
Hill Climbing versus Genetic Algorithm Optimization in Solving  
the Examination Timetabling Problem 

Siti Khatijah Nor Abdul Rahim1,2, Andrzej Bargiela3,4 and Rong Qu3 
1School of Computer Science, University of Nottingham (Malaysia Campus), Jalan Broga, 43500, Semenyih, 

 Selangor, Malaysia 
2Faculty of Computer and Mathematical Science, Universiti Teknologi MARA (Perak), 32610, Seri Iskandar,  

Perak, Malaysia 
3School of Computer Science, University of Nottingham Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, U.K. 

4Institute of Informatics, Cracow Technical University, Kraków, Poland 

Keywords: Slots Permutations, Hill Climbing (HC), Genetic Algorithm (GA). 

Abstract: In this paper, we compare the incorporation of Hill Climbing (HC) and Genetic Algorithm (GA) 
optimization in our proposed methodology in solving the examination scheduling problem. It is shown that 
our greedy HC optimization outperforms the GA in all cases when tested on the benchmark datasets. In our 
implementation, HC consumes more time to execute compared to GA which manages to improve the 
quality of the initial schedules in a very fast and efficient time. Despite this, since the amount of time taken 
by HC in producing improved schedules is considered reasonable and it never fails to produce better results, 
it is suggested that we incorporate the Hill Climbing optimization rather than GA in our work.  

1 INTRODUCTION 

Timetabling can be defined as a process of creating 
schedules that will list events and times at which 
they are planned to occur. In many organizations or 
institutions, timetabling is an important challenge 
and considered a very tedious and time consuming 
task. Normally, the personnel involve in preparing 
the timetables will do it manually and in most cases 
using a trial and error approach. 

There are various areas of timetabling which 
includes educational timetabling, sports timetabling, 
transportation timetabling, nurse scheduling and etc. 
Among the broad areas of these timetabling 
problems, educational timetabling is one of the most 
studied and researched area in the timetabling 
literature. This is due to the requirement of preparing 
the timetables periodically (quartely, annually and 
etc).  

Educational timetabling includes school 
timetabling (course-teacher timetabling), university 
course timetabling, university examination 
timetabling and etc. In this work, our focus is the 
university examination timetabling problem. For this  
timetabling problem, in most universities nowadays, 
the students are given the flexibility to enroll for 

courses across faculties. This makes this kind of 
timetabling problem more challenging to solve.  

Numerous approaches or methods have been 
proposed since the year 1960s which have attracted 
reseachers form the Operational Research and 
Artificial Intelligence area (Qu et al., 2009). To date, 
the number of approaches or methods proposed to 
solve the examination timetabling problems is 
increasing. The example of the methods proposed 
are graph based sequential techniques, constraint 
based techniques, local search based techniques, 
population based algorithms, hyper heuristics, 
hybridisations and etc. (Gueret et al., 1995); (Taufiq 
et al., 2004); (Dowsland and Thompson, 2005); 
(Asmuni et al., 2009); (Burke et al., 2010c) and etc.  

The strong inter-dependencies between exams 
due to the many-to-many relationship between 
students and exams has made the examination 
timetabling a very challenging computational 
problem. The general objective of the examination 
timetabling is to generate schedule which is feasible 
by making sure all exams are scheduled and that all 
students can sit for the exams that they enrolled on 
without  any  problems.  Two   types   of  constraints 
defined in the timetabling literatures are: 

a) Hard Constraints 
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These constraints must be fulfilled at all times. The 
basic hard constraint is that the exams with a 
common student cannot be scheduled in the same 
period. Another important hard constraint that needs 
to be obeyed is the room capacity; i.e. there must be 
enough space in a room to accommodate all students 
taking a given exam. A timetable which fulfils all 
the hard constraints is called a feasible timetable. 

b) Soft Constraints 
Soft Constraints are not very crucial but their 
satisfaction is advantageous to students and/or the 
institution. An example of a soft constraint is to 
space out exams taken by individual students so that 
they have adequate revision time between their 
exams. Normally it is impossible to satisfy all soft 
constraints therefore there is a need for a 
performance function measuring the degree of 
fulfilment of these constraints.  

