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Abstract: Identification and consequent analysis of DNA sequence motifs recognized by transcription factors is an 
important component in studying transcriptional regulation in higher eukaryotes. In particular, motif 
discovery methods are applied to construct transcription factor binding sites (TFBSs) models. The TFBS 
models are then used for prediction of putative binding sites in genomic regions of interest. The most 
popular TFBS model is a positional weight matrix (PWM). The PWM is usually constructed from 
nucleotide positional frequencies estimated from a gapless multiple local alignments of experimentally 
identified TFBS sequences. Modern high-throughput experiments, like ChIP-Seq, provide enough data for 
careful training of more advanced models having more parameters. Until now, the majority of existing tools 
for TFBS prediction in ChIP-Seq data still rely on PWMs with independent positions. This is partly 
explained with only marginal improvement of specificity and sensitivity of TFBS recognition for advanced 
models over those based on traditional PWMs if trained on ChIP-Seq data. Here we present a novel 
computational tool, diChIPMunk (http://autosome.ru/dichipmunk/), which can construct dinucleotide 
PWMs accounting for neighboring nucleotide correlations in input sequences. diChIPMunk retains 
advantages of the published ChIPMunk algorithm, including usage of ChIP-Seq peak shape and overall 
computational efficiency. Using public ChIP-Seq data for several TFs we show that carefully trained 
dinucleotide PWMs perform significantly better as compared to PWMs based on mononucleotide 
frequencies. 

1 INTRODUCTION 

Our understanding of transcription regulation 
mechanisms in higher eukaryotes is far from 
complete. One of the most studied mechanisms is 
driven by transcription factors (TFs) recognizing 
specific sites at DNA. Modern high-throughput 
methods allow detecting tens of thousands of DNA 

segments that are bound by particular protein in 
particular conditions. With the wet-lab supplying an 
immense amount of data special computational tools 
are required to detect text patterns (also called as 
DNA motifs) that correspond to binding sites (BSs) 
of TFs under consideration. The current stage of 
experimental technologies requires motif discovery 
in silico for accurate identification of TF binding 
pattern from any type of experimental data. The 
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TFBS models produced during this step can be 
consequently applied for computational prediction of 
TFBSs in genomic regions of interest. The most 
popular model, a positional weight matrix (PWM), is 
inferred directly from a gapless local multiple 
alignment of sequences of TF-bound DNA regions 
(Stormo, 2000). The elements of the matrix (the 
positional weights) at individual motif positions are 
assumed independent. Till now many methods to 
detect DNA motifs in ChIP-Seq data were published 
(Thomas-Chollier et al., 2012, Suppl. table 1) but 
most of them were based on simple mononucleotide 
PWMs. Recent attempts to use ChIP-Seq data to 
construct more complex models (e.g. TPD, Bi et al., 
2011) resulted in TFBS recognition quality that was 
not significantly better comparing to simple PWMs 
with independent positional weights.  

There is a specific family of TFBS models with 
non-independent positional weights that take into 
account correlations of nucleotides occupying 
neighboring positions within TFBSs. This 
correlation agrees well with the role of neighboring 
nucleotides in formation of DNA structure 
(SantaLucia and Hicks, 2004). PWM based on 
dinucleotide statistics is the most straightforward of 
models that take into account interaction of 
neighboring nucleotides. Previously it has been 
shown that the dinucleotide PWMs perform 
significantly better than classic mononucleotide 
PWMs if a training set of sequences is large enough 
(Gershenzon et al., 2005) and (Levitsky et al., 2007). 
Moreover, experiments with protein-binding 
microarrays were successfully explained by 
producing TFBS models that take into account 
frequencies of neighboring dinucleotides (Zhao et 
al., 2012). So it appears fruitful to try a similar 
approach for analysis of ChIP-Seq data, which also 
provides enough information to gather a sufficiently 
large training set. 

As a starting point we adopted ChIPMunk 
algorithm as a state of the art tool that performed 
well in our own (Kulakovskiy et al., 2010) and 
several independent benchmark studies (Ma et al., 
2012) and (Kuttippurathu et al., 2011). The 
advantage of ChIPMunk is that it takes into account 
ChIP-Seq base coverage data (the shape of reads 
pileup that points to probable locations of binding 
sites under ChIP-Seq peaks). In this study we 
present a novel tool, diChIPMunk, which produces a 
dinucleotide PWM (diPWM defining a Markov 
order 1 model of TFBS motif) that incorporates 
information on dependencies between nucleotides in 
neighboring alignment positions. We show how the 
dinucleotide PWMs can be included into the 

ChIPMunk algorithm framework. We also show 
results of tests demonstrating that usage of 
dinucleotide PWMs significantly improves TFBS 
recognition quality in ChIP-Seq data. 

