Artificial Intelligence and Creativity Two Requirements to Solve an Extremely Complex Coloring Problem

Bernd Steinbach ${ }^{1}$ and Christian Posthoff ${ }^{2}$
${ }^{1}$ Institute of Computer Science, Freiberg University of Mining and Technology, Bernhard-von-Cotta-Str. 2, Freiberg, Germany
${ }^{2}$ Department of Computing and Information Technology, The University of the West Indies, St. Augustine, Trinidad \& Tobago

Keywords: Artificial Intelligence, Creativity, State Space Search, Constraint Satisfaction, Four-valued Edge Coloring, Complete Bipartite Graph, Rectangle-free Grid, Boolean Equation, SAT-solver, XBOOLE.

Abstract

: The topic of this paper is the rectangle-free coloring of grids using four colors which is equivalent to the edge coloring of complete bipartite graphs without complete monochromatic subgraphs $K_{2,2}$. So far unsolved are the grids of the sizes $17 \times 17,17 \times 18,18 \times 17$, and 18×18. The number of different 4 -color patterns of the grid 18×18 is equal to $4^{324} \approx 1.16798 * 10^{195}$. We summarize in this paper some basic approaches in order to gain the required knowledge. Three creative approaches are steps so solve the most complex grid of the size 18×18. Two advanced creative approaches reduce the required runtime to less than 12 percent.

1 INTRODUCTION

We became aware of this problem by chance reading the publication (Fenner et al., 2009). Because of our long-time interest and experience in solving binary problems and in the recent successes in graph coloring, set covering, combinatorics on the chess board, and even Sudoku it was a challenge for us to deal with this problem.

There are many practical tasks which can be modeled and solved by graph coloring (Marx, 2004). The colors can be assigned either to the vertices or to the edges of a given graph. In the paper (Fenner et al., 2009) the problem is shortly defined as follows. "A two-dimensional grid is a set $G_{n, m}=[n] \times[m]$. A grid $G_{n, m}$ is c-colorable if there is a function $\chi_{n, m}: G_{n, m} \rightarrow$ $[c]$ such that there are no rectangles with all four corners of the same color." A rectangle is defined by the intersection points of two rows and two columns. In comparison with (Fenner et al., 2009) we exchanged in this definition the variables m and n to get a natural alphabetic order of m rows and n columns.

By some theorems it is known that grids 18×19, 19×18, and 19×19 are not 4 -colorable, and it was also known (including examples) that a grid 16×16 is 4 -colorable. The problem was not solved for the grids $17 \times 17,17 \times 18,18 \times 17,18 \times 18$.

The set of possible color configurations for the
grid $G_{18,18}$ has 4^{324} elements because each grid point can have 1 out of 4 values, and the number of rectangles is equal to 23,409 . Each rectangle must be checked four times whether the corner points have the same color or not. Here a first simplification can be seen: we only deal with the problem 18×18, because a solution for this size gives also solutions for the smaller sizes, simply by deleting rows or columns, respectively.

Each solution gives 4 ! solutions because permutations of the 4 colors give more solutions. Additionally, any solution gives $18!\times 18$! solutions, because the permutations of rows and columns give new solutions again. This means that we have no solution or a gigantic number of solutions which cannot even be recorded. However, the number of $4!* 18!* 18!\approx$ $9.8 * 10^{32}$ equivalent solutions is negligibly small in comparison to all $1.16798 * 10^{195}$ different color patterns of the grid $G_{18,18}$.

2 LOGIC MODELS OF THE PROBLEM TO SOLVE

Due to the restricted space we refer for our fourvalued model to our paper (Steinbach and Posthoff, 2012a). The next modeling step is the mapping into

Table 1: Mapping of a 4 -valued color x to 2 Boolean variables a and b.

x	a	b
1	0	0
2	1	0
3	0	1
4	1	1

the Boolean space. This was not necessary for many other problems, they were binary by nature - a queen or a bishop was on a field or not etc. Here we express the four different color values by two Boolean values. Table 1 shows the used mapping.

Function (1) depends for one rectangle on eight Boolean variables and has a Boolean result that is true in the case that the colors in all four corners of the rectangle selected by the rows r_{i} and r_{j} and by the columns c_{k} and c_{l} are equal to each other:

$$
\begin{aligned}
& f_{e c b}\left(a_{r_{i}, c_{k}}, b_{r_{i}, c_{k}},\right. a_{r_{i}, c_{l}}, b_{r_{i}, c_{l}}, \\
&\left.a_{r_{j}, c_{k}}, b_{r_{j}, c_{k}}, a_{r_{j}, c_{l}}, b_{r_{j}, c_{l}}\right)=
\end{aligned}
$$

$$
\left(\bar{a}_{r_{i}, c_{k}} \cdot \bar{b}_{r_{i}, c_{k}} \cdot \bar{a}_{r_{i}, c_{l}} \cdot \bar{b}_{r_{i}, c_{l}} \cdot \bar{a}_{r_{j}, c_{k}} \cdot \bar{b}_{r_{j}, c_{k}} \cdot \bar{a}_{r_{j}, c} \cdot \bar{b}_{r_{j}, c_{l}}\right) \vee
$$

$$
\left(a_{r_{i}, c_{k}} \cdot \bar{b}_{r_{i}, c_{k}} \cdot a_{r_{i}, c_{l}} \cdot \bar{b}_{r_{i}, c_{l}} \cdot a_{r_{j}, c_{k}} \cdot \bar{b}_{r_{j}, c_{k}} \cdot \bar{a}_{r_{j}, c_{l}} \cdot \bar{b}_{r_{j}, c_{l}}\right) \vee
$$

