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Abstract: Forecasting accuracy and performance of extrapolation techniques has always been of major importance for 
both researchers and practitioners. Towards this direction, many forecasting competitions have conducted 
over the years, in order to provide solid performance measurement frameworks for new methods. The Theta 
model outperformed all other participants during the largest up-to-date competition (M3-competition). The 
model’s performance is based to the a-priori decomposition of the original series into two separate lines, 
which contain specific amount of information regarding the short-term and long-term behavior of the data. 
The current research investigates possible modifications on the original Theta model, aiming to the 
development of an optimized version of the model specifically for the monthly data. The proposed 
adjustments refer to better estimation of the seasonal component, extension of the decomposition feature of 
the original model and better optimization procedures for the smoothing parameter. The optimized model 
was tested for its efficiency in a large data set containing more than 20,000 empirical series, displaying 
improved performance ability when monthly data are considered. 

1 INTRODUCTION 

The exploration of extrapolation techniques for 
improved performance accuracy is a subject of great 
importance for forecasters and econometricians. The 
benefits rising from accurate predictions reflect 
directly to minimizing production, inventory and 
distribution costs in any kind of industry and 
organization. Towards this direction, many 
international forecasting competitions have 
conducted (for example Makridakis et al., 1982; 
Crone et al., 2011), aiming to provide an evaluation 
framework for well known and widely used 
approaches, such as exponential smoothing methods, 
versus new techniques and expert methods proposed 
by academics or practitioners. An additional target 
of forecasting competitions would be the 
performance comparison of combinations derived 
from simple methods in contrast to more 
sophisticated approaches. Most competitions would 
include numerous time series in different 
frequencies (weekly, monthly, quarterly, yearly 
data) while the accuracy and overall performance 
evaluation was conducted with the use of a set of 
performance metrics, so that the conclusions would 

 

be as generic as possible. 
The M3 forecasting competition (Makridakis & 

Hibon, 2000) is regarded as the most successful 
competition to date, with more than 20 participants 
coming from both academia and software 
companies. The quest was the submission of 
accurate point forecasts for 3,003 time series from a 
variety of economic fields. The results of M3 
competition have referred to numerous scientific 
publications, while its data have been used for many 
empirical researches. The Theta model 
(Assimakopoulos & Nikolopoulos, 2000) achieved 
the best performance across all other approaches, 
which in many cases was statistical significant when 
compared with standard benchmarks, such as 
Damped and Single Exponential Smoothing (5.1% 
and 9.5% accuracy improvement respectively for the 
monthly data). Moreover, this performance was 
consistent for almost all frequencies, with Theta 
model having the best overall performance for 
quarterly and monthly data and the second best 
performance for other data. Moreover, the Theta 
model was within the top five methods when yearly 
data were considered. 

The main purpose of the current research is to 
explore possible improvements of the Theta model 

190 Petropoulos F. and Nikolopoulos K..
Optimizing Theta Model for Monthly Data.
DOI: 10.5220/0004220501900195
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 190-195
ISBN: 978-989-8565-38-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)



towards the development of an “optimized” version 
aiming to even more accurate forecasts when 
monthly data are considered. In order to do this, it is 
essential to explore the core of the model, enumerate 
its main attributes and investigate possible room for 
improvements (Section 2). The next step would be 
the setup of a series of experiments so that all 
tunings and tweakings can be tested and the model 
can be calibrated with the use of a limited data set of 
monthly frequency series (Section 3). Finally, the 
optimized model must be tested to a much larger, 
extended data set so that to verify its validity 
(Section 4). The last section of the paper (Section 5) 
summarizes the conclusions and draws avenues for 
future work. 

