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Abstract: The objectives of this study were to develop and compare the prediction models based on imputed data sets 
with that based on complete-case (C-C) data set for coronary heart disease (CHD) in type 2 diabetes melli-
tus (T2DM) and to identify novel genes associated with CHD from T2DM related genes. A prospective co-
hort of 5526 patients with T2DM and without known CHD and heart failure at baseline was used in this 
analysis. During a median follow-up time of 8.8 years, 406 (7.3%) patients developed incident CHD. Multi-
ple imputation (MI) was performed to tackle missing values for 26 clinical variables and 40 genetic varia-
bles, while Cox proportional hazards regression with backward variable selection was applied to bootstrap 
samples. Five different MI or C-C models were compared and the performance based on C-index, 5 years 
AUC and the slope of prognostic index were similar, three SNPs located at NEGR1, CDKAL1 and 
ADAMTS9 were found to be significant after adjusting for clinical variables. In conclusion, multiple impu-
tation and bootstrap can be benefit to the development of prediction model, and a stable risk factor set for 
CHD was successfully identified from our dataset containing clinical and genetic variables. 

1 INTRODUCTION 

The prevalence of type 2 diabetes mellitus (T2DM) 
is increasing around the world, and it leads to a 2-4 
fold increased risk of coronary heart disease (CHD) 
compared to those patients without T2DM (Laakso, 
2001). Based on Chinese diabetic population, (Yang 
et al., 2008) has developed a CHD prediction model 
using available clinical variables. Due to the com-
plexity of CHD, however, this disease is influenced 
not only by lifestyle factors, but also by genetic fac-
tors (Vaarhorst et al., 2012). Simultaneously, taking 
account of the relationship between T2DM and CHD, 
it was hoped that T2DM associated genes were also 
associated with CHD and could be used to predict 
CHD risk. 

In basis of practical problems in the application 
of model development, such as the processing of 
missing values and variable selection, we undertake 
this study to further investigate Yang’s CHD predic-
tion model. The objectives are to 1) perform multi-
ple imputation (MI) to tackle the missing values and 
compare the performance of models developed from 

imputed data sets and from complete-case (C-C) 
data set for Yang’s model, 2) select a stable CHD 
predictor list from a data set containing clinical and 
genetic variables, and 3) identify novel genes asso-
ciated with CHD from T2DM related genes. 

2 PATIENTS AND METHODS 

2.1 Study Cohort 

The data of this study was a cohort of the Hong 
Kong Diabetes Registry established in 1995 at a 
regional Hong Kong hospital. Among the total of 
6013 unrelated T2DM patients (age 56.8±13.3 yr, 
46% male) selected from this registry, 487 patients 
with known baseline CHD and heart failure were 
excluded. Therefore, a CHD prospective cohort in-
cluding 5526 patients with detailed clinical infor-
mation was used in this analysis. 

CHD definition and detailed assessments of-
methods and laboratory assays were exactly the 
same as those described by (Yang et al., 2008). To 
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Table 1: Parameter estimates for two CHD clinical models in Chinese type 2 diabetic patients. 

Variable 
MI Clinical Model C-C Clinical Model 

Beta SE HR (95% CI) P Beta SE HR (95% CI) P 

Age 0.035 0.005 1.04 (1.03-1.04) <0.001 0.034 0.005 1.03 (1.02-1.04) <0.001 

Male sex 0.334 0.108 1.4 (1.13-1.72) 0.002 0.301 0.113 1.35 (1.08-1.69) 0.008 

Current smoker 0.364 0.143 1.44 (1.09-1.91) 0.011 0.348 0.150 1.42 (1.06-1.9) 0.020 

Duration of diabetes 0.029 0.007 1.03 (1.02-1.04) <0.001 0.029 0.007 1.03 (1.01-1.04) <0.001 

Log10(ACR) 0.277 0.078 1.32 (1.13-1.54) <0.001 0.272 0.080 1.31 (1.12-1.54) <0.001 

