

TStore: A Trace-Base Management System
Using Finite-state Transducer Approach for Trace Transformation

Raafat Zarka1,2, Pierre-Antoine Champin1,3, Amélie Cordier1,3, Elöd Egyed-Zsigmond1,2,
Luc Lamontagne4 and Alain Mille1,3

1Université de Lyon, CNRS, Lyon, France
2INSA-Lyon, LIRIS, UMR5205, F-69621, Villeurbanne Cedex, France

3Université Lyon 1, LIRIS, UMR5205, F-69622, Villeurbanne Cedex, France
4Department of Computer Science and Software Engineering, Université Laval, Québec, G1K 7P4, Canada,

Keywords: Trace-Base Management System, Finite State Transducer, Trace Transformation, Human Computer
Interaction, Trace Model.

Abstract: This paper presents TStore, a Trace-Base Management System (TBMS) handling storage, transformation
and exploitation of traces collected by external applications. As the experiments reported in this paper
demonstrate, TStore brings a solution to performances and storage issues usually encountered by TBMS. To
exploit traces, transformations are used. TStore provides predefined transformation functions as well as a
customized transformation based on Finite State Transducers (FST), which are also presented in this paper.

1 INTRODUCTION

Nowadays, many applications collect traces of their
users’ interactions. These traces can be used in many
ways: analysis of users’ behaviours, visualization of
interactions, debugging, mining, etc. Storing these
traces, and developing efficient mechanisms to
exploit them, represents a considerable challenge. In
this paper, we report on TStore, a Trace-Base
Management System (Settouti, 2011) that addresses
this challenge.

TStore was developed to solve trace management
issues we had while working on an application
called Wanaclip (www.wanaclip.eu). Wanaclip is a
web application for generating video clips from
different media: photos, videos, music and sounds.
Users enter keywords, the system searches video
sequences annotated with these keywords and lets
the users drag them into a timeline in order to
compose a video clip. Given the large amount of
content available, the problem is to quickly find
content that truly meets users’ needs. Therefore, our
goal was to develop a recommendation mechanism
for this application. We decided to use a trace-based
approach to provide contextual video
recommendations. For that, we needed a TBMS.

However, existing TBMS presented performance
issues, notably due to the fact that they were not
efficient enough to process large flows of events
sent by web applications such as Wanaclip. After
identifying the main problems, we designed TStore.

In this paper, first, we present the architecture of
TStore. TStore is implemented as a web tool
allowing agents (software systems or human users)
to concurrently access, store and reuse traces issued
from various applications. It is composed of four
modules: Storage Manager, Querying System,
Transformer and Security Manager. TStore manages
M-Traces in a relational database and benefits from
its storage and querying facilities. Experimentations
reported at the end of this paper demonstrate TStore
efficiency.

The second contribution described in this paper
is the use of Finite-State Transducer (FST) principle
(Roche and Schabes, 1997) to implement specific
trace transformations. Trace transformation is a
process allowing the transformation of existing
traces in order to better exploit them.
Transformations are manifold (filtering,
segmentation, reformulation, etc.). Here, we show
how we apply FST transformations to the
recommendation problems we have in Wanaclip.

117Zarka R., Champin P., Cordier A., Egyed-Zsigmond E., Lamontagne L. and Mille A..
TStore: A Trace-Base Management System - Using Finite-state Transducer Approach for Trace Transformation.
DOI: 10.5220/0004317301170122
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 117-122
ISBN: 978-989-8565-42-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

The remaining of the paper is organized as follows.
Section 0presents background knowledge on trace-
based systems. TStore structure and functionalities
are presented in Section 0. We report the
implementation, experiments and performance study
in Section 0. We discuss the related work in
Section 0, and conclude our work in Section 0.

2 BACKGROUND

An interaction trace is a rich record of the actions
performed by a user on a system. Therefore, traces
enable to capture users’ experiences. Here, we focus
on specific traces, called modeled traces (M-Traces).
M-Traces differ from logs in the sense that they
come with a model. An M-Trace includes both the
sequence of temporally situated observed elements
(obsels) which is the instantiated trace and the model
of this trace which gives the semantics of obsels and
the relations between them (Settouti, 2011).

The obsels are generated from the observation of
the interaction between the user and the system.
Each obsel has, at least, a type and two timestamps
(begin and end). Obsels can also have an arbitrary
number of attributes and relations with other obsels.
Each obsel type has a domain of attributes and
indicates the values of its attributes in the range of
the attribute type. A trace base is a collection of M-
Traces.

Figure 1: An example of M-Trace transformations.

