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Abstract: This paper presents a new algorithm for time series dynamical modeling using probabilistic state-transition
models, including Markov and semi-Markov chains and their variants with hidden states (HMM and HSMM).
This algorithm is evaluated over a mixture of Markov sources, and is applied to the study of human sleep stage
dynamics. The proposed technique iteratively groups data instances by dynamical similarity, while simultane-
ously inducing a state-transition model for each group. This simultaneous clustering and modeling approach
reduces model variance by selectively pooling the data available for model induction according to dynamical
characteristics. Our algorithm is thus well suited for applications such as sleep stage dynamics in which the
number of transition events within each individual data instance is very small. The use of semi-Markov models
within the proposed algorithm allows capturing non-exponential state durations that are observed in certain
sleep stages. Preliminary results obtained over a dataset of 875 human hypnograms are discussed.

1 INTRODUCTION namics involves the construction of dynamical mod-
els of discrete time series. A challenge that arises

Sleep is divided into stages from all-night recordings in this context is the scarcity of key events in the
of physiological signals, particularly scalp EEG and data: each data instance (all-night hypnogram) con-
facial EOG (electro-oculography), following well- tains on the order of fandividual sleep stage labels,
established staging standards (Rechtschaffen andoutonly a small number of actual transitions between
Kales, 1968), (Iber et al., 2007). Stages span light stages. Because of this, the information in a full night
sleep (stages N1 / NREM1 and N2 / NREM2), deep hypnogram may be insufficient to adequately model
sleep (slow wave sleep, or SWS), and a stage tradi-the dynamics of sleep stage transitions (Bianchi et al.,
tionally associated with dreaming — Rapid Eye Move- 2010). The present paper proposes a new approach
ment (REM) (dreams are known to occur during SWS for addressing this problem, based on simultaneous
as well (Cavallero et al., 1992)). The temporal se- clustering and dynamical modeling of data. The ap-
quence of stage labels is known as a hypnogram.plications of the proposed technique extend beyond
See Fig. 1 for a sample hypnogram from the sleep the study of sleep, to other domains that present in-
database used in the present paper. frequently changing discrete time series.

1.1 Related Work

Clustering for time-series data has been a topic of
great interest (e.g., (Liao, 2005)). Previous works

o w0 a0 w0 &0 (epé‘i“hs) w0 70 w0 0 have addressed clustering of Markov chains (Ramoni

et al., 2001), (Cadez et al., 2003), hidden Markov

Figure 1: Sample hypnogram from the present study.  models (HMM) (Smyth, 1997), impulse-response

curves (Sivriver et al., 2011), or more general dynam-

The dynamics of sleep stage transitions are af- ical models (Cadez et al., 2000). Some of these prior
fected by overall health (Burns et al., 2008), (Bianchi works rely on modeling individual instances, for ex-
et al., 2010), making dynamics a clinically important ample by constructing individual Markov chain mod-
aspect of sleep structure. The study of sleep stage dy-els (Ramoni et al., 2001), or optimizing the parame-
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ters of an instance-specific fit function (Sivriver et al., NREM stages 3 and 4 were then combined to obtain
2011). Such an approach is not well-suited for the a single slow wave sleep (SWS) stage. This proce-
event-sparse data in sleep studies, as the temporal indure yields stage labels that are known (Moser et al.,
formation available per instance is insufficient for re- 2009) to closely approximate the more recently pro-
liable statistical modeling (Bianchi et al., 2010). posed AASM staging standard (Iber et al., 2007).

