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Abstract: An electromygraphic (EMG) Silent Speech Interface is a system which recognizes speech by capturing the
electric potentials of the human articulatory muscles, thus enabling the user to communicate silently. This
study is concerned with introducing an EMG recording system based on multi-channel electrode arrays. We
first present our new system and introduce a method to deal with undertraining effects which emerge due
to the high dimensionality of our EMG features. Second, we show that Independent Component Analysis
improves the classification accuracy of the EMG array-based recognizer by up to 22.9% relative, which is
a first example of an EMG signal processing method which is specifically enabled by our new array-based
system. We evaluate our system on recordings of audible speech; achieving an optimal average word error rate
of 10.9% with a training set of less than 10 minutes on a vocabulary of 108 words.

1 INTRODUCTION

Speech is the most convenient and natural way for
humans to communicate. Beyond face-to-face talk,
mobile phone technology and speech-based electronic
devices have made speech a wide-range, ubiquitous
means of communication. Unfortunately, voice-based
communication suffers from several challenges which
arise from the fact that the speech needs to be clearly
audible and cannot be masked, including lack of ro-
bustness in noisy environments, disturbance for by-
standers, privacy issues, and exclusion of speech-
disabled people.

These challenges may be alleviated by Silent
Speech Interfaces, which are systems enabling speech
communication to take place without the necessity of
emitting an audible acoustic signal, or when an acous-
tic signal is unavailable (Denby et al., 2010).

Over the past few years, we have developed a
Silent Speech Interface based on surface electromyo-
graphy (EMG): When a muscle fiber contracts, small
electrical currents in form of ion flows are generated.
EMG electrodes attached to the subject’s face capture
the potential differences arising from these ion flows.
This allows speech to be recognized even when it is
produced silently, i.e. mouthed without any vocal ef-
fort.

So far, all EMG-based speech recognizers have re-
lied on small sets of less than 10 EMG electrodes at-
tached to the speaker’s face (Schultz and Wand, 2010;

Maier-Hein et al., 2005; Freitas et al., 2012; Jor-
gensen and Dusan, 2010; Lopez-Larraz et al., 2010).
The technology is based on standard Ag-AgCl gelled
electrodes as used in medical applications. This setup
imposes some limitations, for example, small shifts in
the electrode positioning between recordings are diffi-
cult to compensate, and it is impossible to separate su-
perimposed signal sources, thus single active muscles
or motor units cannot be discriminated. In this paper,
we present first results on using electrode arrays for
the recording of EMG signals of speech. We estab-
lish a baseline procedure to allow an existing state-
of-the-art EMG-based continuous speech recognizer
(Schultz and Wand, 2010) to deal with the increased
number of signal channels, and we present a first
application of the EMG array methodology, namely,
we show that application of Independent Component
Analysis (ICA) reduces the Word Error Rates of the
recognizer.

In the future, we expect EMG array technology to
allow a much more fine-grained EMG-based recogni-
tion of articulatory activity than can be achieved with
separate-electrode systems: The multi-channel sig-
nal will allow us to perform source separation meth-
ods, as presented in this paper, and should offer the
possibility to extract and model certain articulatory
patterns which are part of the human speech pro-
cess. In terms of practical usage, the setup time for
the new system is significantly shorter than for the
old separate-electrode system, since the electrode at-
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Figure 1: EMG array positioning for setup A (left) and setup
B (right).

tachment process is much shorter than for separate-
electrode systems.

The remainder of this paper is organized as fol-
lows: In the following section 2, we describe our new
recording system, and section 3 contains a description
of the underlying decoding system. Section 4 presents
our experiments, and the final section 5 concludes the
paper.

2 RECORDING SYSTEM SETUP
AND CORPUS

For EMG recording we used the multi-channel
EMG amplifier EMG-USB2 produced and dis-
tributed by OT Bioelettronica, Italy (http://www.
otbioelettronica.it/). The EMG-USB2 ampli-
fier allows to record and process up to 256 EMG chan-
nels, supporting a selectable gain of 100 - 10000 V/V
and a recording bandwidth of 3 Hz - 4400 Hz. For line
interference reduction, we used the integrated DRL
circuit (Winter and Webster, 1983). The electrode ar-
rays were acquired from OT Bioelettronica as well.
Electrolyte cream was applied to the EMG arrays in
order to reduce the electrode/skin impedance.