2 EXPLORING THE THETA 
MODEL 

2.1 Original Theta Model 

The original Theta model (Assimakopoulos and 
Nikolopoulos, 2000) introduced a unique 
decomposition of the original time series into two 
separate lines, the so called “Theta Lines”. The 
decomposition itself takes place to a seasonally 
adjusted series and it is based on the modification of 
the local curvature through a dedicated coefficient 
(θ). Upon the selection of a unique θ coefficient, a 
Theta line is calculated. All calculated Theta Lines 
maintain the mean and the slope of the data, 
regardless the value of θ. On the other hand, the 
selected value of θ reflects directly to the local 
curvatures of the series, with θ<1 resulting in series 
where the primary qualitative characteristic would 
be the improvement of approximation of the long-
term behavior of the data, whereas θ>1 creates series 
with augmented short-term features. Originally, the 
creators of the model decomposed the seasonally 
adjusted series to just two Theta Lines with specific 
θ coefficients (0 and 2). In more detail, Theta Line 
(0) is nothing more than a linear regression line 
(LRL) of the data, while Theta Line (2) represents a 
line with double the curvatures of the original. Each 
line is extrapolated separately, with Theta Line (0) 
forecasts to be calculated as a usual extrapolation of 
LRL, whereas Theta Line (2) is forecasted with 
Single Exponential Smoothing (SES). The selection 
of LRL and SES approaches is in line with the 
characteristics of the two Theta Lines, in the sense 
of their long-term and short-term features. Finally, 
the forecasts of the two Theta Lines are combined 

with equal weights and reseasonalized so that the 
final point forecasts are derived. 

So, in practice, the original approach of Theta 
Model can be implemented by following the next six 
steps: 
Step 1: Seasonality Check. Original series is tested 

for statistical significant seasonal behavior. 
The criterion usually is the t-test value of 
the autocorrelation function with lag one 
year compared to value 1.645 (90% 
significance). 

Step 2: Deseasonalization. The time series is 
deseasonalized via multiplicative classical 
decomposition. 

Step 3: Decomposition. Data are decomposed in 
two Theta Lines, Theta Line (0) and Theta 
Line (2). 

Step 4: Extrapolation. Theta Line (0) is 
extrapolated with LRL while Theta Line (2) 
is extrapolated via SES. 

Step 5: Combination. The forecasts produced from 
the extrapolation of the two lines are 
combined with equal weights. 

Step 6: Reseasonalization. The combined point 
forecasts are multiplicative reseasonalized. 

2.2 Optimizations on Theta Model 

Having analyzed the core of the original Theta 
model, some modifications on the established 
procedure may be proposed and tested for their 
effectiveness. Firstly, there is serious empirical 
evidence that forecasting accuracy can be improved 
through better estimation of seasonal indices (Miller 
and Williams, 2003), which lead to the calculation 
of a more accurate seasonal adjusted series. The 
current research investigates empirically the use of 
three procedures for calculation of shrinkage 
seasonal estimators. The first approach is an 
adaption of the James-Stein shrinkage estimators 
(James and Stein, 1961), which works effectively, 
according to Miller and Williams (2003), under the 
assumption that the estimated seasonal indices are 
approximately symmetrical and single-peak, similar 
in a sense to a normal distribution. The second 
approach to be investigated is the Lemon-Krutchkoff 
approach (Lemon and Krutchkoff, 1969), which is a 
nonparametric empirical Bayes estimator with no 
assumptions regarding the distribution of the 
seasonal indices. Lastly, the third approach is a 
selection framework developed by Miller and 
Williams (2003), which recommends among 
classical decomposition, James-Stein or Lemon-
Krutchkoff estimators based on both the value of 
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James-Stein shrinkage parameter and the 
approximation of the seasonal indices distribution 
(symmetric or skewed). 

Another aspect to consider in the original Theta 
approach would be the addition of more Theta Lines 
during the Theta decomposition procedure. These 
Theta Lines could effectively represented by any 
value of θ coefficient, even negative ones. The 
current research investigates the improvement on 
accuracy when an additional Theta Line is 
considered with an integer value in the range [-1, 3]. 
The value of the θ coefficient of the Theta Line to be 
added should be defined after optimization and 
testing through all possible values. Moreover, the 
weights of the participated Theta Lines are to be 
explored. The simple any generic solution of equal 
weights should be questioned against the use of 
optimized unequal weights. Both optimizations 
would take place to a hidden-out subsample of the 
data. 

