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In this paper, we explore the topic of geo-tagged photo authentication and introduce a novel forensic tool

created to semi-automate the process. We will demonstrate how a photo’s location and time can be
corroborated through the correlation of geo-modellable features to embedded visual content. Unlike
previous approaches, a machine-vision processing engine iteratively guides users through the photo
registration process, building upon available meta-data evidence. By integrating state-of-the-art visual-
feature to 3D-model correlation algorithms, camera intrinsic and extrinsic calibration parameters can also be
derived in an automatic or semi-supervised interactive manner. Experimental results, considering forensic
scenarios, demonstrate the validity of the system introduced.

1 INTRODUCTION

Digital photographs and videos have proven to be
crucial sources of evidence in forensic science; they
can capture a snapshot of a scene, or its evolution
through time (Casey, 2004); (Boehme et al., 2009).
Geo-tagging (Luo et al., 2011), i.e. the collocation of
geo-spatial information to media objects, is a
relative newcomer to the field of data annotation, but
is growing rapidly. Concurrently, the availability of
easy-to-use image processing tools and meta-data
editors is leading to a diffusion of fake geo-tagged
content throughout the digital world. As geo-tagged
media can be used to corroborate a person’s or an
object’s presence at a given location at a given time,
it can be highly persuasive in nature. Therefore, it is
essential that the content be authenticated and the
associated geo meta-data be proved trustworthy.

The addition of location information has been
fuelled in recent years thanks to the embedding of
geo-deriving hardware, such as Global Positioning
System (GPS), in many consumer-level imaging
devices. Nowadays, the most common way in which
photographs are geo-tagged is through the automatic
insertion of spatial coordinates into the EXIF meta-
data fields of JPEG images; however, a reported
location can easily be tampered with, and varies in
precision according to its means of derivation. For
example, in urban or forested environments, GPS
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signals suffer from attenuation and reflection which
leads to inexact, or the lack of, triangulation of
position as was illustrated by (Paek et al., 2010),
commonly referred to as the ‘Urban Canyon’
problem in dense cities (Cui and Ge, 2003).

Standard geo-tagged photos contain three non-
independent pieces of information that provide
valuable location indicative clues:

e Time when the media object was captured;

e Positional information (some devices also
provide orientation data);

e Embedded visual content of the scene.

Although these three indicators are derived from
independent sources and sensors, they are closely
intertwined since they all spatiotemporally describe
a particular scene. These interdependences can be
exploited to derive or validate one piece of
information against the others. (Hays and Eftros,
2008) showed that in a natural scene observed from
an arbitrary position, the geometry of solar shadows
cast by objects can provide clues about the time and
orientation  of the camera.  Analogously,
(Chippendale et al., 2009) illustrated how a captured
location can also be confirmed or hypothesized by
comparing the image content of the real scene with
expected  geo-content, through synthetically
generated terrain correlation.

Three elements must be examined in order to
prove, beyond a reasonable doubt, that a geo-tagged
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photograph is genuine:

1) Photo is unmodified at a pixel level; 2) The visual
content of the photo is consistent with that suggested
by its location; 3) The observation of time-
dependent events embedded in the photo is
consistent with the location and time suggested.
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Figure 1: Mind map of geo-positional image forensics
interconnections.

The interrelationships between visual content,
location and acquisition time have been generalized
in the mind map seen in Figure 1. The yellow core
of the diagram highlights the three key elements that
describe a geo-tagged media object. The red region
encompasses scene-topology matching; green relates
to geo-feature identification tools that aim to match
portions of photos to similar ones in pre-tagged
images; purple shows illumination relationships, e.g.
shadows or reflections; and the blue region relates to
geocoding based on the matching of machine
identifiable content to geo-databases, e.g. scene text
or logos.

In this paper, we will concentrate on the second
of the three elements, relating to the authentication
of spatiotemporal meta-data associated to a
photograph, through visual geo-content consistency
checks.

1.1 Reated Work

Prior operational approaches in the geo-positional
image forensics field have been very laborious and
expert-dependent, using ad-hoc methods tailored
towards a specific case. Tools like World
Construction Set' or Visual Nature Studio® can be
used to provide visual evidence by virtually
recreating a scene, or, visual correlations can be
made to nearby geo-tagged photos (taken from
massive socially generated geo-photo databases like

42

Panoramio®).

