
A Model-driven Process for Data Transformation
of Heterogeneous Data

Haı̈fa Nakouri and Nadia Essoussi
LARODEC Laboratory, University of Tunis, Tunis, Tunisia

Keywords: Model Driven Engineering, Data Format Transformation, Heterogeneous Data.

Abstract: In this paper, a model-driven approach to transform data format is provided. Original data is extracted from
heterogeneous sources and is initially presented in a generic format called the public view format. Our ap-
proach includes a complete process of data transformation starting with data in public view format and ending
with generating different kinds of formats (Excel, XML, HTML, etc.). There are three main stages in the pro-
posed model-driven process: the input file injection which inserts the public view’s data in their corresponding
model, the model-to-model transformation to bridge between the public view’s model and the output file’s
model and finally the output file extraction to extract the output file from its corresponding model. Experimen-
tal results show that a model-driven approach for data transformation outperforms a code-centric approach in
terms of execution time and automation rate.

1 INTRODUCTION

The growing diversity of the current systems and plat-
forms makes it more and more challenging to have re-
liable and maintainable software systems. Moreover,
third generation languages become not able enough
to handle such a perpetual and fast evolution. This
makes necessary to find a way to extract and present
information in a meaningful way in order to make
smart and fast decisions. Therefore, business intelli-
gence (BI) tools are used to organize the data and then
simplify the decision making process. The main issue
with such decisional platforms is that they are used for
reporting and analytical purposes regarding existing
information systems which most of them are legacy
and heterogeneous. A business intelligence system
is mainly fed from several heterogeneous distributed
data sources (MySQL, postgreSQL, SQLserver, flat
files, etc.). Thus, the input data can be in different
formats (Excel, XML, CSV, etc.). However, a good
organization and structuring of data requires that all
data have the same format even if it is extracted from
different sources.

Model Driven Engineering (MDE) is an emerging
software engineering methodology which focuses on
creating models and transformations between them so
that the whole development process becomes model
driven. Using an MDE approach is convenient since
it increases the value of models and allows han-
dling specifications and requirements of systems from

higher levels of abstraction. One of the most impor-
tant objectives of software engineering is to address
this platform complexity and the inability of third-
generation languages to alleviate this complexity and
express domain concepts effectively. MDE affords
many techniques that help developers to build in the
large more efficient, reliable and maintainable soft-
ware systems.

This work was elaborated in the context of a cus-
tomized business intelligence system that is used in-
ter alia to evaluate the quality of a company projects’.
This BI platform is used for reporting and analysis
of existing data and support systems which most of
them are legacy and heterogeneous. The main objec-
tive of this system is to have a single and unified ar-
chitecture for reporting to develop more customized
and relevant quality report. In this system, external
data sources are not directly used for reporting due
to security measures. Instead, a set of public views
(PV) is used. We note that a public view is basi-
cally a SQL view. Each public view is the result
of the mapping of different original data. Later, the
generated public views are used for reports genera-
tion. Thus, the public view’s data is exploited to gen-
erate reports of all kinds of formats (Excel, HTML,
XML, etc.). A model-driven approach might be an
interesting solution for the heterogeneity issue since
we carry out data format transformation in a generic
way, using models and model transformations at dif-
ferent levels of abstraction. Nevertheless, even with

177Nakouri H. and Essoussi N..
A Model-driven Process for Data Transformation of Heterogeneous Data.
DOI: 10.5220/0004221901770181
In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2013), pages 177-181
ISBN: 978-989-8565-42-6
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

the success of many model-driven approaches within
the researchers’ community, there is still a somehow
mystery regarding the efficiency of model-driven so-
lutions by the industrials’ community. Despite the
availability of a plenty of MDE standard approaches
and tools, model-driven applications are not as much
developed as expected in software engineering indus-
try.

The objective of the paper is twofold. First, we
propose a basic version of a model-driven process for
data format transformation to handle the systems het-
erogeneity issue. This process involves the different
stages to transform data starting from a public view
file format and resulting in other output file formats.
In this work, we use the concept of public view model
to denote a generic model of any type of data format
(e.g. text, Excel, CSV, XML, etc.). The public view
data corresponds to the result set of the SQL view
query. This solution is about a complete automated
process handling data format transformation. Then,
we evaluate the proposed model-driven approach for
data transformation to a code-centric one. Second,
we show that it is possible to use model-driven en-
gineering techniques for a real software engineering
case such as data format transformation.