Lastly, attention should be paid on the 
appropriate selection of the level smoothing 
parameter (α) of SES method. Theoretically α 
smoothing parameter should take any value in the 
range [0, 1]. The optimized smoothing parameter is 
to be selected after measuring which one results to 
the best model fit. The measurement of the 
appropriate α value generally takes place with Mean 
Square Error (MSE). The current study explores 
other accuracy metrics for this purpose, namely 
Mean Percentage Error (MPE), Mean Absolute 
Percentage Error (MAPE) and Symmetric Mean 
Absolute Percentage Error (sMAPE). Furthermore, 
empirical evidence has previously shown that 
optimization should exclude marginal values (near 0 
or near 1). As a result, we examine the impact of 
excluding marginal values by selecting different 
symmetric or asymmetric ranges. At last, a forced 
minimization of the α value is considered, as a path 
towards excluding the possibility for SES to act as 
Naïve (which is the case for α=1) and a way to 
“pressure” the model for even more smoothed point 
forecasts. 

3 CALIBRATING OPTIMIZED 
THETA MODEL FOR 
MONTHLY DATA 

3.1 Empirical Data and Calibration 
Procedure 

The calibration procedure  took  place  on  the 1,428 

monthly series of the M3 forecasting competition. 
Data was coming from a variety of sources, such as 
industry, macro, micro, finance, demographic and 
other, while their median length was 115 
observations. The forecasting procedure that was 
followed was quite simple and straightforward. At 
first, the last 18 observation of each series were 
considered unknown and were hidden from the 
sample, as to be in line with the procedure followed 
by the organizers of the M3. Then, every potential 
optimization discussed on subsection 2.2 was 
applied independently for the calculation of 
forecasts with horizon equal to 18 periods. The 
accuracy of the modified models was measured and 
compared to the original performance of the Theta 
model. The accuracy metric used for this purpose 
was the symmetric mean absolute percentage error, 
which is defined in equation (1). 
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3.2 Optimizations on Estimation of 
Seasonality 

One basic aspect of the Theta model is the handling 
of seasonality through steps 1, 2 and 6. So, an even 
better estimation of the seasonal indices would result 
in more accurate forecasts. As mentioned in 
subsection 2.2, three shrinkage seasonal estimators 
approaches where implemented and investigated 
regarding their accuracy in contrast to the classical 
decomposition method. The accuracy results of the 
new estimations are presented in Table 1.  

Table 1: Accurate estimation of seasonal indices. 

Calculation Method for Seasonal Indices sMAPE (%) 
Classical Decomposition Method 13.85 

James and Stein 13.79 
Lemon and Krutchkoff 13.83 

Miller and Willians 13.78 

It is clear that all three approaches result in more 
accurate forecasts, due to the lower respective values 
of the sMAPE. The best performance is observed for 
the selection framework of Miller and Williams, 
with gains up to 0.5% from the original model. This 
conclusion is in line with the research of Miller and 
Williams (2003). 

3.3 Optimizations on Theta Lines 

Two modifications were tested regarding 
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the decomposition lines of the Theta model. The first 
one explores an automated selection, through error 
minimization, of the weights by which the two 
original Theta Lines (0 and 2) will contribute to the 
final forecast. Several ranges for the weights to vary 
were tested. The accuracy results were compared to 
the original model, where both lines participated 
with equal weights. The automated selection 
procedure was achieved in each series independently 
by holding-out of the fitting of the model an extra 
subset of 12 observations. The second modification 
on the original model investigates the possible 
addition of an extra Theta Line with θ coefficient 
taking values into the range [-1, 3]. The weight of 
the contribution for the extra line is also to be 
explored. Once again, the single series optimization 
was conducted by building the model fits without 
the last 12 available observations, which were used 
for automatic model evaluation. The results for the 
optimization upon Theta Lines are presented in 
Tables 2 and 3.  

Table 2: Unequal Theta Lines weights within specific 
ranges. 

Range for automatic weights sMAPE (%) 
Equal Weights 13.85 

[45%, 55%] 13.65 
[40%, 60%] 13.70 
[35%, 65%] 13.83 
[30%, 70%] 14.00 

Table 3: Adding one more line in the Theta model. 

