
Design of an Intelligent Middleware for Flexible Sensor
Configuration in M2M Systems

Niels Reijers1, Kwei-Jay Lin1,2, Yu-Chung Wang1, Chi-Sheng Shih1 and Jane Y. Hsu1
1Intel-NTU Connected Context Computing Center, National Taiwan University, Taipei, Taiwan

2Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, U.S.A.

Keywords: Wireless Sensor Networks, Machine-to-Machine, Middleware, Virtual Machine, Configuration, Policy,
Profile.

Abstract: Most current sensor network applications are built for fixed sensor platforms with a specific wireless
network support, building on top of a lightweight OS or even directly on the hardware, and writing
applications in an imperative way and from each local node’s perspective. This results in software that
supports only a specific set of sensors, and difficult to be ported to other platforms. Such software is not
acceptable in machine-to-machine (M2M) systems where applications must run on platforms that are inter-
operatable and may evolve with time. In this paper we present a project on building intelligent middleware
for M2M. The middleware is designed to perform automatic sensor identification, node configuration,
application upgrade, and system re-configuration. It allows system developers to specify the application
behavior at a higher level, instead of telling each sensor node what to do. A prototype design is presented, as
well as the status of our current implementation.

1 INTRODUCTION

Most sensor network projects report that deploying
and maintaining a working system is still very hard.
(Gluhak et al., 2011) Many applications are single-
purpose systems designed for homogeneous sensor
platforms using specific network protocols. The
hardware has a fixed set of sensors, and the
applications cannot be easily ported to other
platforms. The separation of design abstractions
between the low-level hardware and high-level
applications has not been as successful in sensor-
based systems as that for server-based systems, not
to mention making them dynamically adaptable and
evolvable to new services, and new environments.
Except for low level building blocks, there is very
little reuse from one project to another.

It is clear that there is a need for better
middleware support to ease the deployment of
machine-to-machine (M2M) applications (Mottola
and Picco, 2011). The goal of our research is to
build flexible middleware support so that developers
and users of an M2M system do not need to be
constrained by which and how sensors have been
deployed in a target environment. The built-in
intelligence from the middleware can dynamically

perform sensor detection, device selection, system
configuration, software deployment, and system re-
configuration. Like the transition from low-level
coding to high-level programming on top of of a
general purpose OS and an optimising compiler, we
would like to make M2M programming as platform-
independent as possible using simple, high-level
primitives instead of the node-centric programming.

The main contribution of our project is to support
intelligent mapping from a high-level flow based
program (FBP) to self-identified, context-specific
sensors in a target environment. The automatic
mapping capability in the middleware allows an
application developer to specify simply what types
of sensors are needed rather than which sensors are
used. Such a flexibility is important in order for the
same application logic to be adopted by different
users at their individual homes or offices with a
dynamic, evolving set of heterogeneous sensors.

We present an initial prototype of WuKong,
showing its overall architecture, the main
middleware components, and basic system size. We
have also designed capabilities such as a user policy
framework and quality management framework for
applications.

41Reijers N., Lin K., Wang Y., Shih C. and Hsu J..
Design of an Intelligent Middleware for Flexible Sensor Configuration in M2M Systems.
DOI: 10.5220/0004207600410046
In Proceedings of the 2nd International Conference on Sensor Networks (SENSORNETS-2013), pages 41-46
ISBN: 978-989-8565-45-7
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

2 PROJECT OVERVIEW

To achieve our goals for flexible M2M deployment,
we define three orthogonal frameworks:

1. Sensor profile framework: to enable the
handling of heterogeneous sensor nodes, and for
high-level, logical abstraction of sensor capabilities.
2. User policy framework: to allow user-friendly
specification of application execution objectives,
and context-dependent management of system
performance.
3. System progression framework: to facilitate in-
situ software upgrade for dynamically, progressive
reconfiguration.

We envision that future M2M systems will have
many heterogeneous sensor and actuator nodes, as
well as one or more, more powerful gateway nodes
for connecting the devices to the outside world. All
nodes are connected by wireless technologies such
as Zigbee, ZWave and Wifi. One of the gateway
nodes will take on the role of configuration and
management decision maker, referred as the Master,
and will be responsible for making deployment
decisions and configuring the sensor nodes.

The user runs an M2M application by submitting
it to the Master. The Master will then start a
discovery phase. Each node is loaded with a device
profile, identifying its capabilities and
characteristics, which the Master can access and
configure using the profile framework.

