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Abstract: A novel packing problem for truck or containership transportation is considered.  A truck or a ship visits 
several accumulation places in a delivery tour, and items are loaded or unloaded at each accumulation place. 
In order to carry items as many as possible at one delivery tour, we often have to unpack and repack some 
items even at nondestination places if they blockade loading other items.  Such packing and repacking, 
however, will make the transportation cost increase.  Thus, a packing that requirs smaller number of 
unpacking and repacking is desired.  In this paper, we extend the slicing-tree which is a method of a 
representation of packing and propose an algorithm to pack items into the container with minimum the 
number of unpacking and re-packing.  

1  INTRODUCTION 

From the viewpoint of reducing the cost of 
transportation by truck or containership, it is desired 
to carry as many items as possible at one delivery. 
Developing a plan of loading items into a container 
is often considered as “the rectangular solid packing 
problem,” i.e., to allocate small rectangular solids 
without overlapping in a big rectangular empty box, 
and there have been published many papers on the 
rectangular solid packing problem (S. D. Allen et al., 
2011), (G. Fuellerer et al., 2010), (H. Kawashima et 
al., 2010), (F. K. Miyazawa, and Y. Wakabayashi, 
2009), and (H. Ohta et al., 2008) . 

In practice, we often have to take care about the 
order of items loading and unloading when we 
develop a loading plan. For example, suppose that a 
ship or a truck visits several accumulation places in 
a delivery tour, and items are loaded or unloaded at 
each accumulation place. In such a case, the loading 
and unloading order of items is subject to the order 
of visiting the accumulation places, which is 
difficult to be changed without changing the delivery 
routing. There are, however, few preceding studies 
about the packing problem where the order of both 
loading and unloading is given.  

Moreover, even if we consider only about either 
loading or unloading, the packing problem is still 
difficult. That is because, if we put each item in the 

rear side of the container in the order of loading (or 
the inverse order of unloading), all items may not be 
put in the container.   

Therefore, we should permit to unload 
temporarily an item if it blockades other items 
loading (unloading), and after the loading 
(unloading), to reload the blockading item again into 
the container. Hereafter we call such unloading of 
blocking items unpacking and such reloading 
repacking.  Since repacking causes increase of cost, 
we should pack the items in the container so that 
fewer items are to be repacked.  

In this paper, we discuss the above packing 
problem where the order of both loading and 
unloading is given. An effective algorithm to put the 
items with the minimum number of repacking is 
proposed and its performance will be shown by 
computational experiments.  

2  DEFINITION OF THE 
PROBLEM 

In this paper, we assume that items are rectangular 
solids and the container is also rectangular placed 
along x-axis, y-axis and z-axis in three-dimensional 
Euclidean space. The direction from left [resp. front, 
top] to right [back, bottom] is viewed as the x[y, z]-
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direction. The door of the container is located at the 
right side. Figure 1 shows an aspect of the container 
and directions of loading and unloading of items. 
Centers of gravity of the items are out of 
consideration in this paper, i.e., any allocations of 
the items are permitted unless items overlap with 
other items or walls of the container.  

 

Figure 1: Container and direction of loading and unloading. 

The loading and the unloading clock time are 
already given for each item. In accordance with the 
clock times, we obtain a partial order of loading and 
unloading. In the process of an item loading 
(unloading), other items which have been already 
located in the container may blockade the loading 
(unloading). In this case, we unload the items, which 
we call “blocking items,” from the container. After 
loading (unloading) of the item, we re-pack the 
blocking items into the original position.  

Now, we discuss the locations of the blocking 
items when an item is loaded to or unloaded from 
the container. When the item a is loaded into the 
container, the locations of the blocking items are on 
the left of or the upper of the place where the 
loading item a is to be located. In this paper, if the 
item b satisfies both of the following two conditions, 
then b is defined as the blocking item against the 
item a loading:  
(i) After loading of the item a, the front face of the 
item a is located in the front side of the rear face of 
the item b, and the rear face of the item a is located 
in the rear side of the front face of the item b;  
(ii) After loading of the item a, both of the following 
two conditions are satisfied:  
(ii-1) The right face of the item a locates in left side 
of the left face of the item b, and the bottom face of 
the item a is lower than upper face of the item b:  
(ii-2) The upper face of the item a is lower than the 
bottom face of the item b, and the left face of the 
item a locates in left side of the right face of the item 
b.  