Our approach in producing feasible timetables 
starts by performing datasets retrieval, pre-
processing of student-exam data, followed by 
allocating exams to time-slots and next performing 
optimization process to improve the quality of the 
schedules. Greater explanations will be given in the 
next section. 

1.1 Overview of the Proposed Method 

The steps of our proposed work in creating feasible 
and quality examination schedules are datasets 
retrieval, pre-processing, scheduling and lastly 
timetable optimization as illustrated in Figure1. 

  

Figure 1: The Work Flow in This Research. 

Datasets retrieval can be defined as a task to 
populate the four sets in the timetabling problem as 
defined by (Burke et al., 2004). The 4 sets are the 
times (T), resources (R), meetings (M) and 
constraints (C). The task involves the process of 
retrieving the datasets that are freely made available 

to the public over the internet. In this research, we 
have retrieved benchmark datasets that are widely 
tested by many researchers from the University of 
Nottingham and University of Toronto. These 
benchmark datasets contain information or files 
pertaining to students, exams, enrollments and other 
data and constraints.  

In the next step, which is the pre-processing 
stage, a more meaningful information and higher 
level data will be generated. This stage will be 
underpinned by the methodology of Granular 
Computing of generating semantically meaningful 
information granules and their experimental 
validation (Bargiela and Pedrycz, 2008). The 
aggregated data will supply us with the important 
information that is needed in order to create 
timetables that are feasible which satisfy the basic 
constraints. One example of the information 
obtained from the pre-processing is the identification 
of the clashing exams. By identifying this 
information, later during the scheduling, we will be 
able to schedule timetables that will fulfill the hard 
constraint; for instance there should not be one 
student having two exams simultaneously. In other 
conventional approaches, this is not the case. 
Without the pre-processing stage, the clashing 
information is implicit in data, thus a lot of 
permutations requiring a lot of time need to be done 
in order to create a feasible timetable. This problem 
can be avoided in our approach. Hence our approach 
deals only with feasible solutions. The pre-
processing is explained in detail in (Rahim et al., 
2009). 

Scheduling will be done next by using the 
derived information from the previous process. The 
scheduling is done by allocating exams with the 
highest conflicts first to the available timeslots and 
followed by exams with lower conflicts. Splitting 
and merging of timeslots were done for exams in a 
slot that can be reassigned to other slots consisting 
non-conflicting exams. The allocation process has 
been elaborated in detail in (Rahim et al., 2012). The 
timetable generated at this stage is based on the pre-
processed data therefore it will always fulfill the 
hard constraints. 

The arrangements of the exams in the schedule 
generated earlier might not fulfill many of the soft 
constraints. Therefore, in order to improve the 
quality of the exam schedules generated, we have 
employed an optimization process. The optimization 
consists of three procedures: i) Minimization of 
Total Slot Conflicts, ii) Permutations of exams slots 
and iii) Reassignments of exams between slots. 
(Rahim et al., 2012). Please note that all the 
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optimization procedures mentioned here are done in 
sequence but they are independent of each other.  

In this paper, we will not be discussing about 
these procedures in detail (it can be found in (Rahim 
et al., 2012)), but will be looking at the possibility of 
improving the quality of the schedules by 
substituting the second step of optimization: the 
permutations of exams slots which is a local search 
procedure with a more effective procedure.  

Realizing that our existing method (permutations 
of exams slots), is a local search procedure, we 
would like to incorporate a global search procedure 
in order to see whether it could generate better 
quality schedules. For this purpose, we have 
implemented Genetic Algorithm (GA) to substitute 
the permutations of exams slots in the optimization 
process.  