Many M2M applications are heavily influenced
by user preferences and system context, since users
and objects are often mobile and have changing
needs under different situations. For example, a
smart home should provide different room
temperatures and ambient lighting levels depending
on the activity inside of each room. In our
envisioned design, users will be able to specify some
application policy by using a friendly tool or
language. The Master will be informed of the user
policy and use this information in the configuration
decision process for setting up sensors.

Finally, in most M2M applications that are
deployed for an extensive lifetime, the Master will
need to configure, reconfigure and upgrade software
on sensor devices constantly. The management
decisions will be made by an optimization engine
residing on the Master and may be reviewed
periodically or on user request. Reconfiguration
decisions will be made based on factors such as
sensor profiles, user policy, context knowledge,
application history, and real time status, allowing an
application to respond to changing conditions.

The part of our middleware running on the nodes,
called NanoKong, will provide platform independent
access at two different levels. First, the profile
framework allows the resources, including sensors
and software functions, in the network to be
discovered by the Master and to communicate with
each other through a well defined protocol where the
underlying implementation is hidden from the client.
Second, NanoKong includes a small Java virtual
machine, which will allow us to add application
specific behaviour to the functionality already
present on the device.

Applications will therefore run in a mix of native
code and Java byte code. Obviously the tradeoff here
is speed for flexibility. In applications where most of
the functionality can be achieved by connecting the
resources already present in the network, the
application will be running in native code for most
of the time, but Java is still used to configure the
application. If the application requires processing for
which no native support is found, additional Java
byte code will be loaded on some devices.

Figure 1: A simple sensor application FBP.

3 M2M FLOW BASED
PROGRAMMING

Applications in WuKong are developed using a form
of flow based programming (FBP). We believe FBP
is a suitable model because M2M applications are
typically defined by the flow of information between
components, as opposed to traditional applications
that tend to be more focused on the processing of
information. Also, M2M applications are by
definition distributed, and the difficulty of managing
the communication between devices is one of the
main obstacles in M2M development. Using FBP as
a programming model allows the application
programmer to focus on defining the abstract flow of
information in the application, while the resulting
FBP program will contain all necessary information
to let the framework manage the low level details to
physically implement this flow.

The developer constructs an application by
selecting logical components from a library.
Eventually, each component will be realized in

SENSORNETS�2013�-�2nd�International�Conference�on�Sensor�Networks

42

practice by a physical sensor or some software
running on a device. The decision on how to realize
the functionality described by the FBP components
will be made by Master at the time of deployment,
but not during FBP construction.

Components in FBP expose their external
interface through a set of properties. These can be
connected using links to create the dataflow in the
application. Only properties with matching data
types can be connected in FBP.

For example, Figure 1 shows the FBP for a
simple scenario to turn on a heater if the temperature
drops below a certain value. Besides the temperature
sensor and heater, the Thermostat Controller is used
by the user to set the desired temperature. This could
be a physical remote control or a software program,
as long as it conforms to the definition of a
Thermostat Controller in our component library.
Finally, there is a Threshold, a simple software
component, which will output true or false,
depending on the desired and measured
temperatures, thus turning the heater on or off.

The components an FBP programmer can use to
compose the application are defined in a component
library in the WuKong framework. Currently, it
includes only a basic set of components for
commonly-used sensor hardware and functional
elements. In addition to these predefined
components, a programmer will be able to add
custom components containing functions specific to
the application if no support is present in the library.

3.1 Links

Since the focus of M2M applications is on the flow
of information between components, we believe the
links between components should be richer than
simple point-to-point connections. WuKong will
allow the programmer to specify a variety of options
on these links, including:

 conversions: to convert one unit into another,
 filters: to only propagating “interesting” values

(for example exceeding some threshold),
 reliability constraints: to indicate whether best-

effort delivery is good enough, or a more
complex error handling must be employed,

 or inserting custom code to do transformations
for which no pre-defined support is available.

4 PROFILE FRAMEWORK

While the FBP defines the logical view of the

 application, the WuKong profile framework tracks
the physical resources available in the network and
manages the communication between them. The two
main concepts in the profile framework are
WuClasses and WuObjects. They are related, but not
identical, to classes and objects in traditional object
oriented programming.

Table 1: WuClass Types.