Log10(eGFR) -1.182 0.306 0.31 (0.17-0.56) <0.001 -1.254 0.344 0.29 (0.15-0.56) <0.001 

Non-HDL cholesterol 0.208 0.043 1.23 (1.13-1.34) <0.001 0.214 0.045 1.24 (1.13-1.35) <0.001 

 
compare with Yang’s model, the same list of 26 
baseline clinical variables as Yang used was includ-
ed in this study. As the total cholesterol was linear 
with non-high-density lipoprotein cholesterol and 
high-density lipoprotein cholesterol, and the family 
history of CHD was not available in this dataset, 
they were excluded from this candidate list. In addi-
tion, 40 published single-nucleotide polymorphisms 
(SNPs) known to be associated with T2DM in ge-
nome-wide association study were genotyped. All 
SNPs passed quality control for Hardy-Weinberg 
equilibrium, minor allele frequency and SNP call 
rate. 

2.2 Multiple Imputation and Variable 
Selection by Bootstrap 

To impute the missing values, Multiple Imputation 
via Chained Equations (MICE) procedure was per-
formed according to the guidelines described by 
(van Buuren et al., 1999). In short, predictive mean 
matching and polytomous regression were specified 
for continuous and categorical variables, respective-
ly. All 7 clinical variables selected in Yang’s final 
model, as well as the outcome variable and the natu-
ral logarithm of survival time, were always kept. As 
it was recommended that the suitable number of 
variables used in each imputation model should be 
no more than 25, we set the cut-off value of correla-
tion to 0.1 for clinical variables and 0.03 for genetic 
variables. After those steps, a series of imputation 
models that consisted of the best 10 to 23 predictor 
variables were built. Usually 5 to 10 repeated impu-
tations would be enough to achieve high efficiency, 
here we generated 10 imputed data sets. Moreover, 
Rubin’s rules were used to combine the regression 
coefficients and variances. 

To take the sampling variation into account and 
get a stable variable subset, we applied Cox propor-
tional hazards regression with backward variable 
selection (p <0.05 for stay) to 100 bootstrap samples 

for each of 10 imputed data sets. We calculated the 
inclusion frequency for each variable appearing in 
1000 variable subsets, and selected the top variables 
with frequencies more than 50% to develop models 
on each imputed data set. Finally, those models were 
pooled into a final model by Rubin’s rules.  

2.3 Development of Prediction Models 

To compare the performance of different models 
based on imputed data sets and C-C data set,  two 
pairs of MI models and C-C models were developed: 
1) MI Clinical Model and C-C Clinical Model. Both 
models were developed using 7 clinical variables 
that Yang selected. 2) MI Final Model and C-C Fi-
nal Model. These two models were developed using 
the top clinical and genetic variables selected by 
variable selection on imputed data sets. Furthermore, 
in order to measure the model variation induced by 
training/test split method as Yang used, we also con-
structed the C-C Split Models based on 7 clinical 
variables. We randomly split the C-C data into 1:1 
training and test sets for 100 times, and training sets 
were used to develop models while test sets were 
used to evaluate performance.  

The performance of the MI models or C-C mod-
els was measured by discrimination and calibration. 
Three different evaluation methods were employed 
to measure the discrimination: overall C index, time-
dependent area under the curve (AUC) of receiver 
operator characteristics (ROC) curves with 5 years 
specified and category-free net reclassification im-
provement (NRI). Meanwhile, we used the slope of 
the prognostic index (PI) to quantify calibration. 
Furthermore, bootstrapping method as described by 
(Harrel Jr, 1996) was applied to provide nearly unbi-
ased estimates of predictive performance. 
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Table 2: Parameter estimates for two CHD final models in Chinese type 2 diabetic patients. 