Function for final model sMAPE (%) 
50% × L(0) + 50% × L(2) 13.85 

33.3% × L(0) + 33.3% × L(2)  
+ 33.3% × L(x) 

14.34 

45% × L(0) + 45% × L(2)  
+ 10% × L(x) 

13.71 

47.5% × L(0) + 47.5% × L(2)  
+ 5% × L(x) 

13.70 

50% × L(0) + 30% × L(2)  
+ 20% × L(x) 

13.74 

50% × L(0) + 40% × L(2)  
+ 10% × L(x) 

13.68 

In more detail, the effect on accuracy of unique 
weight selection of Theta Lines for each series 
within a specific range is presented in Table 2. Even 
if almost all presented ranges result in better 
accuracy in contrast to the original model, the best 
performance is captured when a relatively small 
range is selected. The performance improvement 
against the original model is equal to 1.4%. The 
accuracy results of the extra Theta Line are 
presented in Table 3. A 10% weight on the extra 

Theta Line is regarded as beneficial, especially in 
the case that it is subtracted from the weight of 
Theta Line(2). In this case, the accuracy among all 
1,428 monthly series is as low as 13.68%, which can 
be translated as an improvement equal to 1.3% from 
the original model. As previously mentioned, the 
value of θ coefficient may vary from series to series, 
as well as this value is to be selected automatically 
through out-of-sample optimization. Figure 1 
demonstrates the distribution of the selected θ values 
for all series. In most cases, value 3 is selected, 
which represents a line with triple the curvatures of 
the original data, followed by values -1 and 0. The 
selection of the value -1 for almost 24% of the cases 
is quiet unexpected, considering the nature of Theta 
Line (-1), which represents a line with symmetric to 
the LRL curvatures from the original.   

 
Figure 1: Distribution of θ value across series. 

3.4 Optimizations on SES 

The last set of modifications was applied on the 
selection of optimal smoothing parameter for the 
level of the SES method. The accuracy results, when 
constraint optimization ranges are applied, are 
presented in Table 4. As the results indicate, there is 
very small room for improvements, while the best 
performance is recorded for the range [0.1, 0.9], as 
expected. This approach leads to a small benefit 
versus the original model, at just 0.2%. Table 5 
demonstrates the effect of alternatives measure 
metrics used during in-sample optimization of the α 
smoothing parameter. The widely used MSE is 
proved to be by far the best option. This is probably 
due to the nature of the metric, which gives a higher 
penalty on larger errors. As a result, there is 
absolutely no need to do any adjustments here. 
Lastly, the effects of by force decrement of the 
selected smoothing parameter are explored in Table 
6. It is easily interpretable that the value of sMAPE 
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as a function of the percentage of forced decrement 
for the smoothing parameter has a minimum at 30%, 
equal to 13.803%. This improvement can be 
translated as a partial optimization of 0.34% from 
the original model. 

Table 4: Range for selecting optimal smoothing parameter. 

Range sMAPE (%) 
[0, 1] 13.85 

[0.1, 1] 13.84 
[0.2, 1] 13.89 
[0, 0.9] 13.84 
[0, 0.8] 13.87 

[0.1, 0.9] 13.82 

Table 5: Measure metric for optimization. 

Measure Metric sMAPE (%) 
MSE 13.85 
MPE 14.81 

MAPE 15.77 
sMAPE 14.91 

Table 6: Forced decrement of selected smoothing 
parameter. 

% of by force 
decrement 

sMAPE (%) 

0% 13.850 
5% 13.824 
10% 13.813 
20% 13.804 
30% 13.803 
40% 13.838 
50% 13.901 

3.5 Overall Performance of the 
Proposed Adjustments 

Sections 3.2 to 3.4 demonstrated the potential 
improvement on accuracy when only one at a time 
modification was applied. By selecting the best case 
of each possible adjustment, we proposed a 
calibrated ‘optimized’ Theta model for monthly 
series. The model’s overall accuracy performance, 
when the test data are considered (M3 competition’s 
monthly series), is presented in Table 7 and 
contrasted by the accuracy of the five best 
performers on M3 competition. The overall gain in 
accuracy is measured just above 2% of the original 
model. The importance of this improvement is more 
obvious when compared to the performance of 
Damped Exponential Smoothing Method (DES), a 
method widely considered for benchmarking. 
Original Theta model is just 5.1% better than DES, 
whereas optimized Theta model is 6.9% better than 

DES. Moreover, optimized Theta model is superior 
to the average performance of all methods of the M3 
competition (sMAPE=15.35%) by 13.33%, while 
original Theta model does so by just 9.77%. 