We used two different EMG array configurations
for our experiments, see figure 1. In setup A, we
unipolarly recorded 16 EMG channels with two EMG
arrays each featuring a single row of 8 electrodes,
with 5 mm inter-electrode distance (IED). One of the
arrays was attached to the subject’s cheek, captur-
ing several major articulatory muscles (Maier-Hein
et al., 2005), the other one was attached to the sub-
ject’s chin, in particular recording signals from the
tongue. A reference electrode was placed on the sub-
ject’s neck.

In setup B, we replaced the cheek array with a
larger array containing four rows of 8 electrodes, with
10 mm IED. The chin array remained in its place. In
this setup, we achieved a cleaner signal by using a
bipolar configuration, where the potential difference
between two adjacent channels in a row is measured.

This means that out of 4� 8 cheek electrodes and 8
chin electrodes, we obtain (4+1) �7= 35 signal chan-
nels.

For both setups, we chose an amplification factor
of 1000, a high-pass filter with a cutoff frequency of
3 Hz and a low-pass filter with a cutoff frequency of
900 Hz, and a sampling frequency of 2048 Hz. The
audio signal was parallely recorded with a standard
close-talking microphone. We used an analog marker
system to synchronize the EMG and audio recordings,
and according to (Jou et al., 2006), we delayed the
EMG signal by 50ms compared to the audio signal.

The text corpus which we recorded is based on
(Schultz and Wand, 2010). We used two different text
corpora for our recordings: Each session contains a
set of ten “BASE” sentences which is used for test-
ing and kept fixed across sessions. Furthermore, each
session contains 40 test sentences, which vary across
sessions. For reference, we call this basic text corpus
“Set 1”. A subset of our sessions has been extended to
160 different training sentences and 20 test sentences,
where the 20 test sentences consist of the BASE set
repeated twice. This enlarged text corpus is called
“Set 2”.

The recording proceeded as follows: In a quiet
room, the speaker read English sentences in normal,
audible speech. The recording was supervised by a
member of the research team in order to detect errors
(e.g. detached electrodes) and to assure a consistent
pronunciation. The training and test sentences were
always recorded in randomized order. Thus we finally
have four setups to investigate, namely, setups A-1
and A-2 (with 16 EMG channels) and B-1 and B-2
(with 35 EMG channels). At this point we remark that
the results on the four setups are not directly compara-
ble, since the number of training sentences, the set of
speakers and the number of sessions per speaker dif-
fer. Also, our experience indicates that even for one
single speaker, the recognition performance may vary
drastically between sessions, possibly due to varia-
tions in electrode positioning, skin properties, etc.
However, it is certainly plausible to compare the ef-
fects of different feature extraction methods on the
recognition performance of each of the setups, which
is the purpose of this paper. It should also be noted
that the test sets of the four setups exhibit identical
characteristics in terms of perplexity and vocabulary.

The following table summarizes the properties of
our corpus.

Setup # of Speakers / Average data length in sec.
Sessions Training Test Total

A-1 3 / 6 144 37 181
A-2 2 / 2 528 74 602
B-1 6 / 7 149 42 191
B-2 4 / 4 570 83 653
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Figure 2: Word Error Rates for the baseline system with different stacking context widths (no PCA or ICA).

3 FEATURE EXTRACTION,
TRAINING AND DECODING

The feature extraction is based on time-domain fea-
tures (Jou et al., 2006). We first split the incom-
ing EMG signal channels into a high-frequency and
a low-frequency part, after this, we perform framing
and compute the features, as follows:

For any given feature f, f̄ is its frame-based time-
domain mean, Pf is its frame-based power, and zf is its
frame-based zero-crossing rate. S(f;n) is the stacking
of adjacent frames of feature f in the size of 2n+ 1
(�n to n) frames.

For an EMG signal with normalized mean x[n], the
nine-point double-averaged signal w[n] is defined as

w[n] =
1
9

4

å
k=�4

v[n+ k]; where v[n] =
1
9

4

å
k=�4

x[n+ k]:

The high-frequency signal is p[n] = x[n]�w[n],
and the rectified high-frequency signal is r[n] = jp[n]j.
The final feature TDn is defined as follows:

TDn = S(TD0;n);where TD0 = [w̄;Pw;Pr;zp; r̄];
i.e. a stacking of adjacent feature vectors with con-
text width 2 �n+1 is performed, with varying n. This
process is performed for each channel, and the com-
bination of all channel-wise feature vectors yields the

final TDn feature vector. Frame size and frame shift
are set to 27 ms respective 10 ms.