Usage Language Type
Hardware access C Hardware

Common processing components C/Java Software
Application specific processing Java Software

WuObjects are the main units of processing in an
application and are hosted on the nodes. The
framework has four main responsibilities:
1. Allow the Master to discover which WuClasses
and WuObjects are available in the NanoKong on a
sensor node;
2. Load WuClasses implemented in Java byte
code and create new WuObject instances on a node;
3. Trigger executions within WuObjects, either
periodically or as a result of changing inputs;
4. Propagate changes between linked properties of
the WuObjects, which may be hosted locally, or on a
remote node.

Externally, an WuClass exposes a number of
properties describing, and allowing access to, the
resource represented by the class. For example the
On/Off property of the Heater class is a boolean
read-write property. WuClasses are also used to
implement various forms of processing. For example
the Threshold has three inputs: an operator, a
threshold and a current value, and a boolean output
indicating if the current value exceeds the threshold.

Besides the properties, WuClasses also export a
single update() method which implements the class’
behaviour. This function will be called by the profile
framework
a) when the value of any property changes, or
b) at fixed intervals, if a sampling rate is set.
Typically, sensors will be triggered at fixed
intervals, while actuators like a Heater will be
triggered by changes to their input properties.

The properties of an WuObject are managed by
the profile framework in a common property store.
The framework provides functions for an WuObject
to access its data from within the update() method.
This allows the framework to monitor the changes
an object makes to its properties and propagate them
to connected destination WuObjects if necessary.

Design�of�an�Intelligent�Middleware�for�Flexible�Sensor�Configuration�in�M2M�Systems

43

4.1 WuClass Types

As mentioned before, WuClasses can be
implemented either in C (called native WuClasses),
in Java (called virtual WuClasses), and they can
represent either processing or hardware. We can
distinguish three main groups (shown in Table 1):
1 Hardware Access. WuClasses representing the
hardware are implemented in C. Each device will
receive a custom built NanoKong which includes the
native WuClasses for the hardware present. At
startup, an instance is created for each piece of
hardware present. For example, a temperature sensor
device will have a built-in Temperature Sensor
WuObject.
2 Common Processing Components. In addition to
allowing access to hardware resources, WuClasses
are also used to implement common operators, such
as math and logic operators, the threshold class, etc.
In contrast to the hardware WuClasses, software
classes will not create any instances at startup, but
the Master will use the profile framework to create
instances when the application is deployed. These
classes be implemented in both C and Java. Many
resource rich nodes may be loaded with native
versions of commonly used processing classes to
allow for more efficient processing. At the same
time, there will be a library of Java implementations
that can be deployed if no native implementation is
available.
3 Application Specific Processing. Finally, there
may be some application specific processing that is
not included in the standard library of components.
For these cases, the developer can add custom
WuClasses using Java.

4.2 Property Propagation

The profile framework not only is in charge of
running WuObjects and storing their data, but also
manages the communication between WuObjects,
which may be on different nodes. Since the
properties are managed by the profile framework, it
can monitor changes and propagate them to
connected WuObjects. For example, in a home
automation scenario, the Temperature Sensor
WuObject is connected to a Threshold WuObject.
The profile framework will periodically call the
Temperature Sensor’s update() method to take a new
measurement. After taking the measurement, the
update() method will use the functions provided by
the framework to update its Current Temperature
property. The framework will notice the value has
changed, and take care of propagating the new value

to the Threshold object’s Input property, which may
be hosted on another node. This in turn will trigger
the Threshold’s update() function, causing it to
recompute the value of it Output property, etc.

5 COMPILATION AND MAPPING

Figure 2 shows an outline of the application build
process. The left part represent the NanoKong VM
and the library of virtual WuClasses, both parts of
the WuKong infrastructure that will be loaded onto
the nodes and Master respectively. The right part
shows the compilation process from the application
being drawn in the IDE to the Java byte code to be
uploaded to the nodes in the network.

Figure 2: WuKong application build process.

The FBP is exported by the IDE as XML. The
Master then generates a Java file, possibly including
virtual WuClasses from the library, and wirelessly
uploads the compiled byte code to the nodes.

The generated Java code consist of three major
parts, two of which are independent of how the
application is mapped to physical resources. First,
there is a table describing the links between the
components in the FBP. Second, some initialisation
code is generated for each component to create the
instances of software WuClasses and set parameters
such as the operator of the Threshold component in
our example scenario.