A Trace-Base Management System (TBMS) is a
tool for managing trace bases. A TBMS guarantees
the possibility, at any time, to navigate between
transformed M-traces. Figure 1 shows an M-Trace
T1 that is transformed into T2 and T3 (level 2). It
also shows that T2, T3 are transformed (merged) into
T4 (level 3). Each trace model contains different
types of obsels that may have relations between
them. For example, in the M-Trace T1, M1 is its
trace model that contains four obsel types (c1, c2,
c3, c4) and one relation type r1. T1 consists of seven
obsels (o1, o2... o7).

3 TSTORE ARCHITECTURE AND
SPECIFICATIONS

In this section, we describe the structure of TStore
and its functionalities (see Figure 2). TStore is a
TBMS for storing M-Traces collected by the Trace
Collector from the client application (Wanaclip). In
additions, TStore answers the queries of the assistant
that observes the way the user interacts with the
system, to help him doing his task effectively.
TStore relies on a Database Management System
(DBMS) and therefore benefits from performance
and storage facilities. TStore contains four modules.
The Storage Manager receives messages from
external clients and stores them in the database in
the form of M-Traces. The Querying System
retrieves M-Traces from the database to answer
queries of agents. The Transformer contains
different functions to perform operations on M-
Traces to produce transformed M-Traces. Finally,
the Security Manager ensures M-Traces protection
and the distribution of roles and privileges.

Figure 2: TStore general structure.

3.1 Storage Management

The Storage Manager is a module responsible for the
communication between the M-Traces stored in the
database and the client application connected to
TStore. It contains services for creating models,
storing M-Traces, obsels and their attribute values.
External trace collectors send messages containing
the collected M-Traces to the Storage Manager for

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

118

storing them in the database. The Storage Manager
allows concurrent access, so multiple users can
interact with the system and store or retrieve their
M-Traces simultaneously.

Some objects cannot be created until the end of
creation of all objects related to them. TStore
schedule a sequence of executions to ensure the
dependencies between objects. For example, storing
an obsel requires finishing the storage of all its
attributes and their values. TStore benefits from
XML structure to do that.

The Storage Manager can also automatically
update a trace model if it has some missing items
like an obsel type or an attribute type. If some
attributes do not have an attribute type in the
predefined model, the Storage Manager
automatically creates a new attribute type. This
feature is useful because it allows M-Trace
collectors to store their M-Traces without defining
all the details of their models, like in web logs.

3.2 M-Trace Transformation

The transformation of M-Traces helps to move from
a first simple interpretation (almost raw data coming
from sensors) to the actionable knowledge level of
abstraction. The Transformer has predefined
functions for frequently used transformations such
as filtering, aggregation and segmentation. In these
transformations, the transformed M-Trace preserves
the same obsel types as the original M-Trace and it
doesn’t produce new ones. However, simple rules
are not suitable for generating outputs. Therefore,
we need a mechanism able to recognize and generate
transformed M-Traces.

We propose to use a Finite-State Transducer
(FST) transformation approach that allows defining
customized transformations using FST task
signatures. The task signature concept has been
introduced in (Champin et al., 2004) as a set of event
declarations, entity declarations, relations, and
temporal constraints. A task signature is a formal
description of a specific task for which a user might
need assistance. As shown in Definition 1,
transducers are automata that have transitions
labeled with two symbols. One of the symbols
represents input, the other is output (Roche and
Schabes, 1997). On this view, a transducer is said to
transduce (i.e., translate) the contents of its input
symbols to its output symbols, by accepting a string
on its input tape and generating another string on its
output tape. A non deterministic transducer may
produce more than one output for each input string.
A transducer may also produce no output for a given

input string, in which case it is said to reject the
input.

Definition 1. A deterministic finite state transducer
(DFST) is described as a 7-tuple ሺ࣫, ݅, ,ܨ Ʃ, ∆, ,ߜ ሻߪ
where:

 ࣫ is the set of states,
 ݅ ∈ ࣫ is the initial state,
 ܨ ⊆ ࣫ is the set of final states,
 Ʃ and ∆ are finite sets corresponding

respectively to the input and output
alphabets of the transducer,

 ߜ is the state transition function which
maps ࣫ ൈ Ʃ to ࣫,

 ߪ is the output emission function which
maps ࣫ ൈ Ʃ to ∆.

A transducer is said to be deterministic if both
the transition function and the emission function
lead to sets consisting of at most one element.
Usually, the transition function and the emission
function are combined into a single function, which
may also be called δ, in ࣫ ൈ Ʃ	 → ࣫ ൈ ∆, mapping a
pair of a state and an input symbol onto a pair of a
state and an output symbol (Mohri, 1997).