In all cases, we apply Linear Discriminant Anal-
ysis (LDA) on the TDn feature. The LDA ma-
trix is computed by dividing the training data into
136 classes corresponding to the begin, middle, and
end parts of 45 English phonemes, plus one si-
lence phoneme. From the 135 dimensions which
are yielded by the LDA algorithm, we always re-
tain 32 dimensions, which is in line with previous
work (Jou et al., 2006; Schultz and Wand, 2010) and
thus allows to compare our performance with the re-
sults on single-electrode systems. Preliminary exper-
iments with a higher number of retained dimensions
did not show any significant improvement. As shown
in section 4.2, it may be necessary to perform Prin-
cipal Component Analysis (PCA) before computing
the LDA matrix, see section 4.2 for further details. In
the experiments described in section 4.3, Independent
Component Analysis (ICA) is applied before the fea-
ture extraction step, on the raw EMG data.

The recognizer is based on three-state left-to-right
fully continuous Hidden-Markov-Models. All exper-
iments used bundled phonetic features (BDPFs) for
training and decoding, see (Schultz and Wand, 2010)
for a detailed description. In order to obtain phonetic
time-alignments as a reference for training, the paral-
lely recorded acoustic signal was forced-aligned with
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Figure 3: Word Error Rates for different PCA dimension reductions. Observe that the feature space dimension before the
PCA step increases from left to right and from top to bottom.

an English Broadcast News (BN) speech recognizer.
Based on these time-alignments, the HMM states are
initialized by a merge-and-split training step (Ueda
et al., 2000), followed by four iterations of Viterbi
training.

For decoding, we used the trained acoustic model
together with a trigram Broadcast News language
model. The test set perplexity is 24.24. The decod-
ing vocabulary was restricted to the words appearing
in the test set, which resulted in a test vocabulary of
108 words. Note that we do not use lattice rescoring
for our experiments.

4 EXPERIMENTS AND RESULTS

In this section we first outline our baseline system,
based on (Schultz and Wand, 2010), and then de-
scribe the modifications to the feature extraction pro-
cess which are necessary to deal with a large number
of channels. In the final part, we apply Independent
Component Analysis (ICA) to the raw EMG data and
show that it can increase the recognition accuracy.

4.1 Baseline Recognition System

Our first experiment establishes a baseline recogni-
tion system. We use our recognizer, as described in
section 3, and feed it with the EMG features from the
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Table 1: Optimal Results and Parameters with and without PCA.

Setup A-1 A-2 B-1 B-2
Best Result without PCA (“Baseline”) 46.3% 17.0% 50.5% 13.4%
Optimal Stacking Width without PCA 5 15 2 5
Optimal Number of Dimensions without PCA 880 2480 875 1925
Best Result with PCA 40.1% 13.9% 44.9% 10.9%
Optimal Stacking Width with PCA 15 15 5 10
Optimal Number of Dimensions with PCA 900 2480 500 1500
Relative Improvement by PCA Application 13.4% 18.2% 11.1% 18.7%

array recording system. Figure 2 shows the Word Er-
ror Rates for different stacking widths, averaged over
all sessions of the four setups.

We now consider the optimal context widths for
the four setups. This has been investigated e.g. by
(Jou et al., 2006), where a context width of 5 was
used, and by (Wand and Schultz, 2010), where it was
shown that increasing the context width to 15 frames,
i.e. 150 ms, still brings some improvement.

Our observations for the four distinct setups pre-
sented in this study are very different: For setup A-
1, with 16 channels and 40 training sentences, the
Word Error Rate (WER) varies between 46.3% and
53.2%, with the optimum reached at a context width
of 5 (i.e. TD5). For the B-1 setup, with 35 channels
but the same amount of training data, the optimal con-
text width appears to be TD2 with a WER of 50.5%,
and for wider contexts, which increases to 87.6% for
the TD15 stacking.

For the setups with 160 training sentences, the
recognition performance is generally better due to the
increased training data amount. With respect to con-
text widths, we observe a behavior which vastly dif-
fers from the results above: For 16 EMG channels
(setup A-2), the optimal context width is TD15, with
a WER of only 17.0%. For setup B-2, TD5 stacking
is optimal, with a WER of 13.4%.

