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Abstract: Urban transportation is a strategic domain that has become an important issue for client satisfaction in 
distribution companies. In academic literature, this problem is categorized as a Vehicle Routing Problem, a 
popular research stream that has undergone significant theoretical advances but has remained far from 
practice implementations. Most Vehicle Routing Problems usually assume homogenous fleets, that is, all 
vehicles are considered of the same type and size. In reality, this is usually not the case as most companies 
use different types of trucks to distribute their products. Also, researchers consider symmetric distances 
between customers. However, in intra-urban distribution it is more appropriate to consider asymmetric 
costs. In this study, we address the Heterogeneous Fixed Fleet Vehicle Routing Problem with some 
additional constraints: (a) Asymmetric Cost matrix, (b) Service Times and (c) Routes Length restrictions. 
Our objective function is to reduce the total routing costs. We present an approach using a multi-start 
algorithm that combines a randomized Clarke & Wright’s Savings heuristic and a local search procedure. 
We execute our algorithm with data from a company that distributes food to more than 50 customers in 
Barcelona. The results reveal promising improvements when compared to an approximation of the 
company’s route planning. 

1 INTRODUCTION 

In the last years, logistics and transportation 
companies are facing growingly demanding 
situations with fewer available resources. Market 
instability and the competitive business environment 
have caused an increasing optimization of logistic 
processes. Several fields of research have directed 
their efforts to conceive techniques to fulfil this 
purpose, like applied mathematics, operations 
management and computer sciences. The main 
challenge for these theoretical domains is the 
consideration of real contexts including real 
constraints into their approaches. 

Vehicle routing is a complex logistics 
management problem and represents a key phase for 
the logistic optimization. There are many variations 
for the routing problem. Particularly, we have 
considered a special variant where several 
restrictions are considered at the same time. The set 
of defined constraints are taken from a real case 
provided by a food distribution company located in 

Barcelona, Spain. The distribution inside cities has 
special conditions like little time for delivery, 
congestion, traffic lights, and different types of 
vehicles related to the size and velocity issues. Also, 
there are many possible configurations (routes) to 
visit a customer because the street direction creates a 
special network of available arcs. The purpose of 
this study is to develop and apply a randomized 
multi-start algorithm based on a Clarke & Wright 
savings heuristic for the Asymmetric Heterogeneous 
Fleet Vehicle Routing Problem (AHVRP) with 
service times and routes length restrictions. The 
main advantage of the proposed approach is to 
design a simple algorithm that does not need any 
special fine-tuning. 

The paper is organized as follows: Section 2 
describes the theoretical background and previous 
works. In Section 3 we develop the details of the 
proposed algorithm. Section 4 presents the data 
instances from the distribution company. Section 5 
shows the results of applying the proposed 
methodology to a real context case. To conclude, 
Section 6 summarizes with some final remarks and
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 future research lines. 

2 THE VRP 

The Vehicle Routing Problem (VRP) has been 
studied for over 50 years (Laporte, 2009). The 
simplest version is known as the Capacitated 
Vehicle Routing Problem (CVRP), defined by 
(Dantzig and Ramser, 1959). In CVRP, a directed 
graph G = (V, A) is given, where V = {0, 1, …, n) is 
the set of n + 1 nodes and A is the set of arcs. Node 0 
represents the depot, while the remaining nodes V’ = 
V \ {0} correspond to the n customers. Each 
customer i ϵ V’ requires a known supply of qi units, 
i.e., its demand, from a single depot (assume q0 = 0). 
This demand is going to be served by exactly one 
visit of a single vehicle. In this basic form, there is a 
homogeneous fleet of m identical vehicles with 
capacity Q to serve these n customers. Each vehicle 
has also a time limit L for their single trip. A 
vehicle’s trip is a sequence of customers, whose total 
demand cannot exceed Q that starts from and 
finishes at the depot with duration no greater than L 
(used to be a really big value in order to ignore its 
effect). CVRP aims at finding m trips (vehicles) so 
that all customers are serviced and the total distance 
travelled by the fleet is minimized. 

