
Optimising Model-transformations using Design Patterns

Kevin Lano and Shekoufeh Kolahdouz-Rahimi
Dept. of Informatics, King’s College London, London, U.K.

Keywords: Model-driven Development, Model Transformations, Design Patterns.

Abstract: This paper identifies how metrics of model transformation complexity can be used to guide the choice and
application of design patterns to improve the quality and efficiency of model transformation specifications.
Heuristics for choosing design patterns based on the metrics are defined, and the process is applied to an
example transformation.

1 INTRODUCTION

Model transformations are considered to be an essen-
tial part of model-driven development, and with the
increasing scale and complexity of models utilised
within software development, there has been a conse-
quent increase in the scale and complexity of model
transformations.

Design patterns for model transformations have
been introduced to provide solutions for a number of
model transformation specification and design prob-
lems, and to improve the quality of model transfor-
mation specifications and designs. With a range of
different patterns available to apply, it may not be
clear to a developer which patterns should be used,
and which may produce the most significant improve-
ment in quality in a transformation specification. We
propose to use measures of syntactic and semantic
complexity to identify problems with a specification,
to guide the selection of appropriate patterns, and
to evaluate quality improvements gained by applying
patterns.

Model transformation patterns are usually appli-
cable to all rule-based transformation languages. In
this paper we use a generic rule-based notation to il-
lustrate the patterns.

Section 2 summarises some model transformation
design patterns, and section 3 defines heuristics for
the selection of model transformation design patterns.
Section 4 gives an example of applying these heuris-
tics, section 5 describes related work, and section 6
gives conclusions.

2 DESIGN PATTERNS FOR
MODEL TRANSFORMATIONS

We define a model transformation design pattern
as “A general repeatable solution to a commonly-
occurring model transformation design problem” (Ia-
cob et al., 2008), and similarly define model trans-
formation specification and implementation patterns.
Patterns for model transformations have been pro-
posed by several researchers (Agrawal et al., 2005;
Bezivin et al., 2003; Cuadrado et al., 2008; Duddy et
al., 2003; Iacob et al., 2008; Johannes et al., 2009;
Lano and Kolahdouz-Rahimi, 2011). These apply
the general concept of software design pattern to the
model transformation domain. Since design patterns
can improve the flexibility, reusability and compre-
hensibility of software systems, the same benefits
should hold for model transformation patterns.

Two distinct main categories of model transforma-
tion design patterns can be identified:

Modularisation/Decomposition Patterns:
concerned with restructuring the transformation
specification or design to increase its modularity,
and to enable the decomposition of a complex
transformation into simpler subtransformations,
composed eg., sequentially or in parallel.

Optimisation Patterns: concerned with increasing
the efficiency of transformation execution, by re-
moving redundant or repeated expression evalua-
tions, reducing data storage requirements, etc.

The following summarises the patterns that we
consider here, and their classifications.

77Lano K. and Kolahdouz-Rahimi S..
Optimising Model-transformations using Design Patterns.
DOI: 10.5220/0004305100770082
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 77-82
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)



Modularisation Patterns:

Phased Construction: Construct target model
from source in phases, based on composition
hierarchy of target language: sequentially con-
struct successive levels of this hierarchy, either
working up or down the hierarchy levels. In-
dividual rules should not update more than one
hierarchy level of a model, and rules should be
separated into distinct rules for separate hierar-
chy levels if this condition is violated.

Structure Preservation: 1-1 mapping of entities
and entity instances from source to target.

Entity Splitting/Structure Elaboration:
Separate the creation of different target entity
types into separate rules.

Entity Merging/Structure Abstraction: If mul-
tiple source entity types are used to cre-
ate/update a single target entity type, separate
these updates into separate rules.

Map Objects before Links: to map recursive or
complex object structures, map source objects
to target objects in one phase (or a set of
phases), and then create links between target
objects in successive phases.