The behavior described in this section is quite con-
sistent across recording sessions. This means that
even though the corpora for the four setups are dif-
ferent, we have observed a deep inconsistency with
respect to the optimal stacking width, which leads us
to the series of experiments described in the following
section.

4.2 PCA Preprocessing to avoid LDA
Sparsity

Machine learning tasks frequently exhibit a chal-
lenge known as the “Curse of Dimensionality”, which
means that high-dimensional input data, relative to
the amount of training data, causes undertraining, di-
minishes the effectiveness of machine learning algo-
rithms, and reduces in particular the generalization

capability of the generated models. The maximal fea-
ture space dimension which allows robust training de-
pends on the amount of available training data.

The dimensionality of the feature space in our
experiments depends on the number of EMG chan-
nels and the stacking width during feature extraction.
From the results of section 4.1, we observe

� that for both setups A and B, increasing the
amount of training data increases the optimal con-
text width

� and that for both the 40-sentence training corpus
(set 1) and the 160-sentence training corpus (set
2), the optimal context width with setup B is lower
than the optimum for setup A.

This strongly suggests that the “Curse of Dimension-
ality” is the cause of the discrepancy we observed.
However, since the LDA algorithm always reduces
the feature space dimensionality to 32 channels, the
GMM training itself is not affected by varying feature
dimensionalities.

We assumed that the deterioration of recognition
accuracy for small amounts of training data and high
feature space dimensionalities is caused by the LDA
computation step. It has been shown that when the
amount of training data is small relative to the sam-
ple dimensionality, the LDA within-scatter matrix be-
comes sparse, which reduces the effectivity of the
LDA algorithm (Qiao et al., 2009). This may be the
case in our setup, since with only a few minutes of
training data, we may have a sample dimensionality
before LDA of up to 35 � 5 � 31 = 5425 for the 35-
channel system with a TD15 stacking.

The following set of experiments deals with cop-
ing with the LDA sparsity problem. From these ex-
periments we expect an improved recognition accu-
racy and, in particular, a more consistent result re-
garding the optimal feature stacking width. In these
experiments, we allowed an additional PCA dimen-
sion reduction step before the LDA computation,
as advocated for visual face recognition (Belhumeur
et al., 1997). This step should allow an improved
LDA estimation, however, if the PCA cutoff dimen-
sion is chosen too low, one will lose information

Array-based�Electromyographic�Silent�Speech�Interface

93



Figure 4: Word Error Rates after ICA application, for the four different setups and varying context widths.

which is important for discrimination.
The computation works as follows: On the train-

ing data set, we first compute a PCA transformation
matrix. We apply PCA and keep a certain number
of components from the resulting transformed sig-
nal, where the components are, as usual, sorted by
decreasing variance. Then we compute an LDA ma-
trix of the PCA-transformed training data set, finally
keeping 32 dimensions. The resulting PCA + LDA
preprocessing is now applied to the entire corpus, nor-
mal HMM training and testing is performed, and we
use the Word Error Rate as a measure for the quality
of our preprocessing.

Figure 3 plots the Word Error Rates of our recog-
nizer for setups A and B and different stacking widths
versus the number of retained dimensions after the
PCA step. In all cases, we jointly plot the WERs for
training data sets 1 and 2.

The figures show that the PCA step indeed helps
to overcome LDA sparsity. For example, in the A-1
setup, the optimal context width without PCA appli-
cation is 5, yielding a WER of 46.3%. With PCA
application, the optimal number of retained PCA di-
mensions for the TD5 context width is 700, yielding a
WER of 44.8%. However, we can still do better: With
a vastly increased context width of 15, we get the best

WER of 40.1%, at a dimensionality after PCA appli-
cation of 900.

This is also true for the other four setups, see ta-
ble 1 for an overview. In all cases, we obtain WER
reductions of more than 10% relative, and also, in all
cases the optimal context width increases.

So far, we have found the optimal context width
for the EMG speech classification task to lie around
10 to 15 frames on each side, which makes a context
of around 200-300 ms. It may be possible to try even
wider contexts, however, close examination of the re-
sults in figure 3 show that between the context widths
of 10 and 15, the respective results with optimal PCA
dimensionality are rather close for each of the four
setups.

