address the challenges of MDM. Finally, as
almost all of the examined agile techniques could be
beneficial for the MDM, an organization might also
consider full implementation of either XP or Scrum
(or a hybrid), as this will ensure cohesiveness and
will allow the organization to take full advantage of
these methods.

The results in Table 3 can be further used to sort
out the techniques which have the potential to
address a particular challenge. This might be useful
when one or more challenges of MDM have greater
impact on the project than others. Then, all the
techniques recommended for that particular
challenge might be considered for introduction in the

project.

5 LIMITATIONS

This study has its recognized limitations. Some of
these limitations are coming from the review
methodology used to extract the challenges of MDD
and Software Modernization. Narrowing the search
strategy to include only the titles of the published
articles and limiting the publication databases to a
single electronic database might have minimized the
likelihood of capturing all relevant data and thus
maximized the effects of publication bias. The risk
of publication bias was further increased by
excluding studies depending on their type of study,
unavailability and language. However, by taking
some additional actions (e.g. including studies
recommended by the research community) and by
rigorously following the procedure of the systematic
review, the probability that the omitted research
could have critically altered our findings and

Challenges�of�Model-driven�Modernization�-�An�Agile�Perspective

227

threaten their generalizability (or external validity)
has been reduced.

The use of the Delphi method to evaluate agile
techniques in terms of MDM possesses some
limitations as well. Among the most critical
limitations are that the evaluation was derived from
the subjective opinions of experts, which may not be
representative, and that the validity of the evaluation
extremely depends on their expertise and experience.
In order to mitigate these threads, the selection of
the panellists was restricted to experts with more
than 5 years of both academic and industrial
experience in Agile Software Development, as well
as proved knowledge and experience in MDD and
Software Modernization.

6 CONCLUSIONS

This paper presented the challenges of Model-
Driven Development and Software Modernization,
which were extracted, analyzed and synthesized
through a systematic literature review. Then, using
these challenges, the paper: (1) discussed the
possible implications for incorporating agile
methods and techniques into the MDM process; (2)
evaluated various agile techniques (from XP and
Scrum) for their potential to overcome the
challenges of MDM; and (3) provided
recommendations on which agile techniques are
most applicable in the context of MDM and gave
suggestions (following the Pareto principle) on how
they should be incorporated into the MDM process.
Although there were many implications for
combining Agile Software Development and MDM,
our final conclusion is that Agile Software
Development and MDM are compatible and using
various agile techniques could be beneficial for
organizations that are approaching software
modernization through model-driven development.

Adding our previous results in the fields of
Service-Oriented Architecture and Cloud Computing
(Stavru et al. 2012), our future work is proposing a
comprehensive agile methodology for model-driven
modernization of software systems with deployment
in Service Cloud and the empirical evaluation of this
methodology using the REMICS’s case studies.

ACKNOWLEDGEMENTS

The research in this paper was partially supported by
FP7 project REMICS, contract No. 257793 and by

National Scientific Fund, Bulgarian Ministry of
Education and Science, Research Project agreement
n. DO-02-182.

REFERENCES

Abbattista, F., Bianchi, A. & Lanubile, F. 2009. 'A
Storytest-Driven Approach to the Migration of Legacy
Systems.' In P. Abrahamsson, M. Marchesi, F. Maurer,
W. Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw &
C. Szyperski (Eds.) Agile Processes in Software
Engineering and Extreme Programming: 149-54.
Springer Berlin Heidelberg.

Al-Azzoni, I., Zhang, L. & Down, D. G. 2011. 'Abstract
only: performance evaluation for software migration.'
SIGSOFT Softw. Eng. Notes, 36:5, 42-42.

Arsanjani, A. 2004. 'Service-oriented modeling and
architecture', IBM developerWorks.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.
& Khalil, M. 2007. 'Lessons from applying the
systematic literature review process within the
software engineering domain.' J. Syst. Softw., 80:4,
571-83.

Butler, J. 2007. 'The Architecture Component of the SAE
Reference Framework for SOA.' CBDI Journal, 11-23.

Chia-Chu, C. & Bayrak, C. 2006. 'Legacy Software
Modernization.' Paper presented at Systems, Man and
Cybernetics, 2006. SMC '06. IEEE International
Conference on. 8-11 Oct. 2006.

Chowdhury, M. W. & Iqbal, M. Z. 2004. 'Integration of
Legacy Systems in Software Architecture.' Paper
presented at Specification and Verification of
Component-Based Systems.

Chunying, Z. & Kang, Z. 2007. 'Transformational
Approaches to Model Driven Architecture - A
Review.' Paper presented at Software Engineering
Workshop, 2007. SEW 2007. 31st IEEE. March 6
2007-Feb. 8 2007.