Figure 2 (a) shows that the item d blocks when 
the item b is loaded, where the space in which the 
item b is to be located is represented by broken lines. 
Item d has to be unloaded first and then be repacked 
after the loading of the item b. Thus, the number of 
repacking is one.  

 
(a) 

 
(b) 

Figure 2: Blocking items against loading and unloading. 

The blocking item against the item unloading is 
also defined similarly. Figure 2 (b) shows that the 
item c blocks when the item a is unloaded. Item c 
has to be unloaded, but the item d blocks unloading 
of the item c. Therefore the item c has to be also 
unloaded and then to be repacked after the unloading 
of the item a. Thus, the number of repacking is two.  

The purpose of this paper is to propose an 
algorithm of packing items into a container so that 
the number of re-packing is the minimum.  

3  THREE-DIMENSIONAL 
SLICING-TREE 

A rectangular solid dissection, which is a dissection 
of a rectangular solid region into smaller rectangular 
solids (rooms) by places is often used to represent a 
packing. That is, items are assigned to the distinct 
rooms (any two items do not share a single room). In 
particular, a structure of a rectangular solid 
dissection which is obtained by recursively cutting 
by planes perpendicular to x, y or z-axis is called 
three-dimensional slicing-structure. Figure 3(a) 
shows a three-dimensional slicing-structure.  
 

     
(a)                                     (b) 

Figure 3: Three-dimensional slicing structure and the 
corresponding slicing-tree. 
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A three-dimensional slicing-structure can be 
represented by a binary tree, where internal nodes 
and external nodes correspond to planes and rooms 
respectively. In particular, the internal nodes are 
classified into “X-nodes”, “Y-nodes” and “Z-nodes”. 
X-nodes [resp. Y-nodes, Z-nodes] correspond to the 
planes perpendicular to x-axis [y-axis, z-axis] in the 
rectangular solid dissection. The left subtree of the 
X-node [resp. Y-node, Z-node] corresponds to the 
leftward [frontward, upward] region of the 
corresponding plane, and the right subtree of the X-
node [resp. Y-node, Z-node] corresponds to the 
rightward [backward, downward] region of the 
corresponding plane. The slicing tree does not allow 
the representation of all packings, However the near 
optimal packing can be modeled. Figure 3(b) shows 
the slicing-tree which is the representation of the 
slicing-structure shown in figure 3(a).  

It is obvious that a region which corresponds to 
an external node must be larger than the item. In 
addition, the shape of each region which 
corresponds to a subtree is a rectangular solid. Now 
we express the size of rectangular solid A as 

( AX AY AZ ), where AX [resp. AY , AZ ] is the 

x[y, z]-length of the rectangular solid A. Assume the 
size of the rectangular solid which corresponds to 

the left subtree of a X-node P is ( LX LY LZ ), 

the size of the rectangular solid which corresponds 

to the right subtree of P is  ( RX RY RZ ) and 

the size of the rectangular solid which corresponds 
to the subtree which is merged the trees and whose 

root is P is ( PX PY PZ ) respectively. Then we 

have the following inequalities.  
 

RLP XXX  , 

),max( RLP YYY  ,  

),max( RLP ZZZ   

 

In the case where P is Y-node or Z-node, similar 
inequalities are also satisfied. The properties mean 
that we can decode the slicing-tree into the 
corresponding packing by the post order traverse of 
the tree in O(n) time, where n is the number of items 
(L. Cheng et al., 2004). 

If the size of the rectangular solid which 
corresponds to the entire slicing-tree is smaller than 
the size of the container, every item can be located 
into the container and the packing is feasible. 

4  PROPOSED ALGORITHM 

We extend the three-dimensional slicing-tree to 
represent placement, loading and unloading of the 
items. Using the extended representation, we search 
for a packing that minimizes the number of re-
packing with simulated annealing. The search of 
item placement consists of two phases. In Phase 1, 
every item are put into the container. In Phase 2, the 
number of re-packing is minimized. 