Auxiliary Metamodel: Use additional en-
tities/features to assist in computation of
complex/repeated expressions, by storing in-
termediate results or precomputing repeatedly
evaluated expressions. Auxiliary data can also
be used to store transformation parameters or
traces.

Optimisation Patterns:

Object Indexing: for entities with a primary key
attribute, index instances of the entity by the
primary key value, in order to provide fast
lookup facilities.

Omit Negative Application Conditions: if it
can be deduced that the antecedent of a rule
always contradicts its succedent, omit a check
for falsity of the succedent before applying the
rule.

Decompose Complex Navigations: Using navi-
gation chains of collection-valued association
ends as domains to select elements to iterate
over is inefficient. This pattern decomposes
these chains.

Remove Duplicated Expression Evaluations:
factor out duplicated expressions from a
specification, if these expressions evaluate to
the same value.

Implicit Copy: if a transformation mainly copies
source to target entities without changing their
structure, use an implicit copy mechanism to
simplify the specification.

Some patterns are often used together, eg., Phased
construction can use Object indexing to look up el-
ements created by a preceding rule. Remove dupli-
cated expression evaluations can use Auxiliary meta-
model to precompute the duplicated expressions.

Two examples of pattern definitions are given in
the following sections.

2.1 Phased Construction

Application Conditions. Several warning signs in
a transformation specification can indicate that this
pattern should be applied: (i) if a transformation rule
refers to entities or features across more than two lev-
els of a metamodel composition hierarchy; (ii) if a
rule contains, implicitly or explicitly, an alternation of
quantifiers∀∃∀ or longer alternation chains; (iii) if it
involves the creation of more than one target instance.

These are signs of a lack of a coherent processing
strategy within the transformation, and of excessively
complex rules which can hinder comprehension, ver-
ification and reuse.

Solution. The identified rule should be split into
separate rules, each relating one source model ele-
ment (or a group of source elements) to one target
model element, and navigating no further than one
step higher or lower in the entity composition hier-
archy (and not both).

Figure 1 shows a typical structure of this pattern.

Si Tj

Phase 1

Phase 2

SSub1

SSub2

TSub

Figure 1: Phased construction pattern.

Schematically, a rule conforming to this pattern
should look like:

for each s : Si satisfying SCondi,j
create t : Tj satisfying TCondi,j and Posti,j

where theSi are entities of the source languageS , the
Tj are entities of the target languageT , SCondi,j is

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

78



a predicate ons (identifying which elements the rule
should apply to), andPosti,j definest in terms ofs .
These predicates may use features ofs andt , but not
any longer navigations. There should not be further
alternations of quantifiers inPost , because such com-
plexity hinders comprehension.

2.2 Object Indexing

Application Conditions. Required when frequent
access is needed to objects or sets of objects based
upon some unique identifier attribute (a primary key).

Lookup of objects by means of aselect expression
of the form

C .allInstances()→select(id = v)→any()

or C .allInstances()→select(id : v) can be very in-
efficient, with a worst case time complexity propor-
tional to the number of elements ofC .

Solution. Maintain an index map data structure
cmap of type IndType 7→ C , whereC is the entity
to be indexed, andIndType the type of its primary
key ind . Access to aC object with key valuev is
then obtained by applyingcmap to v : cmap.get(v).
When a newC objectc is created, addc.ind 7→ c

to cmap. Whenc is deleted, remove this pair from
cmap.

Figure 2 shows the structure of the pattern. The
mapcmap is a qualified association, and is an auxil-
iary metamodel element used to facilitate separation
of the specification into loosely coupled rules.

TheC object with primary key valuev is denoted
byC [v ]. Likewise for the set ofC objects with a key
value inv , if v is a set.

System C

x: IndType
0..1

cmap
cId: IndType

{identity}

Figure 2: Object indexing structure.

Expressions

C .allInstances()→select(id = v)→any()

in the specification are then replaced byC [v ] for ac-
cessing singleC objects by identity, and expressions
C .allInstances()→select(id : v) for accessing sets
of C objects are also replaced byC [v ], reducing the
syntactic complexity of the specification.