Conmy, P. & Paige, R. F. 2007. 'Challenges when using
Model Driven Architecture in the development of
Safety Critical Software.' Paper presented at Model-
Based Methodologies for Pervasive and Embedded
Software, 2007. MOMPES '07. Fourth International
Workshop on. 31-31 March 2007.

Dyba, T. & Dingsoyr, T. 2009. 'What Do We Know about
Agile Software Development?' IEEE Softw., 26:5, 6-9.

France, R. & Rumpe, B. 2007. 'Model-driven
Development of Complex Software: A Research
Roadmap.' 2007 Future of Software Engineering: 37-
54. IEEE Computer Society.

Hailpern, B. & Tarr, P. 2006. 'Model-driven development:
The good, the bad, and the ugly.' IBM Systems
Journal, 45:3, 451-61.

Helmer, O. & Helmer-Hirschberg, O. 1983. Looking
forward: a guide to futures research. Sage
Publications.

Kitchenham, B. 2004. 'Procedures for performing
systematic reviews.' Keele University and NICTA.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

228

Kitchenham, B. A. 2007. 'Guidelines for performing
Systematic Literature Reviews in Software
Engineering.' Keele University and University of
Durham.

Kolovos, D. S., Paige, R. F. & Polack, F. A. 2009. 'The
Grand Challenge of Scalability for Model Driven
Engineering.' In R. C. Michel (Ed.) Models in
Software Engineering: 48-53. Springer-Verlag.

Kvam, K., Lie, R. & Bakkelund, D. 2005. 'Legacy system
exorcism by Pareto's principle.' Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications:
250-56. San Diego, CA, USA: ACM.

Lauder, M., Schlereth, M., Rose, S. & Schürr, A. 2010.
'Model-driven systems engineering: State-of-the-art
and research challenges.' Bulletin of the Polish
Academy of Sciences, Technical Sciences, 58:3, 409-
22.

Lewis, G., Morris, E., O’Brien, L., Smith, D. & Wrage, L.
2005. SMART: The Service-oriented Migration and
Reuse Technique. Carnegie Mellon University,
Software Engineering Institute.

Linstone, H. A. & Turoff, M. 1975. The Delphi method:
techniques and applications. Addison-Wesley Pub.
Co., Advanced Book Program.

Loniewski, G., Insfran, E. & Abrahão, S. 2010. 'A
Systematic Review of the Use of Requirements
Engineering Techniques in Model-Driven
Development.' In D. Petriu, N. Rouquette & Ø.
Haugen (Eds.) Model Driven Engineering Languages
and Systems: 213-27. Springer Berlin / Heidelberg.

Matinnejad, R. 2011. 'Agile Model Driven Development:
An Intelligent Compromise.' Paper presented at
Software Engineering Research, Management and
Applications (SERA), 2011 9th International
Conference on. 10-12 Aug. 2011.

Mohagheghi, P., Berre, A. J., Sadovykh, A., Barbie, F. &
Benguria, G. 2010. 'Reuse and Migration of Legacy
Systems to Interoperable Cloud Services- The
REMICS project.' Paper presented at
Mda4ServiceCloud'10 at ECMFA.

Mohagheghi, P., Fernandez, M. A., Martell, J. A.,
Fritzsche, M. & Gilani, W. 2009. 'MDE Adoption in
Industry: Challenges and Success Criteria.' In R. C.
Michel (Ed.) Models in Software Engineering: 54-59.
Springer-Verlag.

Mohagheghi, P. & Sæther, T. 2011. 'Software Engineering
Challenges for Migration to the Service Cloud
Paradigm: Ongoing Work in the REMICS Project.'
Paper presented at Services (SERVICES), 2011 IEEE
World Congress on. 4-9 July 2011.

Pareto, V. 1971. Manual of political economy. Scholars
Book Shelf.

Pfadenhauer, K., Dustdar, S. & Kittl, B. 2005. 'Challenges
and solutions for model driven Web service
composition.' Paper presented at Enabling
Technologies: Infrastructure for Collaborative
Enterprise, 2005. 14th IEEE International Workshops
on. 13-15 June 2005.

Pfeiffer, J. 1968. New look at education: systems analysis

in our schools and colleges. Odyssey Press.
Picek, R. 2009. 'Suitability of Modern Software

Development Methodologies for Model Driven
Development.' Journal of Information and
Organizational Sciences, 33:2, 285-95.

Plummer, D. C. 2001. 'Service-Oriented Development of
Applications: SODA Pops', [online at
http://www2.roguewave.com/support/docs/leif/leif/ht
ml/leifintroug/2-3.html].