Genetic algorithm has been chosen as an 
alternative approach to our implementation because 
it has been proven a good way of producing good 
examination timetables (Burke et al., 1994a); (Burke 
et al., 1994b); (Gyori et al., 2001); (Ulker et al., 
2007). Besides, it has been mentioned that the 
hybridisations of GA with some local search have 
led to some success in this area. (Qu et al., 2009). 

Figure 2: Scheduling and Optimization Steps Before and 
After GA Substitution. 

Above we presented the diagram (Figure 2) to 
illustrate a summary of the work done in our 
research (Rahim et al., 2012) which shows the 

sequence of every process involve and the part that 
will be substituted by GA. Please note that the whole 
set of optimizations is done twice, therefore first and 
second order optimization can be seen in the 
diagram.  

2 OPTIMIZATION METHODS 

Normally, the cost of the initial timetables generated 
by the allocation method mentioned earlier is a bit 
high. This is because the ordering of exams to slots 
might not satisfy many of soft constraints. An 
example is the gap between conflicting exams is not 
spaced out equally. The cost of the schedules is 
measured by objective function proposed by Carter 
(Carter et al., 1996) as below: 


 

N

i

N

ij
ijws

T 1 1
pi| -  pj|

1
 (1)

where N is the number of exams,  sij is the 
number of students enrolled in both exam i and j, pj 
is the time slot where exam j is scheduled, pi is the 
time slot where exam i is scheduled and T is the total 
number of students. According to this cost function, 
a student taking two exams that are | pj - pi | slots 
apart, where | pj - pi | ={1, 2, 3, 4, 5 }, leads to a cost 
of 16, 8, 4, 2, and 1, respectively. 

The lower the cost obtained, the better is the 
quality of the schedule, since the gap between two 
consecutive exams allows students to have 
additional revision time.   

2.1 Hill Climbing Optimization 

In this optimization process, the permutations of 
exam slots in the spread matrix (Rahim et al., 2009), 
(Rahim et al., 2012) are done. This process involves 
shuffling of slots or columns and so as block shifting 
and swapping. The procedure started by reading a 
spread matrix which is a matrix indicating how 
many students taking an exam from slot ‘i’ and ‘j’.  

The permutations in the spread matrix involved 
swapping of slots and repetitions of block shifts. 
Each slot will be swapped with another slot. This is 
done by doing provisional swapping and the Carter 
cost will be evaluated first. If the cost is reduced, the 
swap will be remembered and the exam proximity 
matrix will be updated according to this swap. Due 
to this, we call this kind of optimization as a greedy 
Hill Climbing (HC). The term greedy here refers to 
the fact that we always take the best value whenever 

  GA 

 GA 
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we found one. A number of repetitions of block shift 
and swapping are done in order to ensure the search 
space is explored in different directions so that 
global optimum of the solutions can be found.  

2.2 Genetic Algorithm Optimization 

Genetic algorithm is a search heuristic that mimics 
the process of natural evolution. It simulates the 
inheritance of living beings and it is a widely used 
method to solve optimization and search problems. 

Genetic algorithm is a procedure used to find 
approximate solutions to search problems by 
mimicking the evolutionary biological process. It  
operates on a population of solutions represented by 
some encoding. Each member or unit of the 
population consists of a number of genes, 
representing a unit of information. This procedure 
begins by creating an initial population (normally 
randomly generated). Next the solution members are 
evaluated by computing their fitness (or quality). 
The selection procedure than reproduce more copies 
of individuals with higher fitness values. The 
selection procedure influences the search direction 
towards promising areas. Genetic operators such as 
crossover (mating two parents) and mutation (slight 
random changes) are used to create new populations. 
The important parameters include the population 
size, crossover rate and mutation rate.  

In our Genetic Algorithm implementation, we 
defined the original parent as P0, which is a data 
structure with the initial ordering of slots (1 …. N) 
where N is the number of slots. GA creates a new 
parent by moving position of the rows in blocks to 
the new position, then appends it to array P. A 
member of <npar> parents will be generated. 
Generation of the new parents is just by shifting the 
rows which in the end is the new representation of 
the original parent with a magnitude maximum 
distance of npar – 1. Therefore, if it is just a window 
shift, there will be identical parents.  