In TStore, FST transformation consists in
replacing some obsels matching the FST with more
abstract obsels. Currently, it is experts that define
the structure of the new obsel type. It is possible that
two different transducers generate the same
transformed M-Trace. However, FST should be
deterministic to avoid ambiguity. By using FST we
can apply a large variety of transformations. To
create new FST transformation, the 7-tuple
ሺ࣫, ݅, ,ܨ Ʃ, ∆, ,ߜ ሻ described in Definition 1 shouldߪ
be defined. TStore creates new obsel types for all the
output symbols of the transducer. These obsel types
are contained in the transformed M-Trace model.
Each transformation is represented by one
transducer. TStore is able to make the output
symbols of a transducer inputs for another
transducer which represents the hierarchical M-
Trace model.

When a new M-Trace comes, the relevant
transducer is called depending on the predefined
trace model. The transducer reads the current M-
Trace from the first obsel to the last one. At each
obsel, the transducer writes an output symbol or
skips to the next obsel if the output symbol is the
empty character (ɛ). At the end, the transducers
provide TStore with the output symbols that
represent the transformed M-Trace to store it.

Figure 3 shows an example in Wanaclip. A user
can search for videos then view them. If he likes the

TStore:�A�Trace-Base�Management�System�-�Using�Finite-state�Transducer�Approach�for�Trace�Transformation

119

video, he adds it to the selection, otherwise he closes
it. This task reflects his satisfaction by accepting or
refusing the video depending on the actions. We
define a transducer as:
ܶ ൌ ሺሼ0,1,2,3ሽ,0, ሼ3ሽ, ሼܿ, ݀, ,ݏ ,ሽݒ ሼܽ, ݅, ,ሽݏ
ሼሺ0, ,ݏ ,ݏ 1ሻ, ሺ1, ,ݒ ,ߝ 2ሻ, ሺ2, ݀, ܽ, 3ሻ, ሺ2, ܿ, ݅, 3ሻ	ሽ	ሻ

It represents a task that starts by an obsel of type
“search” (s) and follows by an obsel of type “view”
(v). If the next obsel type is “add” (d) so an obsel of
type “accept” (a) is generated; (d/a) means replace
(d) by (a). Else, if the obsel type is “close” (c) so an
obsel of type “ignore” (i) is generated. It transforms
(s v d) to (s a), and (s v c) to (s i). Where, state0 is
the start state, state3 is the accept state and ɛ is the
empty character.

Figure 3: Example of a FST transformation.

3.3 M-Trace Querying

M-Traces are a large source of information. So, we
need such a system that enables the extraction of
episodes and patterns from M-Traces. TStore allow
M-Traces to be retrieved at all levels and to navigate
between transformed M-Traces. The Querying
System contains some predefined methods allow M-
Trace retrieval using different criteria. It can retrieve
M-Traces for a specific user, in a specific period,
contains a set of obsel types, etc. It provides
statistics about M-Traces, obsels, users like their
frequencies, relations, reusing, etc. Querying is a
matter for our future work. We aim to define a
querying language that is able to represent all the
types of agents’ queries.

3.4 Security Management

As M-Traces are records of users’ interactions on
applications, they can carry personal and sensitive
data (such as passwords and credit cards numbers).
This is why TStore implements a security policy.
However, TStore ensures that only those with
sufficient privileges can access the stored M-Traces.
It protects the M-Traces by securing the underlying
DBMS that holds that M-Traces. We use a role-
based access control (RBAC) approach (Ferraiolo et
al., 2003). The Security Manager allows creating
roles and associating them with tasks. The privileges

to perform certain operations are assigned to specific
roles. Users are assigned particular roles, and
through those role assignments acquire the
privileges to perform particular functionalities like
creating models, adding user, deleting M-Trace, etc.
Each user is responsible of his M-Traces and he can
also specify their visibility to be public, private or
custom. Private M-Traces can be used only for
statistics. Anyone can access and retrieve public M-
Traces. It is possible to have privileges on any item
such as M-Trace, obsel and attribute type. For
example, video subtitle attributes can be hided from
specific users.

4 EXPERIMENTATION

We have implemented TStore as a PHP web system
over a MySql DBMS. TStore exchanges XML
messages that have a predefined structure. One of
the most important advantages of TStore is that it is
independent of the client environment. Supporting
client’s APIs facilitate the generation the XML
messages, but it is not mandatory.