The rest of the paper is organized as follows. Sec-
tion 2 details the three stages of the proposed ap-
proach and presents an example of a model-driven
transformation from the public view format to the Ex-
cel format. Section 3 presents experimental results.

2 USING AN MDE APPROACH
FOR DATA FORMAT
TRANSFORMATION

In the context of our work, we precisely mean by data
transformation, the data format transformation such
as the Excel, CSV, HTML or XML formats. Then,
we propose to apply a model-driven approach to the
data transformation problem. Our approach was inte-
grated in an existing reporting system where the gen-
eration of different types of reports (Excel, HTML,
XML, etc.) is needed, starting from public views’
data (in the CSV format). A public view consists
of a stored query referencing real database tables and
it is accessed as a virtual database table. The public
view data corresponds to the result set of a SQL view
query. In fact, there exist multiple heterogeneous data
sources. These data sources can not be immediately
accessed for security purposes. Besides, not all the
available data is needed to generate reports. For this
purpose, public views are used to store only relevant

PV Metamodel

Public
View PV Model

conformsTo

RepresentationOf

Injection

Output Metamodel

Output Model

conformsTo

Model
Transformation

Excel

HTML

Extraction

Input File Injection Model-To-Model Transformation Output Files Extraction

RepresentationOf

RepresentationOf

RepresentationOf

Figure 1: The data transformation process.

data for reports generation. At a latter stage, the pub-
lic view data is used to generate different other for-
mats such as Excel, HTML or XML which are ulti-
mately used for reports generation, OLAP analysis,
etc. In the context of our work, the point is to start
from the public view’s data and generate other for-
mats (Excel, HTML, XML) containing exactly the
same original data, using only models and model
transformations. Thereby, we propose to model the
public view layer in a model-centric way. Actually,
we point to have a metamodel for both the public view
format and the output files formats and then man-
age transformations between them in order to auto-
mate the process. Accordingly, we suggest to per-
form a complete data transformation process driven
by models. During this process’s development, four
main features should be considered: the source of our
process (the public view input file), the targets of our
process (Excel, HTML, XML output files, etc.), the
metamodels of both source and targets of the process
and transformations between models. Figure 1 shows
an overview of our model-driven process for the data
transformation issue. It consists on three stages that
are detailed below.

2.1 Input File Injection

The first stage of our model-driven process is the in-
jection of the public view data in the associated pub-
lic view model. First, we write the concrete syntax
(grammar) of the public view data and then bridge
it with the MDE technical space. A technical space
(Bézivin, 2005) aims at representing different tech-
nologies at a higher level of abstraction which may
allow capturing similarities and differences and even-
tually find a possibility of integration. To achieve the
injection phase, we use the Xtext approach (Efftinge
and Vlter, 2006) to allow the integration between the
two environments. In Figure 2, we present a descrip-
tion of the injection steps:

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

178

Figure 2: Data Injection with Xtext.

� Given a public view PV, we develop its corre-
sponding Xtext grammar file. In the grammar file,
we describe the exact structure of the data. In
our case, the public view’s grammar corresponds
to the CSV’s grammar and then we describe the
CSV’s format structure (i.e. a set of columns de-
limited by a separator).

� The public view metamodel in the ecore format
is either imported if it already exists or inferred
by the Xtext workflow. Ecore is the model and
metamodel representation format used in EMF.

� Finally a public view model conforming to the
public view metamodel and containing the public
view data is generated.

2.2 Model-to-Model Transformation

At this stage the public view’s data are injected in
the public view’s model. To obtain the wanted out-
put file, we have to carry out a serial of model-to-
model transformations first. The transformations are
precisely between metamodels (the public view meta-
model and the output formats metamodels). Thus,
any public view’s model (corresponding to the public
view’s metamodel) can be transformed to any output
model (corresponding to an output metamodel such
as those of Excel or XML). To define these model-to-
model transformations, we use the Atlas Transforma-
tion Language (ATL) (Allilaire et al., 2006), a com-
ponent of the AMMA platform (Bézivin et al., 2007).