2.1 Heterogeneous VRP 

VRP’s basic version is very theoretical and 
restrictive. In practice, there exist some other 
constraints on customers, depot(s), vehicles, etc. that 
may have a significant impact on solutions. In 
particular, since companies try to use their resources 
efficiently and as needed, constraints regarding the 
type and size of vehicles as well as the number of 
trips they can make limit the application of basic 
VRP models considerably. The Heterogeneous Fleet 
Vehicle Routing Problem (HVRP) overcomes some 
of these issues.  

Different variants of HVRP have been proposed 
in literature. (Baldacci et al., 2008), for instance, 
present a comprehensive description of some of 
them. One of the most relevant works on this area is 
(Li et al., 2007). The realist aspect of this research 
line has produced several recent studies, like that in 
(Subramanian et al., 2012). In general HVRP 
context, there is a heterogeneous vehicle fleet M 
composed by m different vehicle types, i.e., M = 
{1,…, m}. For each vehicle type, there are mk 

vehicles, a number that might be very large or, 
essentially, unlimited. The mk vehicles of type k ϵ M 

have capacity Qk, fixed cost Fk, and variable cost per 
arc (i, j) travelled cij

k (i ≠ j). The number of trips 
performed by type k vehicles must not be greater 
than mk. The cost of a route results from adding the 
costs of arcs included in the route and the vehicle’s 
fixed cost Fk. 

In this paper, we consider the HVRP with the 
following additional considerations regarding the 
available fleet and its costs: 
 The number of vehicles of each type, mk, is 

limited (fixed fleet) and their use must be 
determined. This is known in literature as 
Fixed Fleet HVRP, and; 

 For each vehicle type: (1) its fixed costs are 
ignored (i.e. 0,kF k M   ); (2) its 

routing costs are vehicle-independent 

( 1 2
1 2 1 2, , ,k k

ij ij ijc c c k k M k k     ). 

2.2 Asymmetric VRP 

Also notice that the cost, cij, of each travelled arc  
(i, j) could not be the same for inverse direction  
(j, i), i.e. ,i j ; i ≠ j; cij ≠ cji. This is the basic 

definition of Asymmetric CVRP (ACVRP), where a 
directed-graph is created and the cost of each arc is 
independent. (Laporte et al., 1986) develop an exact 
algorithm for the asymmetrical CVRP. The authors 
use a Branch-and-Bound tree in which sub-problems 
are modified assignment problems subjected to some 
restrictions. Computational results for problems 
involving up to 260 cities are reported. (Vigo, 1996) 
proposed a heuristic algorithm using additive 
bounding procedures for the ACVRP. Randomly test 
problems involving 300 customers are used to show 
the promising performance of his approach. (Toth 
and Vigo, 1999) addressed a different problem, the 
symmetric and asymmetric VRP with Backhauls. 
The authors proposed a Cluster-first-Route-second 
heuristic. Randomly generated instances are used to 
produce computational results. (Rodríguez and Ruiz, 
2012) have made experiments to study the effect of 
asymmetric matrix on CVRP instances. On this, the 
authors have considered classical heuristics and 
current state-of-the-art metaheuristics. They 
highlighted that “a higher asymmetry degree in the 
instances affects in a statistically significant way the 
CPU time needed by the algorithms and deteriorates 
the quality of the solutions obtained”. 

However, the combination of these two 
restrictions, Heterogeneous Fleet and Asymmetric 
Cost matrix, is not frequent in the literature. In 
summary, the original problem we consider in this 
paper is the Asymmetric Heterogeneous Fixed Fleet 
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VRP (AHVRP). We also assume that (a) any vehicle 
type can visit any individual customer (the smallest 
vehicle capacity is bigger than the biggest demand); 
(b) there are independent service times for each node 
(the delivery time spent in each client for unloading 
of merchandise) that follows a specific statistical 
distribution; and (c) the length of routes is controlled 
by a maximum value. The objective function is 
focused on minimizing the total routing costs, 
considering travelling plus service times and a 
duration restriction of routes. 