The automatic matching of photo content to 3D
synthetic models has been well explored in literature
in recent years, spanning many fields of research
including robotic navigation (Leotta and Mundy,
2011), Augmented Reality, photogrammetry (Guidi
et al., 2003), computer vision and remote sensing. In
the outdoor environment, (Baatz et al., 2012),
(Baboud et al., 2011) and (Hays and Efros, 2008)
have recently explored terrain-feature identification
to align visual terrain profiles to geo-specific
features. This approach involves the matching of
machine-extractable features from a photo to similar
features in a synthetic 3D-model, essentially pairing
2D pixel-region features to 3D locations. The
synthetic models used, rendered from a wide variety
of 3D geo-located data (e.g. Digital Elevation
Models (DEMs)), yield silhouette profiles which
should correspond to the terrain visible at a stated
photo location.

1.2 Contribution

In this paper, we illustrate how we have integrated
state-of-the-art =~ visual-feature ~ to  3D-model
correlation algorithms to create an interactive pixel-
to-world mapping tool (seen in Figure 2) which can
be used to validate the authenticity of terrain-
evident, geo-tagged photographs.
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Figure 2: Screenshot of the photo registration tool.

2 SYSTEM OVERVIEW

In forensic investigations, it is essential that human
operators are placed inside the visual content
analysis loop. Often, occlusions, difficult lighting
conditions, and tampering impede automatic terrain
feature detection, hence mamnual guidance can be
utilised to reduce detection ambiguities. Results
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from the computer-vision powered registration
process are ranked and offered to the user in the
form of an Augmented Reality visualization,
together with a correlation metric to indicate match
‘goodness’. In situations where ambiguities arise,
the user can influence subsequent refinement stages
by assigning new correlation pairs using a point and
click interface.

The automatic geo-registration process is based
on the algorithm proposed by (Baboud et al., 2011)
and (Kostelec and Rockmore, 2008), which attempts
to match visibly-evident geographical features to
corresponding synthetic features in a virtual model.
When dealing with natural outdoor scenes, one of
the most relevant features is terrain morphology. In
our approach, the wvirtual terrain models are
generated from DEMs, which represent the Earth’s
surface as a regular grid of elevation values (Li et
al., 2005). These renderings are generated by
systematically projecting rays from a photo’s
location onto the inside surface of a sphere recording
their angular intersections with the DEM. This
spherical image is then projected onto an
equiangular planar grid, in which each point in the
plane corresponds to a certain latitude, longitude,
altitude and depth (i.e. distance from the photo’s
location).

To derive camera pose, i.e. the pan, tilt and roll
of the camera that took the original photograph, the
image is firstly scaled according to the field-of-view
reported (usually derived from the focal length meta-
data in the EXIF). If focal-length information is
absent (or incorrect), then the system can estimate it
through a user-assisted scaling strategy forming part
of the alignment stage.

Photographs are aligned to the equiangular
model in four phases:

1. extraction of salient depth profiles from the
synthetic image;

2. extraction of salient profiles from the photo;

3. a  registration  algorithm  searches  for
correspondences between the two profile sets;

4. apply an optimization algorithm to derive the
best alignment parameters that minimize re-
projection error.

The processing pipeline of our system is visualized
below in Figure 3.

We generate salient depth profiles from the
synthetic image by marking abrupt distance changes
between adjacent points lying on a virtual ray
originating from the photo’s position.

The photo’s salient depth profiles are extracted
using a variety of means: edge detection, colour

appearance, blue shift and texture discontinuities,
following on from the work by (He et al. 2009). The
profiles generated from the real world observation,
unlike those in the synthetic image, are noisy and
incomplete due to the presence of occlusions (clouds
or foreground objects), uneven illumination (which
could lead to strong shadows) and poor visibility
(e.g. mist or fog).
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Figure 3: Flowchart of the alignment process.

Figure 4: Tree coverage GIS data taken from the 25m
Corine Land cover 2000 (purple) has been rendered onto
the 3D terrain model (indicated by blue and red depth
profile lines). In this image the 3D model has been made
transparent to illustrate photo-model registration.

To increase robustness, region boundary profiles
can also be included, e.g. sky-rock, vegetation (see
Figure 4), urban-forest, or combination thereof,
extracted with appropriate image processing and
machine learning approaches.