We then generated the new offspring. The 
number of offspring to be generated is equals to npar 
x npar -1. Each of the parents will be crossed over 
with all other parents at a certain point R. The result 
will be added to “o” which is the overall population. 
The best parent will be automatically selected to 
become one of the next generation parent. Then the 
next best parent with the lowest cost will be 
selected. The parent will be included in the next 
population and the process continues for certain 
number of generations.  

3 COMPUTATIONAL RESULTS 
AND DISCUSSION 

The experiment in this work was performed on all 
13 datasets in the Toronto benchmark repository 
[ftp://ftp.mie.utoronto.ca/pub/carter/testprob] and 
also on the Nottingham dataset 
[http://www.cs.nott.ac.uk/~rxq/files/Nott.zip]. For 
the sake of comparability with other studies in the 
literature, these problems are considered here as an 
uncapacitated scheduling problem. Uncapacitated 
means the total room capacity in each time slot is 
not considered. 

The characteristics of all the datasets are listed in 
Table 1. For the Toronto datasets, based on the 
survey made by (Qu et al., 2009), 8 out of 13 
problem instances exist in 2 versions. We will use 
version I of the datasets which are extensively tested 
by other researchers.  

Table 1: The characteristics of the Datasets. 

(a) (b) (c) (d) (e) (f) 
nott (a/b) 800 7896 33997 23 0.03 

car-s-91 (I) 682 16925 56877 35 0.13 
car-s-91 (II) 682 16925 56242/ 

56877 
35 0.13 

car-f-92 (I) 543 18419 55522 32 0.14 
car-f-92 (II) 543 18419 55189/ 

55522 
32 0.14 

ear-f-83(I) 190 1125 8109 24 0.27 
ear-f-83(II) 189 1108 8014 24 0.27 
hec-s-92(I) 81 2823 10632 18 0.42 
hec-s-92(II) 80 2823 10625 18 0.42 

kfu-s-93 461 5349 25113 20 0.06 
lse-f-91 381 2726 10918 18 0.06 

pur-s-93 (I) 2419 30029 120681 42 0.03 
pur-s-93 (II) 2419 30029 120686/ 

120681 
42 0.03 

rye-f-92 486 11483 45051 23 0.07 
sta-f-83(I) 139 611 5751 13 0.14 
sta-f-83(II) 138 549 5689 35 0.14 

tre-s-92 261 4360 14901 23 0.18 
uta-s-92(I) 622 21266 58979 35 0.13 
uta-s-92(II) 638 21329 59144 35 0.13 

ute-s-92 184 2749 11793 10 0.08 
yor-f-83 (I) 181 941 6034 21 0.29 
yor-f-83 (II) 180 919 6012 21 0.29 

(a)Name of Dataset; (b) No of Exams; (c) No of Students; 
(d) No of Enrollments; (e) Required No of Slots; (f) 
Conflict Density. 

We have shown the results obtained by using 
Hill Climbing and Genetic Algorithm optimization 
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on the initial feasible schedule generated by our 
allocation method before performing other 
optimization process (Rahim et al., 2012) in Table 2 
to Table 15. For the Hill Climbing, we recorded the 
worse and the best cost during the process 
(permutations of slots), and for the Genetic 
Algorithm, we presented the cost produced after 
Generation 1 (Gen 1) and Generation 15 (Gen 15).  

The best cost produced for each type of 
optimization is accepted and the ordering of slots 
were rearranged accordingly before doing further 
optimization : reassignment of exams between slots 
(Rahim et al., 2012) and later repeating the whole set 
of the optimization process until there is no 
improvement in the schedule cost (Rahim et al., 
2012). The accepted cost together with the CPU time 
taken for each process can be seen in these tables.  