3 OUR APPROACH 

Our approach is based on the algorithm called 
Simulation in Routing via the Generalized Clarke 
and Wright Savings heuristic (SR-GCWS) proposed 
by (Juan et al., 2010). This randomized procedure 
was originally made for solving the CVRP. Figure 1 
presents an overview of our approach, where a 
multi-start process is started during a specific period 
of time, and, at each iteration, a solution is 
constructed using a randomization version of the 
classical parallelized Clarke and Wright Savings 
(CWS) heuristic (Clarke and Wright, 1964). CWS is 
probably one of the most cited heuristic to solve the 
CVRP. This procedure uses the concept of savings. 
On general, at each step of the solution construction 
process, the edge with the most savings is selected if 
and only if the two corresponding routes can 
feasibly be merged using the selected edge. The 
CWS algorithm usually provides relatively good 
solutions in less than a second, especially for small 
and medium-size problems. In the literature, there 
are several variants and improvements of the CWS. 
The original version of CWS is based on the 
estimation of possible savings originated from 
merging routes, i.e., for unidirectional or symmetric 
edges sav(i, j)  = c(0, i) + c(0, j) – c(i, j). These 
savings are estimated between all nodes, and then 
decreasingly sorted. Then the bigger saving is 
always taken, and used to merge the two associated 
routes. On the randomized version of this algorithm, 
we use a pseudo-geometric distribution to induce a 
biased randomization selection of savings. 
Moreover, this selection probability is coherent with 
the savings value associated with each edge, i.e., 
edges with higher savings will be more likely to be 
selected from the list than those with lower savings. 
Therefore, each combination of edges has a chance 
of being selected and merged with previously built 
routes. This allows obtaining different outputs at 
each iteration of the multi-start procedure. 

However, the savings construction is modified for 
being applied to the AHVRP, because the inversed 
edges are also considered in the set of options 
(multiplying the original quantity on the symmetric 
version by two), i.e., for two different nodes i and j: 
sav(i, j)  = c(i, 0) + c(0, j) – c(i, j) and also sav(j, i)  
= c(0, i) + c(j, 0) – c(j, i). Therefore, all savings will 
be competing to be taken in the biased randomized 
process, and those with higher savings will define 
the orientation of routes. 

Likely the routes construction process will 
consider the direction of savings edges. Once a route 
takes a direction then all considered candidate routes 
to be merged with the first one must follow the same 
direction. 

Just before the construction process, the total 
route duration (travelling plus service times) and the 
candidate vehicle taking care of the new route are 
validated. The bigger vehicle between the two 
processing routes will be responsible of the new 
route. This vehicle assignment promotes the merging 
of routes as possible (Cáceres-Cruz et al., 2012). If a 
route does not have an assigned vehicle, then the 
first vehicle on the available vehicle list 
(decreasingly sorted by capacity) is selected. For 
this, several fictitious vehicles will be required 
mainly at the beginning of the CWS process. The 
fictitious vehicle should be defined using the 
minimum possible capacity on the instance. At the 
end, the fictitious vehicles must be discarded, if not 
the solution is unfeasible. This vehicle assignment 
rule does not add any computational time on to the 
algorithm execution keeping the overall complexity 
of the algorithm controlled. However there is a 
remark: any individual demand can be carried out by 
any truck (even the smallest and fictitious). 

After construction, the solution is improved with 
a local search method based on a memory cache 
(Juan et al., 2011). This technique keeps in memory 
the best known routes so far with the different 
combination of customers. This procedure compares 
and saves the best order for visiting the nodes on all 
solutions generated so far. The previously assigned 
vehicle to each route remains unchanged during this 
process. At the end, the best solution is recorded. 