3 SELECTION OF PATTERNS

By formally defining metrics of model transformation
specifications, it is possible to give precise guidance
to transformation developers about which patterns are
appropriate to apply, and to measure the benefits ob-
tained by applying a pattern.

We consider the following measures of model
transformations:

1. Syntactic complexity 1: count of entity references
and feature references in a rule.

2. Syntactic complexity 2: count of operator occur-
rences in a rule.

3. Alternation of quantifiers: count of forAll exists
forAll nestings in a rule.

4. Multiple creation: count of number of distinct el-
ement creation actions within a rule.

5. Multiple expression occurrences: count of num-
ber of cloned expressions within a rule (or within
a complete specification).

6. Maximally complex read subexpression: syntac-
tic complexity (1 + 2) of most complex read
subexpression in rules.

7. For each source entity in a migration transforma-
tion, the proportion of source entity featuresf
which are simply copied to a target entity feature:
t .g = s .f .

8. For each target entity, a count of the number of
rules that create/modify its elements.

9. The number of self-associations or cyclic struc-
tures of associations in the source language which
are mapped to such structures in the target.

10. The number of expressions with the form

E .allInstances()→select(id = v)

orE .allInstances()→select(id : v) whereid is a
primary key of entityE .

11. The number of rule universal quantification
ranges (on the antecedent of rules) which consist
of navigations through two or more collection-
valued features.

The first two measures are considered to be a basic
metric of syntactic complexity:

Syntactic complexity = Syntactic complexity
1 + Syntactic complexity 2

An alternation of quantifiers value greater than 0
in a rule suggests applying the “Phased construction”
pattern to the rule. A multiple creation value greater

Optimising�Model-transformations�using�Design�Patterns

79



than 1 also indicates this pattern, or the “Entity split-
ting” pattern (depending on how the targets are de-
rived from the source). A multiple expression oc-
currence count> 1 suggests the “Remove duplicated
expression evaluations” pattern: by using let expres-
sions if the clones occur only in one rule, or by pre-
computation and the “Auxiliary metamodel” pattern
if they occur in multiple rules. A high value of max-
imum complexity for a read subexpression also sug-
gests the auxiliary metamodel pattern, even if there is
only one occurrence of the subexpression.

In each case, applying a pattern should reduce the
complexity metrics 1 and 2 for the selected rule, and
not increase the metrics of any other existing rule.

If there is a high proportion of feature copying
from source to target, then the Structure preservation
and Implicit copy patterns are relevant.

If a target entity is updated by more than one rule,
this indicates use of the Entity merging pattern for this
entity.

If there are cases of self-associations or cyclic as-
sociation structures in the source being mapped to
such structures in the target, then Map objects before
links is relevant for this part of the transformation.

If there are any occurrences of

E .allInstances()→select(id = v)

or E .allInstances()→select(id : v) expressions in
rules, this suggests use of Object indexing forE .

If there are any quantifier range navigations
through multiple collection-valued features in the an-
tecedent of a rule, this indicates applying the “Decom-
pose complex navigations” pattern.

4 CASE STUDY

A simple example of the application of metrics to
guide restructuring is the following basic version of
a refinement transformation to map UML class dia-
grams to relational database tables.

Figure 3 shows the metamodels.

Figure 3: Metamodels of UML to relational database map-
ping.

In the original version of this transformation there
are two transformation rules:(R1):

for each e : Entity satisfying e.parent = {}
create t : Table satisfying

t .rdbname = e.name and
Column→exists(k |

k .rdbname = e.name+ “ Key” and
k : t .column)

which creates a table and its primary key for each root
classe, and(R2):

for each c : Entity ; a : c.ownedAttribute;
t : Table.allInstances()→select(

rdbname : c.parent .closure.name)
create k : Column satisfying

k .rdbname = a.name and
k : t .column

which maps each attributea of each entityc to a col-
umnk , which is added to the table corresponding to
the root ancestor ofc. parent .closure is the transitive
closure of theparent association. Only one tablet
will exist with a name inc.parent .closure.name, ie.,
the table for the root class ofc.