The third part is a table that maps each
WuObject to a particular node in the network. To
create this table, the Master first starts a discovery
phase and asks every node in the network for a list
of its WuObject instances and supported WuClasses.
The Master will then map each hardware component
in the program to an existing WuObject. For each
software component, the Master will look for the
corresponding WuClass. If no native class is found,

SENSORNETS�2013�-�2nd�International�Conference�on�Sensor�Networks

44

a Java version will be included it in the application.
The mapping can have a large impact on the
performance of the application. Developing
intelligent mapping protocols will be an important
focus in our future work. In our simple home
automation scenario, the periodic sampling will
create significantly more traffic between the
temperature sensor and the threshold components,
compared to the link between the threshold and the
heater. Thus, the threshold component should be
hosted close to the temperature sensor, preferably on
the same node.

Also, while in our current implementation there
is a one-on-one relationship between the FBP
components and the WuClasses, they are two
different concepts. Since components in the FBP
represent only the logical behaviour of the
application, in future versions, a more intelligent
implementation may decide to merge several FBP
components into a single WuClass or a single FBP
component may be translated into several
WuClasses if this leads to a more efficient
implementation.

Table 2: NanoKong VM code size.

Type Component Bytes
VM Core JVM 5604
VM Communication (ZWave+Zigbee) 7564
VM Profile Framework 4244
VM Native Profiles 632
VM String operations and IO 4580
VM Compiled total 20824

Appl. Home automation application 413
Appl. Threshold WuClass (C / Java) 199 / 330

6 IMPLEMENTATION

We have implemented a prototype WuKong
framework, based on a modified version of
NanoVM (Harbaum, 2005), running on the Arduino
platform. We have extended NanoVM by adding
support for both Zigbee and Z-Wave, adding support
for wirelessly uploading a new Java byte code
image, and finally of course our profile framework.

Table 2 shows a breakdown of the size of various
components in NanoKong. The total size of the VM
is currently about 20KB, which allows it to fit onto
many of the current sensor platforms.

We compiled the example scenario shown in
Figure 2. When a native implementation of the
Threshold component is available, meaning no
Virtual WuClass had to be included, the resulting
size of the Java byte code is 413 bytes.

Finally we examined the sizes of both native and
virtual Threshold WuClass. The native
implementation is 199 bytes, while the Java version
is slightly larger at 330 bytes. This confirms our idea
that all but the most resource constrained nodes
could be equipped with a basic set of commonly
used processing WuClasses to boost performance,
and that for classes that are not included in
NanoKong, a virtual version can be downloaded.

Figure 3 shows the C implementation of the a
boolean ‘not’ WuClass. The wuclass_bool_not struct
contains all the information the profile framework
needs to manage instances of the class: the global id,
a pointer to the update() function and an array
defining the properties. In the update() function, we
can see how the framework is used to first read the
input, and then update the output property. Of the
code in Figure 3, the top half is generated from the
component definition, and only the update function
needs to be hand written. Virtual WuClasses, not
shown here, follow a similar pattern in Java.

7 RELATED WORK

There are projects that have addressed some parts of
our goals. LooCI (Hughes et al., 2012) is the closest
to our project by building a reconfigurable
component infrastructure. The LooCI component
model supports interoperability and dynamic
binding. However, it considers component selection
to be higher-level services outside of its core
functionality. ADAE (Chang and Bonnet, 2010)
configures, and at runtime dynamically reconfigures,
the network according to a policy describing the
desired data quality, including fallback options
which the system may use in case the ideal situation
cannot be achieved. However, a skilled engineer is
needed to translate a user’s requirements into the
constraint optimisation problem for ADAE.

There have been several projects which have
developed virtual machines for very resource
constrained devices, either using general purpose
languages like Python or Java (Brouwers et al.,
2009); (Aslam et al., 2008); (Harbaum, 2005), or
specialised for WSN (Levis and Culler, 2002);
(Müller et al., 2007). These technologies allow the
application to be developed in a higher level
language on heterogeneous networks. However,
applications are still written in an imperative way,
and from the node’s perspective.