4 COMPANY INSTANCES 

With the analysis based on (Pessoa et al., 2008); 
(Baldacci et al., 2008), we have identified standard 
benchmarks such as the ACVRP and HVRP. We 
could not find a general accepted dataset for the 
combination  of   these   two   problems.   The   most 
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Figure 1: Overview of our approach. 

appropriate dataset presented in (Marmion et al., 
2010) is related to our specific problem. The 
experiments are based on a set of real instances 

related to ACVRP (Fischetti et al., 1994). The 
authors simulate the heterogeneous fleet over a 
range of values for testing some operators on four 
different algorithms. However, the proposed 
benchmarks have only considered the effect of 
variable cost on vehicles selection by ignoring the 
different capacities. As a result, there is no specific 
dataset for the above studied problem. 

As the case of study, we used the information of 
a food distribution company located in Barcelona, 
Spain. The company has provided us with the 
delivery address of their customers in six 
independent days along with their demands for those 
days. The transportation limits are defined inside of 
the city borders (urban distribution). 

The main interest of the company is to apply the 
proposed approach to bigger datasets using a web 
information tool. For this reason, the company just 
compile the information during a short period (as a 
sample) in order to produce a preliminary result. In 
addition, the compiling process represented an 
important investment of resources considering the 
size of the company. Therefore on a daily basis, this 
company receives requests from around 50 
customers. This information serves as input to 
manually design the company’s routing planning. 

According to the size of the company it is not 
possible to employ a person specialized in 
mathematical software in order to apply exact 
methods. Therefore they prefer to have an 
approximated solution algorithm embed in a web 
tool which could be used to give automatic solution 
in little time. 

There is a specific constraint: each vehicle must 
visit all customers of a route in a maximum period 
of 180 minutes. This route length restriction must to 
include the travelling time and the service time. So 
far, the company uses two types of vehicles, which 
are described in the Table 1. The columns of this 
table show the capacity (Qk) and quantity (mk) of 
available vehicles for each type (k). Actually the 
company used four vehicles, but they needed to 
determine if it is possible to reduce the total routing 
costs and also execute the same deliveries with 
fewer routes. 

Table 1: Composition of the current company fleet. 

Vehicle Type 
k 

Qk mk 

1 20 2 

2 30 2 

We have used a map-location service, like 
Google Maps to generate the asymmetric cost matrix 
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between every pair of nodes (50 x 50 maximum 
cells). Even when this kind of routing considers all 
possible streets of the city, the cost matrix will only 
represent the best travelling time between each two 
nodes. 

The main features of given six data instances are 
summarized in the Table 2. On the first column, we 
present the identification of each instance that 
represents a day. The second column shows the 
number of customers with demands. Third column is 
the total demand. And the last column represents the 
total service time of all the nodes on the instance. 

As commented before, the company provides us 
with the historic data of some of their service times 
and routes. We have randomly generated the 
respective values for the instances, using simulation 
theory (Monte Carlo Simulation) and the provided 
data. Then, we have defined that the service time for 
each client follows a triangular distribution with min 
= 1, max = 12 and mode = 3 minutes. This 
distribution is often used to represent time in general 
simulation models. However, the routes used differ 
among all days. Notice that the company did not 
save exact information of all their routes, even 
within a whole day. Likely they do not apply any 
specific routing method. A person in charge, who 
tries to assign routes to all drivers, designs the 
routing planning. 

Table 2: General features of real instances. 

Instance 
(day) 

Number of 
Customers 

Total 
Requested 

Demand 

Total 
Service 

Time 
(min) 

A 40 53 163 

B 50 75 213 

C 40 60 163 

D 39 54 159 

E 40 57 162 

F 18 28 75 

5 NUMERICAL RESULTS 

Our algorithm was implemented as a Java 
application and used to run the six instances 
described above on an Intel Xeon E5603 at 1.60 Ghz 
and 8 GB of RAM. For each instance, a single run 
with a total maximum time of 500 seconds was 
employed. The limitation in computing time is due 
to the fact that we wanted to obtain results in a 
‘reasonable’ amount of time. We employ the 
Random Number Generator (RNG) library for 

Stochastic Simulation developed by researchers of 
the Montreal University 
(http://www.iro.umontreal.ca/~simardr/ssj/). 