The simultaneous modeling and clustering strat- o
egy of the present paper is similar to that of (Sivriver 2.2.1 Sleep Data Descriptions
et al., 2011) for gene expression. However, the clus- _ _
tering step in (Sivriver et al., 2011) involves estima- Three different versions of the human sleep dataset
tion of instance-specific parameters, a process that isa'e considered in the present paper, each correspond-
subject to high variance in the presence of small dataind to a different description of the hypnogram time-
instances as considered here. In other prior work, Series that comprise the dataset.
the application domain provides abundant temporal
information for each instance, as in the web navi- Uncompressed Dataset. The uncompressed data
gation data of (Cadez et al., 2003). The more gen- description uses full-length sequences of the standard
eral E-M framework on which (Cadez et al., 2003) stage labels wake, N1, N2, SWS, REM. The large di-
is based (Dempster et al., 1977) does allow for an ap- mensionality of the uncompressed description leads
proach that applies in the present context, as describedo long running times for Algorithm 1, and makes
below in section 2. A related approach in which indi- convergence more difficult. For this reason, exper-
viduals are clustered, allowing multiple instances for iments involving the uncompressed data description
each individual, is pursued in (Cadez et al., 2000). A required reduction of the size of the dataset through
relevant alternative view of model-based clustering in random sampling. 105 instances were used.
terms of a bipartite graph that connects instances with

generative models as generalized cluster centroids,\WwNR and WLD Datasets. In the two compressed

using the generative data likelihood as a proximity sjeep data descriptions, each stage bout is replaced by

measure, is presented in (Zhong and Ghosh, 2003)." g single occurrence of the stage in question. For ex-
ample, the subsequence wake, wake, wake, N1, N1,
N2, SWS, SWS becomes N1, N2, SWS. The bout

2 METHODS duration information is stored separately. Additional
compression is then performed by reducing the num-
21 Markov Mixture Data ber of distinct stages considered from five to three.

o The Wake/NREM/REM (WNR) datasgimbines
Preliminary experiments were performed on datagen- ~ the three stages N1, N2, SWS into a single NREM
erated by a Markov chain mixture model. Two or stage, yielding the stages Wake, NREM, REM.
three Markov chaindly, - - - Mk (k=2 ork = 3), were e The Wake/Light/Deep (WLD) datasebmbines
used, each over a two-element state space that can be the three stages N1, N2, REM into a single Light
loosely associated with wake and sleep states. The sleep stage, yielding stages Wake, Light, SWS.
initial state is assumed to be wake for all generated Use of the WNR and WLD datasets leads to a substan-
;setq:Jencet;s. F?cr each |nt§gbetweer_1 1 abndb? d(re]5|_red tial reduction in computing time as compared with
otalnumber of Sequences, an equiprobable Choice o uncompressed dataset, and facilitates convergence

gchTe%dgggne?r\:\?atshﬁgﬂnaﬂg\é igzhgﬁgr.ét,\eﬂgnTgbeserv of the CDMC Algorithm, allowing experiments to be
: . . perf he full f875h .
tion sequence of the desired lendthwhich was used eber ormed over the full set of 875 hypnograms

as thei-th output sequence of the mixture model. The

valuesN = 50 andL = 100 were used in most trials. 2.3 The Collective Dynamlcal

Modeling-Clustering (CDMC)
2.2 Human Sleep Data Algorithm

875 anonymized human polysomnographic record- The core of the approach proposed in the present
ings were obtained with IRB approval from the Sleep paper is the simultaneous clustering and dynamical
Clinic at Day Kimball Hospital in Putnam, Connecti- modeling technique described in pseudocode in Algo-
cut, USA. The recordings were staged in 30-second rithm 1. In the case of sleep, the instances of the input
epochs by trained sleep technicians using the R & K dataseD will be sequences of sleep stage labels from
standard (Rechtschaffen and Kales, 1968). R & K the datasets described in section 2.2.1.
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2.3.1 Main Steps in Algorithm 1

3 RESULTS

The proposed technique simultaneously learns a set3 1 Markov Mixture Data

of dynamical models (cluster prototypes) and a cor-
responding cluster labeling, by alternating between
model estimation and clustering steps, terminating
when the cluster labelings change very little.

e Model estimationI(ear nM_Pr ot oypes) learns a
maximum data likelihood dynamical modd) for
each cluste€;.

e Clustering (earnM.C ust erLabel s): assigns
each instancex to the clusterc(x) having the
modelM,) most likely to generate.