Table 1: Complexity metrics of rules.

Rule Syntactic Multiple Max. expression
complexity creation complexity

R1 19 1 2
R2 21 0 8
Total: 40 1 10

The metrics for these rules are as follows (Table
1). It can be seen thatR1 has moderate complexity,
but that it creates multiple objects, suggesting the use
of the Phased construction pattern.R2 has a high
value of maximum expression complexity: the subex-
pression Table.allInstances()→select(rdbname :
c.parent .closure.name) has syntactic complexity 8,
which suggests applying the Auxiliary metamodel
pattern to simplify its computation. This subexpres-
sion also exhibits multiple duplicated evaluations: the
closure of theparent association will be repeatedly
evaluated for classes near the top of the inheritance
hierarchy. The expression also matches exactly the
specific conditions for introducing object indexing,
so this pattern is introduced first forR2.

Applying Phased construction toR1 and using
Object indexing to look upTable instances produces
the following rules:

(R1a) :
for each e : Entity satisfying e.parent = {}
create t : Table satisfying t .rdbname = e.name

(R1b) :
for each e : Entity satisfying e.parent = {}
create k : Column satisfying

k .rdbname = e.name+ “ Key” and
k : Table[e.name].column

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

80



The complexity of each of these rules is lower than
that of R1, and the problem of multiple object cre-
ation has been solved (Table 2).

Introducing object indexing forR2 leads to the
simpler constraintR2a:

for each c : Entity ; a : c.ownedAttribute;
t : Table[c.parent .closure.name]
create k : Column satisfying

k .rdbname = a.name and
k : t .column

which can be further simplified to:

for each c : Entity ; a : c.ownedAttribute
create k : Column satisfying

k .rdbname = a.name and
k : Table[c.parent .closure.name].column

The complexity has been reduced to 16,
however the remaining problem inR2a is the
repeatedly-evaluated complex subexpression
c.parent .closure.name. This repetition can be
avoided by applying the auxiliary metamodel pattern,
and precomputing the root class of each class, and
storing this in an auxiliary association

rootClass : Entity → Entity

prior to execution of the transformation. Alterna-
tively, only the name of the root class could be stored.

Adopting the first option,R2a can be simplified
to:

(R2b) :
for each c : Entity ; a : c.ownedAttribute
create k : Column satisfying

k .rdbname = a.name and
k : Table[c.rootClass.name].column

Table 2: Complexity metrics of restructured rules.

Rule Syntactic Multiple Max. expression
complexity creation complexity

R1a 9 0 1
R1b 15 0 3
R2b 15 0 4
Total: 39 0 8

The average complexity of the rules in the revised
system has been reduced to 13, compared with 20 in
the original system. The total complexity has also
been reduced, and the problem characteristics have
been removed.

We also measured the improvement in efficiency
in the restructured specification, using a set of six test
cases:

1. Test case 1: 100 classes, arranged in a vertical
inheritance hierarchy (class n+1 is a subclass of
class n, etc), with 10 attributes each, all names are
distinct.

2. Test case 2: same as case 1, with 500 classes.

3. Test case 3: same as case 1, with 1000 classes.

4. Test case 4: 100 classes, arranged in a flat inheri-
tance hierarchy (all classes are root classes), with
10 attributes each, all names are distinct.

5. Test case 5: same as case 4, with 500 classes.

6. Test case 6: same as case 4, with 1000 classes.

We executed the transformation using the UML-
RSDS tools (Lano, 2012), on a Pentium 4 machine
running Windows XP.

Table 3 shows the execution times (in ms) of the
original and revised specifications of the transforma-
tion on these case studies. It can be seen that the orig-
inal specification is impractical for processing models
with deep inheritance hierarchies, and that the revised
version has substantially better performance on such
models.