In order to test our environment, we have
implemented a collection process in Wanaclip. In
this process, the M-Trace handler captures users’
events, models them as obsels and stores them in
TStore. We conducted tests to determine how TStore
performs in terms of responsiveness, memory usage
and stability under a workload. Both of TStore and
Wanaclip are running on the same computer. These
performance measurements were performed using a
laptop with an AMD Phenom II N930 Quad-Core
2.00 GHz processor, 4.00 GB RAM and a
Windows7 32bit operating system.

Wanaclip collects about 50 different types of
obsels. Each obsel type contains a different number
of attributes from 1 to 30. After 1000 random tests to
store a single obsel, we measured that the average
storage time for an obsel is 0.148 seconds (0.054
execution time + 0.094 messaging time). The
execution time is the time TStore spends to store an
obsel in the database after receiving the message
from the M-Trace collector. The messaging time is
the time of exchanging a message between TStore
and the M-Trace collector (sending + receiving).
The average memory usage by to store a single obsel
is 26.325 KB.

To examine the storage of multiple obsels, we
tried 1000 random tests. At each test, we store a
random number of obsels at once as a chunk. As a
result, it takes on average 1.368 seconds (1.118
execution time + 0.250 messaging time) to store a

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

120

chunk. The average memory usage needed to store a
chunk is 50.962 KB. Thus, we see that the multiple
obsel mechanism reduces the require time for
storage. This is due to the spent time for messaging,
parsing command and inserting rows in the database.

As shown in Figure 4, the execution time and the
memory usage for multiple obsels storage have
logarithmic growth. The higher the number of obsels
stored, it increases the memory usage and the
required execution time. However, messaging time
has very little changes, thus it can be considered as a
fixed value. The most important factor is the number
of attributes in the obsels and their hierarchy. The
obsels that have more number of attributes need
more time to be stored.

Figure 4: Storage time and memory usage per obsels
number

5 RELATED WORK

Many applications write log files to get some
information about the use of the application. Log
files typically consist of a long list of events in
chronological order and they are plain text files.
Most often, one line of text corresponds to one log
entry. If an entry contains several fields, they are
separated by a delimiter, e.g., a semicolon. The
problem is that the delimiter may be part of the log
information. Many programming environments and
networking tools use XML log files for indicating
the status of variables, the results of decisions,
warnings of potential problems and error messages
when things go well and truly wrong. For example,

WinSCP uses XML logging to find a list of files that
were actually uploaded/downloaded and Record
operations done during synchronization (“WinSCP,”
2012).

In the web, there are three tracing approaches.
Tracing systems can be located on client side (i.e.
browser plug-in) or integrated in the traced
applications on server side or a mixed approach. In
all cases, users’ activities are usually recorded as
web logs that contain mainly the visited links.
CoScripter (Leshed et al., 2008) is a Firefox plug-in
created by an IBM Research group. It records user
actions and saves them in semi-natural language
scripts. The recorded scripts are saved in a central
wiki for sharing with other users. WebVCR
(Anupam et al., 2000) and WebMacros (Safonov et
al., 2001) record web browser actions as a low-level
internal representation, which is not editable by the
user or displayed in the interface.

The UserObservationHub (Haas et al., 2010) is a
small desktop service (daemon) that catches several
registered user observation notifications and passes
them on to interested listeners. Most of these tracing
systems are mainly for collecting users’ interactions
but not managing and reusing them. In
bioinformatics, the International Nucleotide
Sequence Databases provide the principle
repositories for DNA sequence data. In addition to
hosting the text sequence data, they host basic
annotation and, in many cases, the raw data from
which the text sequences were derived (Batley and
Edwards, 2009).

The Kernel for Trace-Based Systems (kTBS)
was the first TBMS developed in Python (Champin
et al., 2011). Both kTBS and TStore implement the
M-Trace concept. kTBS uses RDF files to store M-
Traces, while TStore manages M-Traces in a
database and benefits from its functionalities. In
TStore, it is not important to develop APIs for client
application while in kTBS it is important. kTBS
currently support APIs for Java, PHP and Flex.
kTBS stores obsels separately while TStore handles
several obsels together to reduce network traffic.
kTBS supports different message formats like,
JSON, XML, and Turtle. Currently TStore only
supports XML but we hope to support other formats.
kTBS and TStore has predefined transformations, in
addition, TStore supports FST transformations.
kTBS transformations are filtering, fusion and
SPARQLrule.