Table 2: Results obtained by optimization for nott. 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

nott 
 

31.95 10.94 10.94 187.27 

38.99 Genetic Algorithm   

  Gen 1 Gen 15   

  28.03 14.74 14.74 3.39 

Table 3: Results obtained by optimization for car-f-92(I). 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

car-f-92 
(I) 

8.89 5.36 5.36 268.97 

9.43 Genetic Algorithm   

  Gen 1 Gen 15   

  8.07 6.68 6.68 5.11 

Table 4: Results obtained by optimization for car-s-91(I). 

Dataset
/ 

Initial 
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

   Hill Climbing     

  
Worse
 cost 

Best  
cost     

car-s-91 
(I) 10.43 6.26 6.26 351.39 

11.77 Genetic Algorithm     

   Gen 1 Gen 15     

   9.37 8.10 8.10 5.99 

Table 5: Results obtained by optimization for ear-f-83(I). 

Dataset
/ 

Initial 
Cost 

Cost 
Accepted 

Cost 
CPU Time 
(seconds)

  Hill Climbing   

 Worse
 cost 

Best 
cost 

  

ear-f-83
(I) 

62.57 40.45 40.45 136.77 

72.69 Genetic Algorithm   

  Gen 1 Gen 15   

  53.51 48.99 48.99 1.78 

Table 6: Results obtained by optimization for hec-s-92(I). 

Dataset  
/ 

Initial 
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse
 cost 

Best 
cost 

  

hec-s-92 
(I) 

22.55 12.52 12.52 27.52 

22.83 Genetic Algorithm   

  Gen 1 Gen 15   

  19.39 14.14 14.14 2.30 

Hill�Climbing�versus�Genetic�Algorithm�Optimization�in�Solving�the�Examination�Timetabling�Problem

245



 

Table 7: Results obtained by optimization for kfu-s-93. 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

kfu-s-93 29.89 16.06 16.06 40.36 

37.79 Genetic Algorithm   

  Gen 1 Gen 15   

  26.81 20.06 20.06 2.48 

Table 8: Results obtained by optimization for lse-f-91. 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

lse-f-91 22.42 14.63 14.63 26.59 

23.77 Genetic Algorithm   

  Gen 1 Gen 15   

  19.40 17.20 17.20 2.25 

Table 9: Results obtained by optimization pur-s-93(I). 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

pur-s-93 
(I) 

14.27 6.69 6.69 321.05 

14.91 Genetic Algorithm   

  Gen 1 Gen 15   

  11.94 8.47 8.47 7.97 

Table 10: Results obtained by optimization for rye-f-92. 

Dataset 
/ 

Initial 
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse
 cost 

Best 
cost 

  

rye-f-92 28.55 12.68 12.68 73.17 

31.50 Genetic Algorithm   

  Gen 1 Gen 15   

  19.04 16.46 16.46 3.25 

Table 11: Results obtained by optimization sta-f-83(I). 

Dataset 
/ 

Initial 
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse
 cost 

Best 
cost 

  

sta-f-83 193.47 158.43 158.43 10.28 

201.95 Genetic Algorithm   

  Gen 1 Gen 15   

  172.80 163.12 163.12 0.52 

Table 12: Results obtained by optimization for  tre-s-92. 

Dataset 
/ 

Initial 
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse
 cost 

Best 
cost 

  

tre-s-92
 

13.25 9.84 9.84 66.34 

14.81 Genetic Algorithm   

  Gen 1 Gen 15   

  12.76 11.70 11.70 3.17 
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Table 13: Results obtained by optimization utas-s-92(I). 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

uta-s-92 
(I) 

6.59 4.23 4.23 455.94 

7.30 Genetic Algorithm   

  Gen 1 Gen 15   

  6.19 5.22 5.22 6.54 

Table 14: Results obtained by optimization for ute-s-92. 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

ute-s-92 43.25 31.79 31.79 2.91 

56.97 Genetic Algorithm   

  Gen 1 Gen 15   

  35.77 32.96 32.96 1.30 

Table 15: Results obtained by optimization for yor-f-83(I). 