To provide optimal alignment, even in difficult
cases, a visual registration algorithm has been
implemented inside an iterative procedure to
evaluate correspondences on both local and global
scales through an optimization procedure. This
optimization algorithm aims to find the camera lens
parameters that produce the most accurate
alignment. This procedure can be performed by
exhaustively evaluating the full range of camera
parameters (sampled on a finite grid). This is,
however, very computationally intensive.
Consequently, we perform profile alignment in a
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similar manner to that proposed by (Baboud et al.,
2011), and compute a spherical cross correlation
based on the method demonstrated by (Kostelec and
Rockmore, 2008), using features sampled on an
equally spaced grid in the spherical reference
system. This approach can be explained more clearly
through example:

Let f(w) and g(w) represent the two spherical
functions, where w € S? is a position in the 2D
spherical domain. f refers to the synthetic features,
whilst g refers to features extracted from the real
image. We are searching for an optimal rotation
R(a,B,v) € SO(3), obtained by the composition of
three rotations with Euler angles «, 8, y, that, once
applied to g, maximizes the matching f. Equation
(1) shows how the ‘goodness’ of the match can be
estimated by computing the cross -correlation
between f and g after the rotation.

ek = | F@ygk's) do M

Figure 5: Spherical cross correlation between features
sampled on a equally spaced grid in the spherical
reference system. The red region represents the best match
and blue the worst; the x and y axes relate to pan and tilt
angles.

The maximum value of such a correlation in
spherical coordinates corresponds to the optimal
alignment that can be achieved (in terms of cross-
correlation) between the two spherical functions, and
the results from a typical alignment can be seen in
Figure 5.

3 BENEFITSOF PIXEL-GEO
MAPPING

As a direct consequence of profile registration, non-
sky pixels within a photo can be assigned to real 3D
locations on the planet (i.e. latitude, longitude,
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altitude). This mapping enables:

e 3D depth perception from 2D images (e.g.
retrieve world co-ordinates from an image region),

e re-photography (Bae et al., 2010),

e retrospective augmentation (i.e. facilitating a
forensics team to insert and/or extract 3D
information; thus, corroborating embedded evidence
or potentially revealing manipulation.

The possibility to automatically enrich a photograph
with geographically accurate information empowers
a user with the ability to discover elusive pieces of
evidence that would have otherwise been difficult to
retrieve or prove.

Figure 6: Substitution of pixels with geo-data, based on
distance from observer and altitude.

Apart from annotating a photo with toponyms or
relevant geo-referenced points of interest, we can
also drape GIS layer inside it, both in the form of
raster (e.g. maps, other geo-registered photos,
satellite data) and vector data (e.g. road, rivers,
paths, regions, boundaries). An example of such an
overlay can be seen in the composite image shown
in Figure 6. In this image, two different types of
geo-referenced layers have been visualized
simultaneously (pixels mapping to locations further
than 20km away from the camera were replaced by a
synthetic colour representing depth (dark green
closer and red farther away), and pixels mapping to
an altitude of less than 200m were replaced by geo-
corresponding pixels from a cartographic map.

4 FORENSIC EXPERIMENTS

To illustrate the uses and type of problems which
can be tackled using scene-model matching, this
section provides a few real-life cases where geo-
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verification has revealed interesting results. Further
examples of registered images can be found on our
results Blog®.

4.1 BogusK?2 Summiting

With a peak elevation of 8611m, K2 is the second-
highest mountain on Earth. In this case study, the
geo-positional image forensic analysis is focused on
Christian Stangl, a famous Austrian climber, whose
ambition is to be the first man to complete the Triple
Seven Summits challenge’, climbing the three
highest peaks on each of the seven continents.

Conditions were harsh when Stangl arrived at the
K2 Base Camp in the summer of 2010 for his third
attempt. Stangl left Base Camp on 10 August for a
solo attempt. After a 70-hour long summit push, he
returned, claiming that he had topped-out at 10am on
12 August. Given the prohibitive conditions and
other suspicious incoherencies, his claim was
received with scepticism among fellow climbers.

To validate his claim, Stangl quickly submitted a
self-portrait photograph supposedly taken on the
summit (see Figure 7), but devoid of meta-data, to
specialized magazines and websites®.

Figure 7: Self portrait of Christian Stangl, submitted to
ExplorersWeb as proof of climbing K2.

As can be seen, there is a small portion of a
glacier just visible over his right shoulder, offering
an ideal case for a geo-positional image forensic
study.

Figure 8 illustrates a visual summary of our
findings using the forensic tool we developed and
described in this paper.