TStore:�A�Trace-Base�Management�System�-�Using�Finite-state�Transducer�Approach�for�Trace�Transformation

121

6 CONCLUSIONS AND FUTURE
WORK

In this paper we described TStore, a web tool
serving as a Trace-Base Management Systems. The
originality of TStore resides on its performance and
in the transformation facilities on M-Traces that it
offers. We presented the four modules of TStore.
The Storage Manager receives messages containing
M-Traces from the clients and stores them in the
database. The Querying System retrieves M-Traces
from the database to answer queries of client
applications. The Transformer contains different
functions to produce transformed M-Traces. The
Security Manager ensures M-Trace protection and
the distribution of roles and privileges. The major
contribution described in this paper is the
customized transformation approach based on the
Finite-State Transducer (FST) principle for M-Trace
transformations. We proposed to use FST as a way
to represent signatures of users’ behaviours.

Our experiments showed that storing multiple
obsels as a chunk is better than storing them
separately. It shows also that the execution time and
the memory usage for obsels storage have
logarithmic growth. The implementation of TStore
is still in progress and a lot of services should be
added. Future work will involve developing a
querying language that allows answering different
users’ requests. We need to develop our FST
Transformation approach and try to define them
automatically. A user interface is one of the
important things to be provided since it allows users
and admin to browse and manage M-Traces
according to their privileges. Currently TSore only
supports XML messages so we want to add new
formats. Lastly, we want to develop a visualization
module that helps to view and analyze M-Traces.

REFERENCES

Anupam, V., Freire, J., Kumar, B., & Lieuwen, D. (2000).
Automating Web navigation with the WebVCR.
Computer Networks, 33(1-6), 503–517.
doi:10.1016/S1389-1286(00)00073-6

Batley, J., & Edwards, D. (2009). Genome sequence data:
management, storage, and visualization.
Biotechniques, 46(5), 333–334, 336. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/19480628

Berstel, J., & Reutenauer, C. (1988). Rational Series and
Their Languages. Springer-Verlag: Berlin-New York.
Springer-Verlag: Berlin-New York. Retrieved from
http://www.springer.com/computer/theoretical+compu

ter+science/book/978-3-642-73237-9
Champin, P.-A., Prie, Y., Aubert, O., Conil, F., & Cram,

D. (2011). kTBS: Kernel for Trace-Based Systems.
Retrieved from http://liris.cnrs.fr/publis/?id=5478

Champin, P.-A., Prié, Y., & Mille, A. (2004). MUSETTE :
a framework for Knowledge from Experience.
EGC’04, RNTI-E-2 (article court) (pp. 129–134).
Cepadues Edition. Retrieved from http://
liris.cnrs.fr/publis/?id=1338

Ferraiolo, D. F., Kuhn, D. R., & Chandramouli, R. (2003).
Role-Based Access Control. Components (Vol. 2002,
p. 338). Artech House. doi:10.1016/S1361-
3723(02)01211-3

Haas, J., Maus, H., Schwarz, S., & Dengel, A. (2010).
ConTask - Using Context-sensitive Assistance to
Improve Task-oriented Knowledge Work. ICEIS
(2)’10 (pp. 30–39).

Kuich, W., & Salomaa, A. (1986). Semirings, automata,
languages (Vol. 5, p. v+374). Berlin: Springer-Verlag.

Leshed, G., Haber, E. M., Matthews, T., & Lau, T. (2008).
CoScripter: automating & sharing how-to knowledge
in the enterprise. CHI 08 Proceeding of the twentysixth
annual SIGCHI conference on Human factors in
computing systems, 1719–1728. Retrieved from http://
portal.acm.org/citation.cfm?id=1357054.1357323

Mohri, M. (1997). Finite-State Transducers in Language
and Speech Processing. Computational Linguistics,
23(2), 269–311. Retrieved from http://
www.aclweb.org/anthology/J97-2003.pdf

Mohri, M. (2004). Weighted Finite-State Transducer
Algorithms. An Overview. (C. Martín-Vide, V.
Mitrana, & G. Paun, Eds.)Studies In Fuzziness And
Soft Computing, 148, 1–13. Retrieved from
http://bi.snu.ac.kr/SEMINAR/ISMB2005/tutorials/AM
5-handout.pdf

Roche, E., & Schabes, Y. (1997). Finite-State Language
Processing. (E. Roche & Y. Schabes, Eds.)Language
(Vol. 75, p. 850). MIT Press. doi:10.2307/417760

Safonov, A., Konstan, J. A., & Carlis, J. V. (2001).
Beyond Hard-to-Reach Pages : Interactive , Parametric
Web Macros. Proc Human Factors and the Web, 1–
14.

Settouti, L. S. (2011). M-Trace-Based Systems - Models
and languages for exploiting interaction traces.
University Lyon1. Retrieved from http://liris.cnrs.fr/
Documents/Liris-4984.pdf

WinSCP. (2012). Retrieved from http://winscp.net/
eng/docs/logging_xml

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

122