2 METHODS 

diChIPMunk algorithm is constructed on top of a 
subsampling-based greedy optimization procedure. 
A random starting diPWM and a corresponding 
gapless multiple local alignment are optimized on a 
random subset of the initial sequence set (taking the 
best diPWM hits from each sequence). The obtained 
diPWM is then reoptimized on the full sequence set. 
Greedy PWM optimization converges rather 
quickly, the described two-step optimization 
procedure allows further improvement of 
convergence speed and offers a simple solution for 
the classic problem of getting stuck at a local 
optimum. Thus the algorithm core is almost the 
same as in ChIPMunk (Kulakovskiy et al., 2010). 

Neighboring positions in the diPWM are not 
independent since each single nucleotide is included 
in two overlapping dinucleotides. diChIPMunk 
converts all sequences from mono- to dinucleotide 
alphabet of 16 letters where each letter represents a 
dinucleotide (AA, AC, AG, .., TT). For example, 
AACC sequence is written as A-A-C-C in 
nucleotides and AA-AC-CC in dinucleotides. The 
tricky point here is that all sequences over ACGT-
letter alphabet constitute only a subset of all 
sequence over AA-to-TT-alphabet since the second 
nucleotide of the first dinucleotide must be the same 
as the first nucleotide of the second dinucleotide and 
so on. I.e. dinucleotide sequence AC-CG 
unambiguously maps to nucleotide sequence A-C-G, 
but there is no ACGT-alphabet counterpart for 
dinucleotide sequence AC-AG. 

2.1 KDIDIC 

To search for an optimal diPWM diChIPMunk tests 
each putative gapless multiple local alignment if it 
contains highly conservative dinucleotide columns 
(i.e. with the dinucleotide distribution far from 
uniform having some highly prevalent 
dinucleotides). In ChIPMunk the Kullback Discrete 
Information Content was used to make a criterion 
for the alignment optimality. With the sequences 
written in dinucleotide alphabet a similar measure 
can be used to estimate alignment quality for 
dinucleotides (Kullback Dinucleotide Discrete 
Information Content, KDIDIC): 
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(1)

Here  is the letter in dinucleotide alphabet; q is the 
background frequency of ; j is the position within 
gapless local multiple alignment; x,j is the 
frequency of dinucleotide  in j-th column of the 
alignment; l is the length (the width) of the 
alignment and N is the total number of aligned 
sequences. The alignment with the maximal 
KDIDIC value is considered optimal. 

This measure has a maximum for some 
alignment over all possible sequences written in 16 
letter dinucleotide alphabet. We are interested in a 
subset of sequences that can be mapped to sequences 
written in 4-letter ACGT-letter alphabet. 
Equation (1) is used by diChIPMunk to provide an 
easy-to-compute estimation of the deviation of 
dinucleotide frequencies in a given alignment from a 
given background dinucleotide distribution q. 
KDIDIC-optimal dinucleotide model from 
diChIPMunk should perform stably better than 
mononucleotide PWM. This is confirmed by our 
tests presented in the Results section below. 

2.2 Estimating Alignment Width 

To estimate the optimal length of the aligned 
segments of TFBS sequences, the alignment width, 
and the corresponding diPWM length diChIPMunk 
uses an heuristic procedure that locates the longest 
strong motif in a given lengths range. The motif is 
called strong if the first and the last columns of the 
corresponding alignment have KDIDIC no less than 
a predefined threshold. The threshold value was 
arbitrary selected as equal to KDIDIC calculated for 
a column missing 2 arbitrary dinucleotide letters and 
having frequencies of all 14 remaining dinucleotides 
uniformly distributed. The procedure yielded motif 
lengths comparable to those of mononucleotide 
ChIPMunk (see examples in Figure 1). 

2.3 Benchmarking Datasets 

We used ChIP-Seq data from ENCODE: data for 
AP2A, GATA1 TFs (Yale ChIP-Seq, base coverage 
profile available) and REST, GABPA TFs 
(HudsonAlpha ChIP-Seq, no base coverage data). 
The datasets were taken from the HOCOMOCO 
database (Kulakovskiy et al., 2012). For each dataset 
the subset of top 1000 peaks was taken and sorted 

according to peak height value. 500 peaks with even 
ranks were used for motif discovery. 500 peaks with 
odd ranks were used as an independent positive 
control set consisting of sequences not involved in 
construction of TFBS models. The datasets used for 
TFBS model construction and independent positive 
control datasets are available on the diChIPMunk 
website. 