Prakash, G. 2010. 'Achieving Agility in Adaptive and
Perfective Software Maintenance.' Paper presented at
14th European Conference on Software Maintenance
and Reengineering (CSMR '10).

Qumer, A. & Henderson-Sellers, B. 2007. 'ASOP: An
Agile Service-Oriented Process.' Proceedings of the
2007 conference on New Trends in Software
Methodologies, Tools and Techniques: Proceedings of
the sixth SoMeT_07: 83-92. IOS Press.

Razavian, M. & Lago, P. 2009. 'Towards a conceptual
framework for legacy to SOA migration.' Proceedings
of the 2009 International Conference on Service-
oriented Computing: 445-55. Stockholm, Sweden:
Springer-Verlag.

Rios, E., Bozheva, T., Bediaga, A. & Guilloreau, N. 2006.
'MDD Maturity Model: A Roadmap for Introducing
Model-Driven Development.' In A. Rensink & J.
Warmer (Eds.) Model Driven Architecture –
Foundations and Applications: 78-89. Springer Berlin
/ Heidelberg.

Rivera, J. E., Romero, R. & Vallecillo, A. 2009. 'Behavior,
Time and Viewpoint Consistency: Three Challenges
for MDE.' In R. C. Michel (Ed.) Models in Software
Engineering: 60-65. Springer-Verlag.

Stavru, S., Krasteva, I. & Ilieva, S. 2012. 'Challenges for
Migrating to the Service Cloud Paradigm: An Agile
Perspective.' Paper presented at 1st Workshop on
Cloud-Enabled Business Process Management.

Straeten, R., Mens, T. & Baelen, S. 2009. 'Challenges in
Model-Driven Software Engineering.' In R. C. Michel
(Ed.) Models in Software Engineering: 35-47.
Springer-Verlag.

Streitferdt, D., Wendt, G., Nenninger, P., Nyssen, A. &
Lichter, H. 2008. 'Model Driven Development
Challenges in the Automation Domain.' Paper
presented at Computer Software and Applications,
2008. COMPSAC '08. 32nd Annual IEEE
International. July 28 2008-Aug. 1 2008.

Tajali, S. B., Radonjic, V. D. & Corriveau, J. P. 2011.
'Challenges of Variability in Model-Driven and
Transformational Approaches: A Systematic Survey.'
Paper presented at Software Architecture (WICSA),
2011 9th Working IEEE/IFIP Conference on. 20-24
June 2011.

Teppe, W. 2009. 'The ARNO Project: Challenges and
Experiences in a Large-Scale Industrial Software
Migration Project.' Paper presented at Software
Maintenance and Reengineering, 2009. CSMR '09.
13th European Conference on. 24-27 March 2009.

Teppola, S., Parviainen, P. & Takalo, J. 2009. 'Challenges
in Deployment of Model Driven Development.' Paper

Challenges�of�Model-driven�Modernization�-�An�Agile�Perspective

229

presented at Software Engineering Advances, 2009.
ICSEA '09. Fourth International Conference on. 20-25
Sept. 2009.

Torchiano, M., Di Penta, M., Ricca, F., De Lucia, A. &
Lanubile, F. 2008. 'Software migration projects in
Italian industry: Preliminary results from a state of the
practice survey.' Paper presented at Automated
Software Engineering - Workshops, 2008. ASE
Workshops 2008. 23rd IEEE/ACM International
Conference on. 15-16 Sept. 2008.

Vangheluwe, H. 2011. 'Invited Talk: Promises and
Challenges of Model-Driven Engineering.' Paper
presented at Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on. 1-4
March 2011.

Wagelaar, D. 2008. 'Challenges in bootstrapping a model-
driven way of software development.' Proceedings of
the First International Workshop on Challenges in
Model-Driven Software Engineering (ChaMDE 2008):
25–30. Toulouse, France.

Yousuf, M. I., 12(4). 2007. 'Using Experts’ Opinions
through Delphi Technique.' Practical Assessment
Research & Evaluation, 12:4.

Zhang, Y. & Patel, S. 2011. 'Agile Model-Driven
Development in Practice.' IEEE Software, 28:2, 84-91.

Zhu, H., Wong, W. E. & Belli, F. 2008. 'Advancing test
automation technology to meet the challenges of
model-driven software development: report on the 3rd
workshop on automation of software test.' Companion
of the 30th International Conference on Software
Engineering: 1049-50. Leipzig, Germany: ACM.

Zimmermann, O., Krogdahl, P. & Gee, C. 2004. 'Elements
of Service-Oriented Analysis and Design', IBM
developerWorks.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

230