4.3 ICA Application

Having established a baseline recognizer, we now turn
our attention to applications of array technology. One
well-established means of identifying signal sources
in multi-channel signals is Independent Component
Analysis (ICA) (Hyvrinen and Oja, 2000). ICA is a
linear transformation which is used to obtain indepen-
dent components within a multi-channel signal; the
underlying idea is that the statistical independence be-
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Table 2: Best Results with and without ICA.

Setup A-1 A-2 B-1 B-2

Without PCA
Best Result without ICA 46.3% 17.0% 50.5% 13.4%
Best Result with ICA 35.7% 16.2% 44.2% 12.1%
Relative Improvement 22.9% 4.7% 12.5% 9.7%

With PCA
Best Result without ICA 40.1% 15.15% 44.9% 10.9%
Best Result with ICA 35.7% 12.40% 40.8% 11.8%
Relative Improvement 11.0% 18.2% 9.1% -8.3%

tween the estimated components is maximized.
We interpret ICA as a method of (blind) source

separation, therefore we apply ICA and then run our
recognizer on the estimated components; this includes
the PCA step and the LDA step. Another method
would be to delete undesired sources, e.g. noise, and
then back-project the remaining components (Jung
et al., 2000). Also, we do not manually remove un-
desired channels, instead we allow the PCA+LDA
step to remove these non-discriminative components.
Clearly, this is expected to be only a first step towards
a more meticulous application of ICA, in particular,
we expect to be able to detect and remove irrelevant
noise channels in the future.

The ICA separation matrix is always computed on
the training data of the respective sessions. Since in
both setups A and B, we have two separate EMG
arrays, we run the ICA algorithm on the channels
from these two arrays separately. We use the Info-
max ICA algorithm according to (Bell and Sejnowski,
1995), as implemented in the Matlab EEGLAB tool-
box (Makeig, S. et al., 2000).

Figure 4 shows average Word Error Rates for se-
tups A and B, plotted against the PCA cutoff dimen-
sion, with and without ICA application. As typical
examples of our observations, for setup A we plotted
the results for the context widths of 5 and 10, for setup
B, we chose the context widths of 2 and 5.

It can be seen that in almost all cases, ICA im-
proves the recognition results consistently across dif-
ferent PCA dimensionalities. The remarkable excep-
tions are setups B-1 and B-2 with TD5 stacking. Gen-
erally, ICA appears to be slightly more helpful in
setup A. Table 2 gives an overview of the results of
ICA application. It can be seen that the only case
where ICA application gives a worse result is the B-
2 setup, which is, however, still our best setup alto-
gether.

Finally, we ask the question why the ICA appli-
cation does not yet always yield satisfactory results.
One can visually study the effects of ICA preprocess-
ing by looking at the EMG signals before and after
ICA application: Figure 5 gives a typical example of
the first second of a recording from corpus A-2; only
the signals from the cheek array are shown. One sees

Figure 5: 8-channel EMG signals before ICA application
(left) and after ICA application (right).

that the eight original channels (left) show somewhat
similar patterns, including a relatively large amount
of pure noise at the beginning, when the speaker has
not yet started to articulate.

The ICA-processed signals present a different im-
age: Out of the eight channels, four show white noise
throughout the recording, three show starkly different
EMG signals, and the first channel appears to show
a mixture of noise and content-bearing signal. Note
that the ICA implementation changes the scale of the
ICA components.

Our current method applies the EMG preprocess-
ing described in section 3 to all these ICA components
indiscriminately. The fact that the recognition results
are better for the ICA-processed signals than for the
original EMG data indicates that the PCA+LDA step
is able to suppress the noise components and concen-
trates on the content-bearing channels, however, this
method is likely suboptimal. In the future we plan to
develop and apply heuristical methods to distinguish
content-bearing signals and noise components, so that
the latter can be automatically removed.
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5 CONCLUSIONS

In this study we have laid the basics of a new EMG-
based speech recognition technology, based on elec-
trode arrays instead of single electrodes. We have
presented two basic recognition setups and evaluated
their potential on data sets of different sizes. The
unexpected inconsistency with respect to the optimal
stacking width led us to the introduction of a PCA
preprocessing step before the LDA matrix is com-
puted, which gives us consistent relative Word Error
Rate improvements of 10% to 18%, even for small
training data sets of only 40 sentences.

As a first application of the new array technology,
we have shown that Independent Component Analy-
sis (ICA) typically improves our recognition results.
We also have observed that our method of applying
ICA does not yet always yield satisfactory results: In
one of our setups, we actually observed slightly worse
results than without ICA.
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