2.4 Benchmarking Procedure 

For each TF we compared three models. The longest 
PWM from TRANSFAC (Matys et al., 2006) 
database was used as a baseline for comparison. If 
several models with the same width were presented 
in TRANSFAC we selected the one constructed 
from the largest set of binding sites. Two other 
TFBS models were PWM obtained by the 
ChIPMunk algorithm and diPWM obtained by 
diChIPMunk algorithm. Local nucleotide 
(dinucleotide) composition was used by ChIPMunk 
(diChIPMunk) as a background model for motif 
discovery on ChIP-Seq without base coverage data 
(REST and GABP TFs). Motif lengths range was set 
as 10 to 25bps. The overall benchmarking procedure 
was similar to that presented in (Kulakovskiy et al., 
2012).  

True Positive (TP) rate was estimated from the 
number of sequences from the independent control 
set having PWM hits scoring no less than the 
threshold. For a full spectrum of TP rates for each 
TFBS model we then estimated a set of 
corresponding score thresholds. For each threshold 
we computed P-value which represented the fraction 
of all DNA segments that are recognized as binding 
sites by the model (see Section 2.5). P-value can be 
interpreted as the probability to obtain a score no 
less than the threshold in a particular position of a 
random DNA sequence. To estimate P-values for 
mono- and diPWMs we have used an approach from 
(Touzet and Varre, 2007) reimplemented in 
MACRO-APE (http://autosome.ru/dimacroape/). 

Thus we can estimate the False Positive (FP) rate 
as the probability to find at least one PWM hit with a 
score no less than the threshold in a random double-
strand DNA segment of a fixed length L: 

 

FP ൌ 1‐ሺ1‐P‐valueሻଶሺ௅ି௟ାଵሻ (2)

Here L is selected as the median sequence length 
estimated from the independent control set, l is the 
PWM length and the PWM hits are assumed to be 
independent with their total number complying 
compound Poisson distribution. 

Having a set of TP rates and FP estimates for 
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each model we plotted a ROC curve for each TF and 
computed an area-under-curve (AUC) value that 
allows comparing TFBS recognition quality. 

3 RESULTS AND CONCLUSIONS 

Figure 1 shows ROC curves comparing diPWMs 
versus mononucleotide PWMs constructed from the 
same ChIP-Seq data and existing TRANSFAC 
PWMs. Motif LOGO representations are given. 
AUC values are presented directly on graphs. 
diPWMs clearly outperformed models based on 
single nucleotide PWMs for all tested datasets (see 
Figure 1). However, previously it was shown that 
not all TFs profit from diPWMs (Levitsky, 2007) so 
a more comprehensive study of various ChIP-Seq 
datasets remains highly important. 

We have estimated computational performance 
of diChIPMunk versus its mononucleotide precursor 
using 4 threads for Core i7 CPU. Since a 
dinucleotide model has more parameters to train the 
default number of starting random seeds and 
subsampling runs is doubled for diChIPMunk. The 
computationsl performance was acceptable (1 to 8 
hours to train the diPWM including length 
estimation; the absolute values for mononucleotide 
models of ChIPMunk are 2 to 4 times better). 

Dinucleotide models derived from ChIP-Seq data 
performed significantly better than their 
mononucleotide analogs in four independent ChIP-
Seq datasets. Dinucleotide models require more 
computational power to be carefully trained, but it is 
still possible even using a desktop computer. With 
the increasing availability of different types of high-
throughput data we suspect the improved models 
becoming widely used. The next step is open for 
novel post-processing tools that would allow model 
comparison and effective genome-scale prediction of 
binding sites. 
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Figure 1: Comparison of TFBS recognition quality for mono- and dinucleotide PWMs obtained from ChIP-Seq data; 
TRANSFAC PWM as the baseline model. ROC curves displaying True Positive rate (TP rate) versus False Positive rate 
(FP rate) are shown on the right panels with the corresponding AUC (area-under-curve) values. Motif LOGO 
representations are given on the left panels. Higher curves (and higher AUC values) correspond to models with better 
recognition quality (i.e. higher TP rate for a fixed FP rate). It is notable, that diChIPMunk versus ChIPMunk comparison 
shows AUC improvement comparable to that of ChIPMunk versus TRANSFAC. 
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