Dataset 
/ 

Initial  
Cost 

Cost 
 

Accepted 
Cost 

CPU Time 
(seconds) 

  Hill Climbing   

 Worse 
 cost 

Best 
cost 

  

yor-f-83 
(I) 

56.31 43.36 43.36 46.99 

59.04 Genetic Algorithm   

  Gen 1 Gen 15   

  50.77 47.50 47.50 0.75 

Based on the results presented in Table 2 to 
Table 15, it can be seen clearly that our proposed 
greedy Hill Climbing (HC) method has 
outperformed GA in all cases during the 
optimization when tested on the benchmark datasets. 
All the results produced by GA for all the datasets 

after generation 15 (Gen 15) were not able to 
outperform results produced by HC.  

It is worth highlighting here that the cost 
obtained by GA for all datasets at generation 1 (Gen 
1) are quite encouraging, where they are much lower 
than the worse cost obtained by HC. However, all of 
them failed to outperform the cost obtained by HC 
after generation 15 (Gen 15).  

Using the data gathered from the experiments on 
all the datasets, we have plotted graphs for the cost 
(1) versus the Total Slot Conflicts as in Figure 3 and 
Figure 4. Figure 3 and 4 show the graphs for the 
cost(1) versus the Total Slot Conflicts plotted for all 
benchmark datasets tested. Diagram (a1), (b1), (c1), 
(d1), ….. (n1) are the graphs (line-graphs) when HC 
optimization used where as diagram (a2), (b2), (c2), 
(d2),…… (n2) are the graphs (dotted-graphs) plotted 
when GA optimization used. The diagrams in these 
figures are arranged according to the sequence of 
datasets from Table 2 to Table 15.  

Based on the graphs presented, the horizontal 
line constructed from the second data point to third 
data point in diagram (a1) to (n1) is due to reduction 
of cost via permutations of exams slots (greedy HC) 
which did not involve any augmentation of total 
slots conflicts (Rahim et al., 2012). The dotted line 
from the first data point to the second data point in 
each diagram (a2) to (n2) is constructed based on the 
GA optimization discussed earlier in this paper.  

The dotted lines in this stage showed that a 
significant reduction in terms of the initial cost has 
been achieved by performing the GA optimization. 
These lines also showed that our GA implementation 
managed to substitute the HC implementation and 
was incorporated successfully in the whole set of our 
optimization process. (Rahim et al., 2012). 

One of the obvious thing that can be seen in the 
graphs is that the line constructed by GA 
optimization is not always horizontal. This is 
because, the crossover and mutation of exam slots in 
the GA optimization process had changed the 
assignments of some exams to slots to ensure the 
feasibility of the schedules, thus changing the 
existing number of total slots conflicts. This is not 
the case duirng HC optimization where by the total 
exam-slot conflict does not change because the 
individual exams to slots remain as before 
permutations. (Rahim et al., 2012). 

An interesting point to note is the computational 
time taken to execute both methods. Even though 
GA did not surpass HC in all cases, however the 
time taken to execute the process was incredibly fast 
compared to our HC implementation. We have 
managed to implement a simple, straightforward and 
quite   effective   GA   which   consumed  very  little 
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Figure 3: Cost (1) vs. the Total Slot Conflicts for 
Benchmark Datasets (Using Hill Climbing (a1)-(g1) vs 
Genetic Algorithm (a2)-(g2)). 
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Figure 4: Cost (1) vs. the Total Slot Conflicts for 
Benchmark Datasets (Using Hill Climbing (h1)-(n1) vs 
Genetic Algorithm (h2)-(n2)). 
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amount of time to improve the initial feasible 
schedule, although majority researchers claimed that 
the GA took a very huge time in order to solve the 
scheduling problem (for example claimed by 
(Abramson, 1992)). 

This advantage (minimal time requirement) 
could offer even more advantage, because based on 
the results presented earlier we can predict that 
addition to the number of iterations or generations 
(with the aim to generate better offsprings) to the 
GA execution will add only little more 
computational  time that would definitely be very 
acceptable. 