2.3 Output Files Extraction

In the AMMA platform, XML is considered as a tech-
nical space with standard projectors: either injectors
to the MDE technical space or extractors from the
MDE technical space (Sun et al., 2008). In our case,

Public View

Name: String
Path: String
Delimeter: String

Table

Column Row

Cell

Data

Value Type

String Type

Value: String

Integer Type

Value: Integer

Boolean Type

Value: Boolean

Boolean Type

Value: Boolean

1

* *

*

1

Figure 3: The public view metamodel.

we are only interested by the XML extractors to al-
low the extraction of the output files from their asso-
ciated models. In what follows, we detail an exam-
ple of a transformation from a public view format to
Excel format. To carry out this transformation, we
should first inject the public view file’s content in the
public view’s model as shown in the details of the
injection phase of the process (Figure 2). Then, we
should define the different metamodels that will be
used (the public view and the Excel metamodels in
this example). Given that in our example the initial
public view’s data is in the CSV format, we define the
public view’s metamodel as a generic text file which
data is organized in rows and columns and delimited
by a given delimiter (see Figure 3). The Excel and
XML metamodels have been already defined in pre-
vious works (Jouault et al., 2006) and we were pretty
inspired by these works. Figure 4 shows an overview
of the publicView-to-Excel model transformation. On
the left side, we have the MDE technical space with
the three levels of abstraction. The highest one (M3)
corresponds to the ecore metametamodel, then in the
second level (M2), we have our created metamodels
(public view, Excel and XML) that conform to the
ecore metametamodel and finally in the bottom-level
(M1) we find the public view, Excel and XML mod-
els which are instantiations (examples) of their related
metamodels. Accordingly all the models correspond
to their corresponding metamodels. On the right side
of Figure 4, we have the XML technical space and it
is also composed of three levels of abstraction. The
highest level (M3) corresponds to the XMLSchema
metametamodel. In the second one (M2), we have
the spreadSheetML metamodel. Finally, the lowest

A�Model-driven�Process�for�Data�Transformation�of�Heterogeneous�Data

179

Ecore

Public View
Metamodel

Excel
Metamodel

XML
Metamodel

Public View
Model

Excel
Model

XML
Model

MDE Technical Space

PublicView2Excel.atl Excel2XML.atl

Microsoft Excel
 Technical Space

XML Schema

Spreadsheet ML

XML Document

XML Extraction

Figure 4: Public view to Excel Transformation.

level of abstraction corresponds to the XML docu-
ment which is written in the spreadSheetML language
and it can be viewed as an Excel document (Jouault
et al., 2006). We integrated the XML metamodels in
this transformation because it is not possible to ex-
tract an Excel file directly from an Excel model. Actu-
ally, all the possible extractors are of XML types and
given that Excel is an XML-like language (with the
Spreadsheet format) we can perform this extraction.
Therefore, to generate the output Excel file, we should
first perform a model transformation from public view
to Excel (via the ATL transformation language, see
Figure 5). This first necessary transformation is a
model-to-model one and it consists in transforming
the data contained in the public model into the Ex-
cel model. Thus, the result of this transformation is
an Excel model containing all the public view’s data.
As a second step, we need the usage of a projector
and precisely an extractor in order to extract the Ex-
cel file. Here, the projector consists in a transforma-
tion from Excel to XML (via the ATL transformation
language and the predefined XML extractor). There-
fore, we need a transformation from the Excel model
to an XML model. The result of this transformation is
an XML model containing all the Excel model data.
Then, we perform an Excel file Extraction and it aims
at extracting each of the elements composing the in-
put XML model into an output XML file. No model-
to-model Transformation is required for this. We just
need an XML extractor. At the end of the extraction
step, all the necessary information stored in the public
view file should be correctly formatted into the Excel
format.

Other types of data format transformation can also
be completed such as transforming the view’s data
format to the XML and HTML format in a model-
centric way. Given that HTML is also an XML-

Figure 5: A part of the ATL code from public view to Excel
model transformation. The input of the model is the public
view metamodel and the output is the Excel metamodel.

like language, we carry out the transformation exactly
like the PublicView-to-Excel one but we should de-
fine HTML metamodel and model instead of the Ex-
cel ones. As for the PublicView-to-XML transforma-
tion, it is much simpler because we just need the XML
metamodel and model used for both model-to-model
transformation and XML file extraction.