Variable 
Inclusion 

Frequency 

MI Final Model C-C Final Model 

Beta SE 
HR 

(95% CI) 
P 

 
Beta SE 

HR 
(95% CI) 

P 

Age 99.8% 0.029 0.005 
1.03 

(1.02-1.04) 
<0.001 

 
0.027 0.006 

1.03 
(1.02-1.04) 

<0.001 

Duration 
of diabetes 

95.6% 0.030 0.007 
1.03 

(1.02-1.04) 
<0.001 

 
0.029 0.008 

1.03 
(1.01-1.04) 

<0.001 

Log10(eGFR) 89.8% -1.111 0.310 
0.33 

(0.18-0.60) 
<0.001 

 
-1.298 0.367 

0.27 
(0.13-0.56) 

<0.001 

HDL cholesterol 87.5% -0.566 0.159 
0.57 

(0.42-0.78) 
<0.001 

 
-0.575 0.182 

0.56 
(0.39-0.8) 

0.002 

Peripheral arte-
rial disease 

78.4% 0.458 0.154 
1.58 

(1.17-2.14) 
0.003 

 
0.494 0.170 

1.64 
(1.18-2.29) 

0.004 

rs2568958 72.8% 0.313 0.122 
1.37 

(1.08-1.74) 
0.010 

 
0.373 0.130 

1.45 
(1.13-1.87) 

0.004 

rs7754840 69.3% -0.211 0.074 
0.81 

(0.70-0.94) 
0.004 

 
-0.191 0.083 

0.83 
(0.7-0.97) 

0.021 

Log10(ACR) 64.2% 0.233 0.082 
1.26 

(1.08-1.48) 
0.004 

 
0.264 0.091 

1.3 
(1.09-1.56) 

0.004 

LDL cholesterol 60.1% 0.213 0.048 
1.24 

(1.13-1.36) 
<0.001 

 
0.232 0.055 

1.26 
(1.13-1.41) 

<0.001 

Male sex 53.3% 0.288 0.109 
1.33 

(1.08-1.65) 
0.008 

 
0.306 0.124 

1.36 
(1.07-1.73) 

0.013 

Current smoker 51.1% 0.348 0.144 
1.42 

(1.07-1.88) 
0.016 

 
0.405 0.162 

1.5 
(1.09-2.06) 

0.012 

Systolic BP 50.2% 0.005 0.003 
1.01 

(1-1.01) 
0.037 

 
0.004 0.003 

1 
(1-1.01) 

0.151 

rs4607103 50.1% 0.150 0.076 
1.16 

(1-1.35) 
0.049 

 
0.141 0.084 

1.15 
(0.98-1.36) 

0.094 

 

3 RESULTS 

3.1 Cohort Description 

Of the total 5526 T2DM patients in CHD prospec-
tive cohort, 406 (7.3%) were found to develop CHD 
during a median follow-up period of 8.8 (IQR: 6.0-
11.4) years. Patients who progressed to CHD were 
significantly older, higher BP, higher HbA1c, had a 
longer duration of diabetes, and were more likely to 
use drugs, compared to those who didn’t develop 
CHD. For the missing value percentage of each clin-
ical and genetic variable, most of them were less 
than 10%, only one variable (rs10838738) reached 
15% while 16 variables had no missing values.  

3.2 Performance of Prediction Models 

The estimates of parameters for MI Clinical Model 
and C-C Clinical Model were similar (Table 1). All 
7 factors were significant and the effects were close 
in both models, but the MI Clinical Model had a 
relative lower standard error for each factor. The 
biased-corrected C-index and 5-years AUC were 
very close, and both models showed good calibra-
tion (Table 3). When comparing with C-C Split 

Models, the performance was also similar (0.734 vs. 
0.728 for C-index, 0.738 vs. 0.732 for AUC), but the 
ranges of indicators were larger in C-C Split Models. 
The C-index and AUC for Yang’s CHD model were 
0.704 and 0.737 respectively; these values were also 
included in this range. 