4.1 Extension of Slicing-Tree 

For any two items, if one is unloaded earlier than the 
loading of the other, they never overlap with each 
other. So these two items can be located into the 
same place in the container. To represent the above 
placement of two items, we introduce "T nodes" as 
internal nodes of the slicing-tree. The meaning is 
that any two items, which correspond to the external 
nodes on the left and right subtree of the T-node 
respectively, do not exist in a container at the same 
time. Figure 4(a) shows an original three-
dimensional slicing-tree, and Figure 4(b) shows a 
proposed slicing-tree which is obtained by 
introducing T node into the slicing-tree shown in 
Figure 4(a). Note that the clock time of loading and 
unloading are set and each external node stores the 
times. Figure 5 (a) and (b) show the placement of 
items which is represented by the slice tree shown in 
Figure 4(b).  
 

       
(a)                      (b) 

Figure 4: Introduction of T node to slicing-tree. 

We can check whether any X(Y, Z) node in the 
original slicing-tree can be changed to T-node by 
comparing "clock times of loading of items in the 
right subtree" and "clock times of unloading of items 
in the left subtree". Therefore, we obtain the 
extended slicing-tree by the original slicing-tree in 
O(n) time. 
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 (a)  Placement of items when time clock is 4 

   
(b)  Placement of items when time clock is 8 

Figure 5: Placement of items corresponding to slicing-tree 
shown in Figure 4 (b). 

If the size of the rectangular solid which 
corresponds to the left subtree of a T-node P is 

( LX LY LZ ), the size of the rectangular solid 

which corresponds to the right subtree of P is 

( RX RY RZ ), and the size of rectangular solid 

which corresponds to the subtree whose root is P is 

( PX PY PZ ) respectively, then the following 

inequalities are satisfied.  
 

),max( RLP XXX  ,  

),max( RLP YYY  ,  

),max( RLP ZZZ  .  

4.1.1 Counting the Number of Re-Packings 

Using an extended slicing-tree, we can count the 
number of re-packing of the placement of items. For 
any pair of items a and b, the following necessary 
conditions are satisfied if b will block to a loading:  
(i) The type of a least common ancestor of a and b is 
X-node or Z-node;  
(ii) a is contained in the left subtree of the least 
common ancestor ;  
(iii) When a is loaded into the container, b is located 
in the container.  

We can count the number of re-packing by using 
above conditions in O(n2) time. However, since the 
conditions are not a sufficient condition, we may 
overestimate, if we count only by using the 

conditions. Such overestimate can be detected by 
considering the positional relation between a and b. 
Thus, we present an algorithm to count the number 
of re-packing by the proposed slicing-tree. The 
running time of the algorithm is O(n2t), where t is 
the number of clocking time when items are loaded 
or unloaded. 

 

 

4.2 Phase 1 

In Phase 1, we don’t evaluate the number of re-
packings but evaluate the size of a rectangular solid 
corresponding to the entire extended slice-tree to see 
whether all items can be located into the container or 
not. 

An objective function of simulated annealing 
search is the x-length of a rectangular solid 
corresponding to the extended slice-tree. In addition, 
if the y-length or z-length is larger than that of the 
container, a penalty proportional to the surplus is 
added to the cost function. 

We search by using the original slicing-tree (The 
tree does not include the T-node), and obtain the 
extended slicing-tree for the evaluation. The initial 
solution is that the items are laid out on the line. 
Figure 6 (a) shows the placement of items in the 
initial solution, Figure 6 (b) shows the 
corresponding slicing-tree.  

Input: extended slicing-tree
Output: N_r (the number of re-packing 

 for items loading) 
 
 
Count_repacking (extended slicing-tree) 
{ 
N_r = 0; 
for(each clock time t){ 

for(each node n in post-order traverse of the 
extended slicing-tree){ 

calculate num_of_blocked(n,t); 
} 

N_r = N_r + num_of_blocked(root of the extended 
slicing-tree,t);  

  } 
return  N_r; 
} 

 
 

num_of_blocked(node n,clock time t) 
{ 
if (node n is an external node){ 

 check the positional relation between n and each item 
if (when the clock time is t, there exists at least  

one item whose loading is blocked by n) return 1; 
else return 0; 
} 

else 
return( num_of_blocked(left child of n, t) 

+ num_of_blocked(right child of n, t)) ; 
} 
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(a)                                               (b) 

Figure 6: Initial placement of items and corresponding 
slicing-tree. 