Table 7: Accuracy of the optimized Theta model. 

Method sMAPE 
(%) 

M3 Rank 

Original Theta model 13.85 1st 
Forecast Pro 13.86 2nd 
Forecast X 14.45 3rd 

Combination of SES-HES-
DES 

14.48 4th 

Damped Exponential 
Smoothing 

14.59 5th 

Optimized Theta model 13.57 - 

4 EVALUATION OF THE 
OPTIMIZED MODEL 

In order to verify the accuracy performance of the 
optimized Theta model, a much larger set of time 
series was collected. In fact, more than 20,000 series 
were used for this evaluation procedure, coming 
from empirical forecasting competitions, Federal 
Reserve Bank of St. Liouis, Hyndman’s Time Series 
Data Library as well as collections from textbooks. 
Regarding the time frequency of the gathered data, 
data sets included other than monthly, yearly, 
quarterly, weekly and daily data. A hold-out set of 
observations, corresponding to the frequency of the 
time series, was kept unknown during the 
calculation of the model fits and it was used only for 
out-of-sample evaluation. Original Theta model and 
optimized Theta model were compared also against 
widely used forecasting techniques, namely SES, 
Holt Exponential Smoothing (HES), DES and LRL. 
The accuracy results are presented in Table 8, along 
with the requested forecast horizon for each 
frequency. The results indicate a clear advantage of 
the optimized Theta model, as long as monthly data 
are considered (about 3 out of 4 series). In general, 
original Theta model is still the best option against 
all examined methods, with the best overall 
performance, followed by the proposed optimized 
model. 

5 CONCLUSIONS AND FUTURE 
WORK 

During the current research, various optimizations of 
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Table 8: Evaluation results of the optimized Theta model. 

  Yearly Quarterly Monthly Weekly Daily Other All  

 
Forecast 
Horizon 

6 8 12 12 14 10 -  

M
et

ho
d 

SES 25.40 21.90 6.44 10.83 19.68 7.23 11.03 

sM
A

P
E

 (%
) 

HES 36.76 23.20 8.86 10.78 19.42 5.25 14.79 
DES 28.76 14.11 6.78 11.40 20.63 6.52 11.02 
LRL 39.21 74.97 12.56 43.42 36.32 11.19 23.45 
Theta 22.20 13.93 6.30 10.87 19.76 5.91 9.64 

Optimized 
Theta 

22.84 15.55 6.12 11.24 19.53 6.00 9.77 

the top performer of the M3 International 
Forecasting Competition (Makridakis and Hibon, 
2000), the Theta model, were considered. The Theta 
model can be described as a more generic 
framework, in which the deseasonalized series are 
decomposed in two or more Theta lines, each one of 
which represents different amount of information. 
The next stage constitutes of the extrapolation of the 
decomposed lines via various forecasting 
techniques. Then the forecasts are combined and the 
final point forecasts are calculated. Originally, the 
Theta model implementation was suggesting 
decomposition into two symmetric Theta lines, 
extrapolation with LRL and SES and simple 
combination (equal weights). We investigated 
further the dynamics of the Theta model, mostly 
considering time series of monthly frequency, into 
three specific directions: 

1. Accurate estimation of seasonal indices 
with the use of shrinkage methods against 
the classical decomposition method. 

2. Decomposition into up to three Theta lines 
and alternative combination weights of the 
decomposed forecasts into the final model. 

3. Optimizations on the smoothing parameter 
of the SES method. 

The performance exploration of the proposed 
modifications took place on the monthly series of 
the M3 competition. The empirical results indicate 
an overall performance gain of about 2% compared 
to the original implementation. The proposed 
model’s superiority on monthly data was verified on 
a much larger data set containing more than 20,000 
time series.  

As far as future work is concerned, there are 
many possible paths that could be investigated. 
Firstly, a link between the weights of the Theta 
forecasts into the final model with the forecasting 
horizon should be investigated. Secondly, the 
selection of the “appropriate” Theta lines should be 
explored also as a matter of the qualitative and 
quantitative characteristics of each series. Thirdly, a 

framework for the selection of the most proper 
extrapolation technique for each Theta line is to be 
investigated. Finally, the theoretical underpinnings 
of the optimized Theta model have to be examined. 
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