3 EXPERIMENTS

In the context of our work, we generated a com-
plete working prototype for data format transfor-
mation using a model-driven approach. We vali-
dated the performance of our model-driven solution
by carrying out a complete case study and we ob-

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

180

tained the expected results of the output formatted
data files (Excel, HTML an XML formats). We also
compared a model-centric approach to a classic one
namely object-oriented approach (i.e. code-centric
approach). We carried out this comparison based
on average time execution and average automation
rate. This experiment has been performed using the
IBM’s Eclipse Modeling Framework (EMF) (Budin-
sky et al., 2003) as modeling environment and the At-
las Transformation Language (ATL) (Allilaire et al.,
2006) for model Transformations and tools interop-
erability performance. This latter is a sub-project
of Atlas Model Management Architecture platform
(AMMA) (Bézivin et al., 2007). We also used the
Xtext framework (Efftinge and Vlter, 2006) to allow
the integration between the text and model environ-
ments.

Evaluation is based on transformation from the
public view format to Excel, XML and HTML data
formats. Basically, the public view contains data
from four projects upcoming from different external
sources. Transformations from public view format to
Excel, HTML and XML formats are performed using
the proposed data transformation model and the exist-
ing object-oriented model. Table 1 shows the outper-
formance of the a model-driven approach in terms of
execution time and automation rate. Execution time
is computed as the average time of transformation be-
tween the public view format and the three other out-
put formats. Average execution time of format trans-
formation indicated in Table 1 shows that a the pro-
posed model-driven approach is faster than an object-
oriented one. Besides, data transformation using the
proposed model is entirely automatic unlike the exist-
ing object-oriented model. The code-centric approach
does not allow a complete automatic process and re-
peated revision of the code is required. With a the
transformation model, data is accurately transformed
from the public view format to Excel, XML or HTML
format without confusion regarding the data type or
semantic. Whereas, with the existing object-oriented
system, data is not always as well formatted and by
hand rectifications are necessary. The average au-
tomation rate is computed by dividing the number of
data columns that were rectified by the total number
or data columns of the source projects altogether.

Table 1: Accuracy rate and time execution.

Model-oriented Object-oriented

Execution time (s) 10 40
Automation Rate % 100 80

4 CONCLUSIONS

In this paper, we presented a model-driven approach
to handle the problem of systems heterogeneity and
proposed a model-driven process for data format
transformation. Managing data semantics hetero-
geneity is not yet part of the proposed model-driven
process. Handling different data semantic from exter-
nal data sources can be considered in future works.
We faced the challenge to prove that it is possible to
apply current model-driven approaches to real indus-
trial case studies as we showed in the data transforma-
tion example. Experiments show that a model-driven
approach of data transformation reduces the domain-
specific dependency. Nevertheless, the success of
a model-driven approach is intimately related to the
choice of the most relevant MDE approach and tools
regarding the complexity of the application. MDE af-
fords strong approaches namely Model Driven Archi-
tecture (MDA) and Software Factories (SF). Nonethe-
less, the main drawback of MDE is the lack of reliable
and sufficient tool support. These tools are still in
perpetual development and more stable releases are
needed. The unsteady criteria of the current MDE
tools can be a huge handicap for the validity and cred-
ibility of MDE applications especially for high-scaled
systems.

REFERENCES

Allilaire, F., Bzivin, J., Jouault, F., and Kurtev, I. (2006). I.:
Atl eclipse support for model transformation. In In:
Proc. of the Eclipse Technology eXchange Workshop
(eTX) at ECOOP.

Bézivin, J. (2005). Model driven engineering: An emerging
technical space. In GTTSE, pages 36–64.

Bézivin, J., Jouault, F., and Touzet, D. (2007). An intro-
duction to the atlas model management architecture.,
technical report, lina. Technical report.

Budinsky, F., Brodsky, S. A., and Merks, E. (2003). Eclipse
Modeling Framework. Pearson Education.

Efftinge, S. and Vlter, M. (2006). oAW xText: A framework
for textual DSLs. In Workshop on Modeling Sympo-
sium at Eclipse Summit.

Jouault, F., Bézivin, J., and Team, A. (2006). Km3: a dsl for
metamodel specification. In In proc. of 8th FMOODS,
LNCS 4037, pages 171–185. Springer.

Sun, Y., Demirezen, Z., Jouault, F., Tairas, R., and Gray, J.
(2008). A model engineering approach to tool inter-
operability. In SLE, pages 178–187.

A�Model-driven�Process�for�Data�Transformation�of�Heterogeneous�Data

181