However, unfortunately this is not the case. The 
increase in the number of generations has not given 
any benefit to the reduction of the cost of the exam 
schedule generated. We have experimented 15 
generations, but it seems like the highest number of 
generations that manage to reduce the cost is 
generation 12 (car-f-92(I)). Recall that we have 
mentioned previously, a second round of 
optimization was done in order to test whether it 
could reduce the cost further. Therefore, after 
performing reassignment of exams on the schedules 
obtained by the GA optimization (Rahim et al., 
2012), we have repeated the GA optimization one 
more time. As can be seen in Table 16, the highest 
number of generations that could reduce the 
schedule cost is generation 11 (rye-f-92) even 
though 15 generations was tested.  

The second round has improved the cost(1) for 
most of the datasets (exceptional for nott, carf92, 
kfus93, purs93, and utes9) and this is illustrated in 
diagram (a2) until (n2) by the third data point to the 
fourth data point.   

The final results obtained by HC and GA 
methods which later were further improved by 
reassignments of exams (Rahim et al., 2012) were 
compared and can be found in Table 17.  It can be 
seen clearly that HC outperforms GA in all cases, 
though the execution time recorded was a bit high in 
comparison to GA, but the amount of time taken was 
still reasonable which is only a few hundreds 
seconds CPU time.  

4 CONCLUSIONS 

In conclusion, it is shown that GA has been proven 
to be  a good method to reduce the cost of the initial 
feasible timetable. With a robust implementation, it 
managed to explore the search space efficiently and 
produce good quality timetable with an incredibly 
fast execution time. 

Table 16: Number of Generations That Could Improve the 
Schedule Cost During GA Optimization. 

Dataset 

First Order 
Optimization: 
Cost Improved 
Until Iteration 

Second Order 
Optimization: 
Cost Improved 
Until Iteration 

notts 7 0 

carf92 12 0 

cars91 9 2 

earf83 7 6 

hecs92 6 7 

kfus93 10 0 

lsef91 8 4 

purs93 11 0 

ryef92 8 11 

staf83 6 4 

tres92 8 5 

utas92 10 4 

utes92 3 0 

yorf83 6 3 

Table 17: Final Cost Produced Using HC versus GA 
Optimization. 

Dataset 

Final Cost 
Produced after All 

Optimizations 
Processes For HC 

(Rahim et al., 
2012) 

Final Cost 
Produced after All 

Optimizations 
Processes For GA

notts 7.34 7.62 

carf92 4.49 5.18 

cars91 5.19 6.03 

earf83 37.57 45.08 

hecs92 11.47 12.90 

kfus93 14.36 17.27 

lsef91 11.90 15.11 

purs93 4.88 5.57 

ryef92 9.8 10.63 

staf83 158.25 161.13 

tres92 8.74 9.86 

utas92 3.58 4.01 

utes92 27.37 29.35 

yorf83 41.10 43.52 

However, the good cost obtained through the 
experiment with GA did not manage to outperform 
the results obtained by utilizing our proposed greedy 
HC. Although the computational time taken by GA 
execution is very much lower than HC, but an 
additional reasonable amount of time taken to obtain 
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qood quality schedules is considered very worth 
while. Since HC managed to improve the initial 
feasible schedule without fail for all datasets and 
always surpass the GA results, therefore it is 
suggested that the proposed HC is incorporated and 
used in our whole set of optimization process. 

Through the findings of this research, it makes it 
more understandable to us the claim made by (Ross 
et al., 1998) that sometimes GA is not a very good 
approach in solving problems. 

In the future work, we will try to implement 
other types of search procedures to be incorporated 
with our proposed method for example the Late 
Acceptance Hill Climbing method which has been 
proven to be very effective in producing 
encouraging results to the examination scheduling 
problem. (Bykov et al., 2008); (Bykov et al., 2009). 
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