The neighbourhood solution is obtained by one 
of the following four operations: 
(a)Rotation of the item: One item is chosen at 
random, and the direction of the item is changed;  
(b)Exchange of subtrees: Two subtrees are chosen at 
random, and exchanged with each other, if the sub-
trees do not contain each other;  
(c)Exchange of items: Two external nodes are 
chosen at random and are exchanged with each 
other; 
(d)Transposition of placement: an internal node is 
chosen at random and its type (X-node, Y-node or 
Z-node) is changed. 

4.3 Phase 2 

In Phase 2, we evaluate the number of re-packings 
and minimize it. During the search, if a 
neighbourhood solution is infeasible, the solution is 
rejected and new neighbourhood solution is created. 
The initial solution of the search is the result of 
searching in Phase 1. The neighbourhood solution is 
obtained by using the above four operations. 

5  COMPUTER EXPERIMENTS 

We carried out an experiment on a computer to 
evaluate the performance of the proposed method. 
The computer environment is an Intel Core i7-200 
3.40 GHz CPU with 2 GB of memory. The 
programming language used is C.  

The instances for the experiment were made at 
random. The number of items is 20, 30 or 50. The 
length of each side of the items is 10 through 30. 
The loading clock time and unloading clock time of 
each item are 1 through 10. Several sets of 
containers of different size are made.  The ratio of 

length along x, y, and z axis of a container is 5:2:3, 
which reflects the side ratio of real trucks.  

The results of the experiments are shown in table 
1, 2 and 3. These results show that we obtain small 
number of re-packings except in one instance. 

Time_Phase1 is the average of the time until all 
items be located into the container. We almost 
obtained feasible solutions in a practical time. But 
the increase of the packing ratio or the number of 
items makes it difficult to gain the feasible solutions, 
and we failed loading in some instances. To solve 
them, we need more flexible re-packing. 

Time_Phase2 is the average of the time until the 
convergence of the search. 

Table 1: Experiment results (20 items). 

total
packing
ratio(%)

maximum
packing
ratio(%)

time_Phase1
(sec.)

time_Phase2
(sec.)

number of
re-

packings

64.80 34.15 0 2310 0
87.50 46.10 1 1167 2

122.16 64.37 1 1167 2
146.52 77.21 1546 113 21
177.82 93.70

20 items

loading failure  

Table 2: Experiment results (30 items). 

total
packing
ratio(%)

maximum
packing
ratio(%)

time_Phase1
(sec.)

time_Phase2
(sec.)

number of
re-

packings

79.46 43.31 2 23542 0
91.99 50.13 2 24161 3

107.29 58.47 3 23877 4
126.18 68.77 134 48683 10
149.79 81.63

30 items

loading failure  

Table 3: Experiment results (50 items). 

total
packing
ratio(%)

maximum
packing
ratio(%)

time_Phase1
(sec.)

time_Phase2
(sec.)

number of
re-

packings

86.89 44.26 53 11318 4
100.91 51.40 48 58699 4
118.17 60.19 491 550445 4
150.14 76.48

50 items

loading failure  

In particular, we will show the detail of the result 
of one of our instances. The instance has 30 items 
whose length of each side is 10 through 30. The size 
of the container is (90  36  54). The maximum 
packing ratio is 68.77%, and the ratio of the sum of 
volume of all items to the volume of the container 
(total packing ratio) is 126.18%. 
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Figure 7 shows the result in the Phase 1, that is 
the relation between the length of the rectangular 
solid corresponding to the extended slicing-tree and 
the searching time.  

Figure 8 shows the relation between the number 
of re-packings and the searching time.  

Figure 9 shows the result of placement of items 
when the packing ration is the maximum (68.77%). 
The number of repacking of the placement is 10.  

 

Figure 7: Relation between the length of the rectangular 
solid corresponding to the extended slicing-tree and the 
searching time. 

 

Figure 8: Relation between the number of re-packing and 
the searching time. 

 

Figure 9: Placement of items when the packing ratio is the 
maximum. 

 

6  CONCLUSIONS 

In this paper, we described a novel packing problem 
which is the order of loading and unloading of items 
is given and proposed an algorithm that minimizes 
the number of repacking. Further works are as 
follows:  
(i) More flexible re-packing: when an item is 
repacked, we would like to allow that the item is put 
on arbitrary position in the container, i.e., the 
position different from the position which the item 
was unloaded from; 
(ii) Application to a more practical case: we should 
consider about a center of gravity of the items and 
packaging materials. 
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