Table 3: Efficiency comparison.

Test case Original Restructured
specification specification

1 320 60
2 23514 1182
3 Out of memory 3826
4 70 50
5 1072 1022
6 4016 3805

5 RELATED WORK

The use of metrics to guide design choices and to as-
sist in automation of software engineering is a topic
within the field ofsearch-based software engineering
(SBSE) (Harman and Jones, 2001). SBSE techniques
use various search mechanisms, such as linear pro-
gramming and genetic algorithms, to search for opti-
mal values of some fitness function, which can repre-
sent the quality of a software design or other desired
aspect of the design, such as testability. The paper
(Lutz, 2001) uses a fitness function which represents
the quality of a hierarchical decomposition of a soft-
ware system. The aim of the optimisation process in
this case is to produce simpler and more understand-
able decompositions. There has also been substan-
tial work on automated modularisation of software to
increase cohesion and decrease coupling: the paper
(Mancoridis et al., 1999) introduced automated clus-
tering techniques as an aid to software maintenance.
Rather than using a single fitness function, we have
defined a collection of measures, which enable us to

Optimising�Model-transformations�using�Design�Patterns

81



diagnose specific problems in a transformation speci-
fication, and to propose specific solutions.

Another modularisation measurement approach is
described in (Tzerpos et al., 1999). A metric of
dissimilarity between clusters is used to compare
clustering approaches, but this only indirectly pro-
vides a measure of quality of the clustering, since an
optimally-modularised version of a system is needed
as a reference point.

6 CONCLUSIONS

We have shown that metrics can be used to guide
the choice of specification improvement steps such as
pattern applications. The metrics and guidelines de-
scribed here have been implemented in UML-RSDS
(Lano, 2012). Although we have focussed on model
transformation patterns, we consider that our ap-
proach could be generally applicable to a wide range
of pattern categories, such as patterns for EIS archi-
tectures or service-oriented architectures.

REFERENCES

Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan,
A., Karsai, G. (2005). Reusable Idioms and Patterns
in Graph Transformation Languages,Electronic notes
in Theoretical Computer Science, pp. 181–192.

Bezivin, J., Jouault, F., Palies, J. (2003).Towards Model
Transformation Design Patterns, ATLAS group, Uni-
versity of Nantes.

Cuadrado, J., Jouault, F., Molina, J., Bezivin, J. (2008).
Optimization patterns for OCL-based model transfor-
mations,MODELS 2008, vol. 5421 LNCS, Springer-
Verlag, pp. 273–284, 2008.

Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.
(2003). Model transformation: a declarative, reusable
pattern approach. In7th International Enterprise Dis-
tributed Object Computing Conference (EDOC ’03).

Harman, M., Jones, B. (2001). Search-based software en-
gineering,Information and Software Technology, 43
(14), pp. 833–839, 2001.

Iacob, M., Steen, M. Heerink, L. (2008). Reusable model
transformation patterns,Enterprise Distributed Ob-
ject Computing Conference.

Johannes J., Zschaler, S., Fernandez, M., Castillo, A.,
Kolovos, D., Paige, R. (2009). Abstracting complex
languages through transformation and composition,
MODELS 2009, LNCS 5795, pp. 546–550.

Lano, K., Kolahdouz-Rahimi, S. (2011). Design patterns
for model transformations,ICSEA 2011.

Lano, K. (2012). UML-RSDS manual, http://
www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf.

Lutz, R. (2001). Evolving good hierarchical decomposi-
tions of complex systems,Journal of Systems Archi-
tecture, 47, pp. 613–634.

Mancoridis, S., Mitchell, B., Chen, Y., Gansner, E. (1999).
Bunch: a clustering tool for the recovery and main-
tenance of software system structures,IEEE Interna-
tional Conference on Software Maintenance, pp. 50–
59, IEEE Press.
Tzerpos, V., Holt, R. (1999).MoJo: A distance metric
for software clustering, University of Toronto.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

82