Very different approaches are taken by Agilla
(Fok et al., 2005) and MagnetOS (Liu et al., 2005).
In Agilla programs consist of software agents that

Design�of�an�Intelligent�Middleware�for�Flexible�Sensor�Configuration�in�M2M�Systems

45

uint8_t wuclass_bool_not_properties[] = {WKPF_PROPERTY_TYPE_BOOLEAN+WKPF_PROPERTY_ACCESS_READ // INPUT
 WKPF_PROPERTY_TYPE_BOOLEAN+WKPF_PROPERTY_ACCESS_WRITE // OUTPUT
};
wkpf_wuclass_definition wuclass_bool_not = {WKPF_WUCLASS_BOOL_NOT, // WuClass id
 wuclass_boolean_not_update, // Update function pointer
 2, // Number of properties
 wuclass_boolean_not_properties // Property datatypes
};
void wuclass_bool_not_update(wkpf_local_wuobject *wuobject) {
 bool input;
 wkpf_read_property_boolean(wuobject, WKPF_PROPERTY_BOOLEAN_NOT_INPUT_VALUE, &input);
 wkpf_write_property_boolean(wuobject, WKPF_PROPERTY_BOOLEAN_NOT_OUTPUT_VALUE, !input);
}

Figure 3: Native implementation of an WuClass for a boolean “not” operator.

can move around autonomously in the network.
While this allows some behaviours to be expressed
in a natural way, the paradigm is very different from
conventional languages, and the assembly-like
instruction set makes it hard to use. Cornell’s
MagnetOS is interesting because it proposes a novel
programming model which allows the user to write
the application as a single Java application, which is
then automatically partitioned and deployed to
minimise energy consumption. However, it requires
significantly more computing power on nodes.

8 CONCLUSIONS

In this paper we have presented the design of an
intelligent middleware, WuKong, for M2M-based
systems. The WuKong middleware provides
platform-independent access to heterogeneous
resources at two different levels. First, the profile
framework allows the resources in the network to be
discovered by Master and to communicate with each
other through a well defined link protocol. In
addition, the middleware includes a small JVM,
which will allow developers to dynamically add
application specific behaviour to the functionality
already present in the sensor hardware.

A working prototype of the WuKong middleware
has been developed, including the profile
framework. The prototype is able to compile an
application, described as a high level flow based
programm, map the logical components to physical
nodes, and wirelessly deploy and run the application.

ACKNOWLEDGEMENTS

This research was partially supported by National
Science Council of Taiwan, National Taiwan
University and Intel Corporation under Grants NSC
100-2911-I-002-001, and 101R70501.

REFERENCES

Chang, M., Bonnet, P., 2010. Meeting Ecologists’
Requirements with Adaptive Data Acquisition. In
Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems

Levis, P., Culler, D., 2002. Maté a tiny virtual machine for
sensor networks. In Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems

Müller, R., Alonso, G., Kossmann, D., 2007. A virtual
machine for sensor networks. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems

Brouwers, N., Langendoen, K., Corke, P., 2009.
Darjeeling, a feature-rich VM for the resource poor. In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems

Aslam, F., Schindelhauer, C., Ernst, G., Spyra, D., Meyer,
J., Zalloom, M., 2008. Introducing TakaTuka: a Java
virtual machine for motes. In Proc. of the 6th ACM
Conference on Embedded Networked Sensor Systems

Harbaum, T., 2005. NanoVM http://www.harbaum.org/
till/nanovm/index.shtml

Hughes, D. et al., "LooCI: The Loosely-coupled
Component Infrastructure," 11th IEEE Symposium on
Network Computing and Applications (NCA), pp.236-
243, Aug. 2012

Fok, C.-L.., Roman, G.-C., Chenyang, L., 2005. Rapid
Development and Flexible Deployment of Adaptive
Wireless Sensor Network Applications. In
Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems

Liu, H., Roeder, T., Walsh, K., Barr, R., Sirer, E. G., 2005.
Design and implementation of a single system image
operating system for ad hoc networks. In Proceedings
of the 3rd international conference on Mobile systems,
applications, and services

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N.,
Razafindralambo, T., 2011. A Survey on Facilities for
Experimental Internet of Things Research. In IEEE
Communications Magazine, Vol. 49, no. 11, Nov. 2011

Mottola, L., Picco, G. P., 2011. Programming Wireless
Sensor Networks: Fundamental Concepts and State of
the Art. In ACM Computing Surveys, volume 43, issue
3, April 2011

SENSORNETS�2013�-�2nd�International�Conference�on�Sensor�Networks

46