Table 3 shows the results obtained in 
experiments. The first column shows the instance id; 
the second, the number of routes defined in the 
solution; the third column, the total travelling times 
of routes; the fourth column, the total routing costs 
considering the travelling times plus the service 
times of the instance; and the last column, the 
computational time needed to find the best solution. 

The travelling costs on instances B and E 
represent the higher values obtained. Both of them 
travelling costs are bigger than the previously 
commented restriction of 180 minutes. However, 
this restriction is applied to the route duration and 
also it considers the service time on each node. On 
these two instances, the average total routing cost of 
routes has to be considered. For this, the total 
routing cost is divided by the number of routes on 
the solution producing 134 and 174 minutes 
respectively. 

Notice that even when the running time is set to a 
maximum limit of 500 seconds, the average time for 
finding the best solutions is less than 131 seconds. 

Table 3: Results of Best Solutions after 500 seconds 
running. 

Instance 
(day) 

Routes 

Total 
Travelling 

Cost  
(min) 

Total 
Routing 

Cost  
(min) 

Time 
 

(sec) 

A 2 173 336 1.14 

B 3 189 402 114.76 

C 2 170 333 137.52 

D 2 172 331 275.90 

E 2 186 348 253.42 

F 2 116 191 0.25 

Average 2.17 167.67 323.50 130.50 

In order to validate the solution quality of our 
approach, we have compared our results against an 
approximated value of the current total routing costs. 
As we said before, the company does not have the 
exact values of routing costs. However, they tend to 
use all four vehicles as an attempt to reduce delivery 
times, in an intuitive way. Therefore we have forced 
our algorithm to use four vehicles in order to 
produce a near value of current company solutions. 
The output represents the best solution found in 500 
seconds. We delivered the forced four-route solution 
to the company in order to validate it with the real 
planning, and we obtained a positive confirmation. 
Table 4 presents the travelling times for each
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 scenario and the gap between these two solutions.  
The difference between the approximated 

company solutions and our approach results is 
around 13%. In the next two images, we have 
illustrated both routing solutions of the 
approximated planning (Figure 2), and the new 
proposed solution (Figure 3) for the instance B, 
where the number of routes was reduced to 3. Notice 
that the average number of routes of our approach is 
around 2 which represents a considerable reduction 
of the amount of routes. 

Table 4: Comparison with extreme case using whole fleet 
(four vehicles). 

Instance 
(day) 

Best Costs 
using 4 routes 

(min) 
(2) 

Best Costs 
 (min) 

(1) 

GAP  
(2-1) 

A 192 173 -9.90%

B 205 189 -7.80%

C 206 170 -17.48%

D 190 172 -9.47%

E 211 186 -11.85%

F 153 116 -24.18%

Average 192.83 167.67  -13.45%

 

Figure 2: Approximated routing planning of the company 
for instance B, using Google Maps. 

6 CONCLUSIONS 

In this paper, we have presented a multi-start 
approach for solving the Asymmetric Heterogeneous 
Vehicle Routing Problem (AHVRP) with service 
time consideration and routes length restrictions. 
The proposed approach integrates a randomized 
heuristic approach  with  a  local  search.  Our results 

 

Figure 3: Designed routes in the proposed solution for 
instance B, using Google Maps. 

are based on data obtained from a distribution 
company and we compare our solutions with an 
approximation value of the actual ones implemented 
by the company. These results revealed promising 
improvements. 

Through this experience it was possible to 
support a food distribution company to: (a) realize 
the current situation with quantitative methods; and 
(b) improve their routing planning with a simple 
approach. We used Monte Carlo Simulation to 
complete the missing data from the company, and 
obtain the information required for testing. 

A popular way to evolve a study related to 
savings algorithms is to propose new savings 
definitions. The proposed definition of savings for 
asymmetric VRPs could change in order to promote 
other types of route constructions. Likely the 
inclusion of other real constraints for urban 
distribution is also being considered in the next steps 
of our research, such as manage open routes and 
balanced loads on routes. In fact this last restriction 
is important because there are some routes with 
fewer planned visits whereas others with more. 
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