2.3.2 Dynamical Model Types in Algorithm 1

Algorithm 1 encompasses not only standard HMM,
but also other types of dynamical mod#gor which
procedures are available for calculation of the gen-
erative likelihoodP(x|M) and for maximum likeli-
hood model estimation. In particular, semi-Markov
models are included, which we are pursuing in work
in progress in order to capture the non-exponentially
distributed bout durations observed in certain human
sleep stages (Bianchi et al., 2010), (Lo et al., 2002).

2.4 Evaluation

Algorithm 1 was evaluated using hidden Markov
models (HMM) as the dynamical models, with the
Baum-Welch algorithm (e.g., (Rabiner, 1989)) for
HMM training in thel ear nM_Pr ot ot ypes function,

the Rand index (Rand, 1971) to measure clustering
similarity in the stopping criterion, and a pseudo-
random initial cluster labelingo. Fully observable
Markov chains were used as the dynamical models

3.1.1 Two Generative HMM

Mixture data was obtained by an equiprobable selec-
tion between two generative HMM, each with two

states. For such HMM, the transition matrices are
completely determined by their values along the main
diagonal. Multiples of the identity matrix were used

for simplicity. 50 sequences of length 100 were gener-
ated per trial. 100 independent trials were performed.

Time to Convergence. The observed distribution

of the number of iterations for convergence of Algo-
rithm 1 with two clusters is nearly unimodal, with me-
dian and mode of 3 iterations, mean value g3 and
standard deviation of.47. Over 90% of trials con-
verge in 5 or fewer iterations. With three clusters, me-
dian convergence time increases to 4 iterations, and
the 90th percentile increases to 7 iterations.

Variation with Initial Conditions. 100 trials were
performed with pseudorandom initial cluster la-
bels. HMM transition matrice§ with diagonals
(T(1,1),T(2,2)) of (0.6,0.6) and (0.75,0.75) were
used in the mixture model that generates the training
data. Meant std observed cluster centroids resulting
after convergence of Algorithm 1 af@.66,0.64) +
(0.036,0.033) and (0.76,0.76) + (0.020,0.021), re-
spectively, which fit the generative model well.

Dependence on Separation between Generative
HMM. Fig. 2 shows clustering results obtained

in additional experiments over the compressed sleepwhen one of the two generative matrices has diago-
data representations (section 2.2.1). Results appeanal elementg0.6,0.6). The other matrix has diago-

in section 3. All implementations were carried out in
MATLAB ® (The MathWorks2012).

2.4.1 Cluster Separation

Separation between clusters was measured bipthe
likelihood margin(LLM) — the difference in log likeli-
hood between the first and second highest likelihood
cluster labels for each instance. Higher mean LLM
values indicate better cluster separation.

2.4.2 Statistical Significance

Population means were compared using a paired
test when the requisite normality assumption holds.

nal elementg0.75,0.75). Each instance is displayed
at the point(T(1,1),T(2,2)), whereT is the transi-
tion matrix for that instance as learned by the Baum-
Welch algorithm. The single instance for which the
CDMC algorithm (Algorithm 1) produces a labeling
error appears darker in the figure. The number of la-
beling errors increases as the separation between the
two generative HMM decreases: no labeling errors
occur when the generative diagonal values ai 0
0.85 instead of B, 0.75, while many errors occur
with diagonal values ®, 0.65, for example.