Table 2 presents the MI Final Model and C-C 
Final Model, all selected factors were significant in 
imputed data sets, but systolic BP and rs4607106 
were not significant in C-C data set. The effect of 
each factor was similar, and standard error was low-
er in MI Final Model. When comparing with Yang’s 
model, the selected factor list was a little different. 6 
variables were included in both models, but our 
model selected HDL cholesterol and LDL cholester-
ol instead of non-HDL cholesterol, and 2 other vari-
ables (peripheral arterial disease and systolic BP) as 
well as 3 SNPs (rs2568958, rs7754840 and 
rs4607103). From table 3, the performance of MI 
Final Model and C-C Final Model was close, but the 
MI Final Model was slightly better than MI Clinical 
Model (0.744 vs. 0.734 for C-index, and 0.748 vs. 
0.738 for AUC). When considering the impact of 
SNPs to prediction model, the NRI was 14.6% for 
MI Final Model but only 2.5% for C-C Final Model. 
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Table 3: Bias-corrected predictive performance for five different models. 

MI Final Model* MI Clinical Model* C-C Final Model C-C Clinical Model C-C Split Models* 

C-index 0.744 [0.742-0.744] 0.734 [0.733-0.738] 0.747 0.731 0.728 [0.683-0.753] 

AUC 0.748 [0.747-0.749] 0.738 [0.736-0.741] 0.749 0.732 0.732 [0.678-0.765] 

Slope 0.961 [0.954-0.966] 0.981 [0.976-0.992] 0.949 0.975 0.956 [0.67-1.209] 

NRI 14.6% [10%-17.9%] / 2.47% / / 

* Data are expressed as median [full range]. 

4 DISCUSSION 

In this study, we have given an example to illustrate 
the process of prediction model development based 
on incomplete data. To get a more stable risk factor 
set from clinical and genetic variable list for CHD in 
T2DM, we integrated bootstrap and backward varia-
ble selection on imputed data sets.  

Incomplete data are commonly encountered in 
medical research. Excluding all patients with any 
missing values may lose useful information and re-
duce the power of prediction model, which leads to 
some variables not attaining statistical significance, 
such as for the systolic BP and rs4607106 in our MI 
Final Model and C-C Final Model. In our study, the 
MI models are very similar to the C-C models, it is 
because the missing rates are not high and the sam-
ple sizes are close, but imputation makes it more 
powerful to perform variable selection. 

Combining bootstrap resampling with variable 
selection will be benefit to the stability of selected 
variables. Through bootstrap and variable selection, 
variables with strong effects on the outcome will be 
selected more frequently than those with no or weak 
effects. To validate a model, data-splitting as a sim-
ple method is commonly used, but the model per-
formance will vary greatly with different splits, and 
bias will be introduced. Our results showed the boot-
strapping bias-corrected indicators of performance 
were close to the median indicators produced by 
multiple times training/test splits. Therefore, to en-
sure an honest model evaluation, we would better 
evaluate the models by generating multiple pairs of 
training/test sets or use bias-corrected method. 

Importantly, three SNPs (rs2568958, rs7754840 
and rs4607103 located at NEGR1, CDKAL1 and 
ADAMTS9 gene, respectively) were selected with 
high inclusion frequencies and the NRI results indi-
cated they contributed to the CHD prediction. There-
fore, these three T2D-related SNPs may also have 
association effects with CHD. To validate the effect 
of these SNPs, we will try to do some further anal-
yses, such as replication study. 

In conclusion, this cohort study illustrated the 

MICE and bootstrap can be benefit to the develop-
ment of prediction model based on dataset contain-
ing clinical and genetic variables. An informative 
risk factor set for CHD, including three T2D-related 
SNPs, was successfully identified from CHD pro-
spective cohort of Hong Kong Chinese patients with 
T2DM. Future research will be needed to validate 
the effect of these selected SNPs. 
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