The upper two images show an excerpt from an
Internet sourced photo known to have been taken at
Camp 3 on K2 (approximate location Lat: 35.875°N,
Lon: 076.531°E, Alt: 7250m) and a synthetic
rendering from the same view point. The lower two
images are an excerpt from a photo taken at the peak

of K2 (Lat: 35.881°N, Lon: 076.514°E, Alt: 8611m)
by Czech climber Libor Uher’, and likewise a
synthetic rendering from the same view point is
shown. The central image is a crop, and contrast
stretched, excerpt from the same photo submitted by
Stangl, shown in Figure 7.

Figure 8: (top row) Photo crop and synthetic rendering
from Camp 3; (centre) crop- from - Stangl's supposed
summit photo; (bottom row) crop and synthetic rendering
from K2 summit. Note: same 3D coordinate pairs drawn
in all images. Synthetic colouring relative to height.

The three photographs were registered using our
tool and into each, a pair of 3D points with a
connecting vector were inserted into the scenes (Lat:
35.802°N, Lon: 076.541°E, 6234 m and Lat:
35.704°N, Lon: 076.542°E, 4688 m). As is evident
from this analysis, the photo in question was in fact
taken from a location very close to that of Camp 3
and not from the summit.

At the time of the original investigation, the
editors of ExplorersWeb® used a more basic
technique: direct image comparison’. They found a
photo in a book that had exactly the same
composition and managed to overlay Stangl’s (fake)
summit shot onto it. This photograph was known to
have been taken from Camp 3 so thus confirmed
their doubts. Inevitably, when Stangl was presented
with ExplorersWeb’s analysis, he decided to confess
that he had faked the climb, generating a huge
scandal in the mountaineering community.

4.2 FakeMoon

Another interesting example of a geo-positional
image forensic study using the Moon as a non-static
but predictable geo-referenceable object is shown in
Figure 9.
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Figure 9: Conjunction of the Moon, Jupiter and Venus,
Palermo, Italy. (left) Photo from Flickr with artificially
enlarged Moon; (right) adjusted version of original photo,
with Moon resized and repositioned according to EXIF
location and time data.

In this popular Flickr image'®, the size of the
Moon looks suspiciously large, therefore scene
topology - matching  methods were applied to
understand if it was authentic. The stated location of
the geo-tagged Flickr image was Lat: 38.1713°N,
Lon: 013.3439°E and the time reported in the EXIF
was 2008:11:30 18:32:45.

Given these constraints, our tool was used to
register the photograph to a 3D synthetic model for
that region. As the registration process delivers the
relative distances and thus camera calibration
parameters, we can determine that the Moon in this
photo appears to span 5.6° of the sky. In reality, the
apparent diameter of the Moon as viewed from any
point on Earth, is always approximately 0.5°, hence
it was over 10 times too large. Interestingly, the
proportion of the Lunar surface bathed in light was
correct, at about 7.9%, so it is suspected that two
photos from the same evening had been merged. The
location of the Moon in the sky was also incorrect,
as it should have been present at 234.04° azimuth
and 2.07° altitude (derived from web-based celestial
almanacs and the EXIF time).

Based on these findings, a new image (see right
of Figure 9) was generated using Photoshop to
illustrate the correct size and correct location of the
Moon in the sky, based on the original EXIF meta-
data; the visible mountains and their relative
distances from the observer have also been labeled
using GeoNames'' toponym database. As is evident,
the Moon’s real location should have been just
above the rightmost peak, Pizzo Vuturo, producing a
less provocative image. Incidentally, the planets
Venus and Jupiter are also visible, and had likewise
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been subjected to the same up-scaling and
repositioning for visual effect.

5 CONCLUSIONS

In this paper, we have presented a system for geo-
forensic analysis using computer vision and graphics
techniques. The power of such a cross-modal
correlation approach has been exemplified through
three case-studies, in which claims were disproved,
truths revealed or doubts confirmed.

The relative novelty of geo-tagging photos
together with the scale and diversity of urban and
natural landscapes means that the approaches
detailed herein are not suitable for all scenarios.
Images containing nondescript content, e.g. indoors,
gently rolling countryside and deserts, cannot
provide sufficient clues to uniquely pinpoint location
or time. However, as more sources of geo-referenced
material, e.g. Points of Interest, geo-tagged photos
and accurate 3D urban models (like those being
created in GoogleSketchUp'? or OpenStreetMap'”)
become publicly available, the potential to exploit

the methods described here will increase
correspondingly
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