3.1.2 Three Generative HMM. Determination of
the Number of Clusters.

In other cases, a Wilcoxon rank sum test was used to Experiments were performed over mixture data pro-

compare medians.

duced by an equiprobable selection among 3 dist-
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Algorithm 1: Collective Dynamical Modeling-Clustering (CDMC).
Input: An unlabeled time-series dataget= {x = (a(x)) |t = 1,2,3,...n}; a positive integer,
k, for the desired number of clusters; an initial guegssD — {1,---k} of the cluster label
co(X) of each instanc& € D; parameter values, specifying the desired configuration of the
models (e.g., number of states); and a real numbesi mbetween 0 and 1 for the minimum
clustering similarity required for stopping.
Output: A setMy,--- M of generative dynamical models (with configuration parass),
together with a cluster labeling: D — {1---k} that associates to each data instancehe
index c(x) of a modelM = M, for which the generative likelihoofl]ycp P(X|Mc(y) ) is as
high as possible.
CDMC(D,k, cg,s, m nSi m
1) c(x) = co(x) for all xin D
2 Cold(X) =0 forallxe D
) while CLUSTERINGSIMILARITY (C,Colg) < M nSi.m

(4) Cold =C
(5) (Mg, ---My) = LEARNMLPROTOYPESD,K, C,S)
(6) C=LEARNMLCLUSTERLABELS(D,Mj - -- My)

©) return My, ---My,C

0.9r p Table 1: Log-likelihood margin. 3-HMM mixture data.
s E =
0.8l N number of clusters 2 3 4
o % mean LLM 9.87 10.07 6.83
N +
« 0.7}
S + + +
2 o6l AT 3.2 Human Sleep Data
© O
= e
= 05L s We summarize here the results obtained using the
' i CDMC algorithm (Algorithm 1) on the human sleep
0.4l . . . . data described in section 2.2.
' 0.5 0.6 0.7 0.8 0.9
trans(1,1) 3.2.1 HMM over Uncompressed Sleep Sample
Figure 2: CDMC results (@, 0.75 self-transition probabili- We applied Algorithm 1 to a sample of 105 instances

ties). Triangles indicate learned cluster models. drawn randomly from the human sleep dataset de-

scribed in section 2.2, witk= 2 clusters and a pseu-
dorandom initial choice of cluster labels. The algo-
rithm convergesin a dozen or so iterations of the main
loop on average. The models learned in one of these
to a likelihood ratio of approximately 2 $0 With 3 runs are visualized in Fig. 3. HMM with 2 states were
clusters, mean LLM increases to.10which is sig- used, with 5 possible emitted symbols corresponding
nificantly greater than for 2 clusters as assessed by [0 sleep stages 1 2 SWS’. REM’ and _vvakefulness.
pairedt-test using 50 paired trialp(< 0.02). Use aThe left subplot displays individual data instances as
. S R the diagonal elements of the<2 state transition ma-
of a pairedt-test is justified here because the LLM trices Igarne d from them by Baum-Welch, with mark-
distribution is close to normal except at the far tails, ers indicating cluster membership The,middle and
as observed in a_ql_JannIe-quar_]tlIQ plot (not shown right subplots display the emission probability matri-
due to space restrictions). Specifying 4 clusters IeadsCeS for the HMM models of the two clusters: the two

to a statistically significant decrease in mean LLM o :
(p < 0.001). See Table 1. Thus, the number of gen- rows of each emission matrix are represented by the
. | ; ' solid and dashed lines in the lower subplots.

erative models can be determined by maximizing the
LLM in the clustering results. These facts show that
the CDMC algorithm is able to uncover the statistical Observations. As observed in the left subplot in

structure that underlies the data generation process. Fig. 3, the diagonal elements of the individual state

inct generative HMM. 50 sequences of length 100
were used in each of 50 independent trials. Using 2
clusters in the CDMC algorithm, the observed mean
LLM (2.4.1) is approximately @, which corresponds

212



Collective Probabilistic Dynamical Modeling of Sleep Stage Transitions

clusterl cluster2
Uoeoow 4@ 7 1 1
* *‘t ¥ o]
~ '+ o 3
N .05 = SN
@/ * © . ‘[ .
o o5 0 05 N
8 09 + 1 @ , N ! “
=] A E_’ R N, . .
* o 4 > /7\ ‘NS,
0.85 S o
0.9 0.95 1 1 2 SWS REM wake 1 2 SWS REM wake

Figure 3: HMM transition matrices (left) and emission prbttisies (right), Markov mixture data.

Table 2: Iterations to convergence. 10 trials, two clusters

WNR 2 5
WLD 2 4

14 4 10 3 2 3 9
2 2 2 2 5 21 5

16
4

Table 3: HSMM transition matrices, two clusters (WNR).

0.0000 0.9565 0.0435 0.0000 1.0000 0.0000
0.7879 0.0000 0.2121 0.9979 0.0000 0.0021
0.7864 0.2136 0.0000 1.0000 0.0000 0.0000

transition matrices are very close to 1, making it dif-
ficult to distinguish between clusters based on tran-
sition probabilities alone (diagonal mean and me-
dian differences are not statistically significant by a
Wilcoxon rank sum test). This is due to the long
average duration of stage bouts in comparison with

the HMM clock period.

Table 4: HSMM transition matrices, two clusters (WLD).

0 1.0000 0.0000 0.0000 0.9997 0.0003
0.9734 0 0.0266 0.6919 0.0000 0.3081
0.5389 0.4611 0 0.4668 0.5332 0.0000

The median LLM for the WNR data is roughly4%
which corresponds to a likelihood ratio of 600: the
maximum likelihood cluster is 600 times as probable
as the next best cluster. For a WNR sequence
of median length 34, this equates to 20% higher
generative probability per symbok%*/34 ~ 1.2).
Sample learned WNR transition matrices (Table 3)
show dynamical differences between clusters: higher
NREM to REM and REM to NREM probabilities in
cluster 1 (left matrix, middle and bottom rows).

In the remainder of the Wake-Light—-Deep Data Representation. Table 2

present paper, we address this modeling disadvantagg&ompares the WNR and WLD convergence times in
of Markov dynamics by using compressed datasetsten trials, with a minimum Rand index ofdb as the
(section 2.2.1), in which repetitions are eliminated Stopping criterion. The median and mean of 3 artil 4
from the stage sequences. In work in progress, this is-iterations for WLD data are slightly lower than the

sue is resolved as a by-product of using semi-Markov
models, which represent the durations of state vis-
its explicitly by their distributions, rather than by a
period-by-period coin flip as Markov models do.
Comparing the subplots on the right in Fig. 3, we
see that the collective HMM for cluster 2 is more
likely to emit stage SWS than is the cluster 1 model.

corresponding WNR values,3and 68.

Typical transition matrices obtained by Algo-
rithm 1 over WLD data appear in Table 4. A wake
state is followed by light sleep with near certainty
(top row). However, while the first cluster exhibits
a very high probability of a light sleep to wake tran-
sition (left matrix, middle row), the second cluster

The observed differences in stage SWS probabilities Shows a substantial probability of transitioning from

are statistically significantp(< 0.05, using a bino-

light sleep to deep sleep (right matrix, middle row).

mial model). Thus, the emission probabilities provide The distribution of the state immediately after a deep
separation between the clusters. Within each clustersleep state (bottom row) is similar for the two clusters.
model, the states have specialized to correspond to  The LLM distribution for the WLD data is qualita-
particu|ar combinations of s|eep stages. For exam- tively similar to that for the WNR data. However, the
ple, only the states with solid lines in these plots have observed median LLM is approximatelyS3 corre-
nonzero wake emission probabilitp < 0.05). sponding to a likelihood ratio of approximately 33, or
roughly 10% greater generative probability per sym-
bol for a typical WLD sequence of median length
37 €53 ~ 1.1). Thus, the WLD cluster separa-
tion is less pronounced than for the WNR data (c.f.
section 3.2.2). This suggests preferential use of the
WNR sleep data description in future work.

3.2.2 Observable Markov Chains over
Compressed Sleep Data Representations

Wake—-NREM—-REM Data Representation. In

contrast with Markov mixture data (section 3.1), for
WNR sleep data the observed LLM (section 2.4)
distribution deviates substantially from normality.
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