$$
\left(\bar{a}_{r_{i}, c_{k}} \cdot b_{r_{i}, c_{k}} \cdot \bar{a}_{r_{i}, c_{l}} \cdot b_{r_{i}, c_{l}} \cdot \bar{a}_{r_{j}, c_{k}} \cdot b_{r_{j}, c_{k}} \cdot \bar{a}_{r_{j}, c_{l}} \cdot b_{r_{j}, c_{l}}\right) \vee
$$

$$
\begin{equation*}
\left(a_{r_{i}, c_{k}} \cdot b_{r_{i}, c_{k}} \cdot a_{r_{i}, c_{l}} \cdot b_{r_{i}, c_{l}} \cdot a_{r_{j}, c_{k}} \cdot b_{r_{j}, c_{k}} \cdot a_{r_{j}, c_{l}} \cdot b_{r_{j}, c_{l}}\right) \tag{1}
\end{equation*}
$$

The conditions of the 4 -color problem on a grid $G_{m, n}$ will be satisfied when the function $f_{e c b}$ (1) is equal to 0 for all rectangles which can be expressed by

$$
\begin{array}{r}
\bigvee_{i=1}^{m-1} \bigvee_{j=i+1}^{m} \bigvee_{k=1}^{n-1} \bigvee_{l=k+1}^{n} f_{e c b}\left(a_{r_{i}, c_{k}}, b_{r_{i}, c_{k}}, a_{r_{i}, c_{l}}, b_{r_{i}, c_{l}}\right. \\
\left.a_{r_{j}, c_{k}}, b_{r_{j}, c_{k}}, a_{r_{j}, c_{l}}, b_{r_{j}, c_{l}}\right)=0 . \tag{2}
\end{array}
$$

Now we have a logic model for the problem, it is already more comprehensive than the problem to solve. It is valid for any value of m and n; if we want, we can explicitly set $m=18$ and $n=18$. Any solution of this equation is a solution of the problem. Here and in many other AI solutions we are facing a next problem, the question of the correctness of the solution. At all 23, 409 rectangles must be checked relating the 4 colors for a single color pattern of the grid $G_{18,18}$. A human being can not be sure that he checked all these $4 * 23,409=93,636$ conditions without any mistake. Hence, the required 93,636 checks require a next software package - the question for the correctness of a solution is shifted and depends on the correctness of something else (in this case on the correct working of some soft- and hardware). Up to now the problem of correctness cannot be answered at all. The check
of the rectangle condition for a given color pattern by several independent software programs can reduce the remaining uncertainness.

3 BASIC APPROACHES AND RESULTS

In order to solve this coloring problem we need deep knowledge of its properties. The details of our basic exploration are published in the paper (Steinbach et al., 2010). Due to the restricted space, we summarize here the main results in a very compressed manner.

- The Boolean equation (2) could be solved using XBOOLE (Posthoff and Steinbach, 2004), and (Steinbach and Posthoff, 2009) for the the grid $G_{7,2}$ within 4.383 seconds. There are already 67,420,672 color patterns of the 4 -colored grid $G_{7,2}$ which do not satisfy the rectangle-free condition; that is a ratio of 25.12%.
- Based on a heuristic which uses a single fixed uniform distribution of the colors in the top row and in the leftmost column the number of Boolean variables could be enlarged from 28 for $G_{7,2}$ to 76 for $G_{19,2}$. That means, by utilizing properties of the 4 -color problem mentioned above, we have solved problems that are $2^{48}=2.82 * 10^{14}$ times larger than before.
- An iterative approach utilizes the DIF-operation of XBOOLE (Posthoff and Steinbach, 2004), and (Steinbach and Posthoff, 2009) as shown in Figure 1 for all rectangles expressed by:

$$
\begin{equation*}
\mid \text { rectangle } \left\lvert\,=\binom{m}{2} *\binom{n}{2} .\right. \tag{3}
\end{equation*}
$$

- The exchange of space and time allows solve for 4-colored grids which are modeled with up to 384 Boolean variables instead of 76 variables in the second (already improved) approach. This means that this approach allows solving problems which are $2^{308}=5.214812 * 10^{92}$ times larger than before.

```
for(i = 0; i < all_rect; i++)
    aps = DIF(aps, f_ecb[i]);
```

Figure 1: Iterative approach with unrestricted space requirements.

We tried to solve the 4-color grid problem using the best SAT-solvers from the SAT-competitions of the last years. Equation (2) can be easily transformed into a SAT-equation by negation of both sides and the

Table 2: Time to solve quadratic 4-colored grids using different SAT-solver.

			time in minutes:seconds			
rows	columns	variables	clasp-1.2.0	lingeling	plingeling	precosat
12	12	288	$0: 00.196$	$0: 00.900$	$0: 00.990$	$0: 00.368$
13	13	338	$0: 00.326$	$0: 01.335$	$0: 04.642$	$0: 00.578$
14	14	392	$0: 00.559$	$0: 03.940$	$0: 02.073$	$0: 00.578$
15	15	450	$46: 30.716$	$54: 02.304$	$73: 05.210$	$120: 51.739$

application of de Morgan's law to the Boolean expression on the left-hand side. In this way we get the required conjunctive form for the SAT-solver (4):

$$
\bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^{m} \bigwedge_{k=1}^{n-1} \bigwedge_{l=k+1}^{n} \overline{f_{e c b}\left(a_{r_{i}, c_{k}}, b_{r_{i}, c_{k}},\right.}
$$

Table 2 shows the required time to find the first solution for quadratic 4-colored grids $G_{12,12}, G_{13,13}$, $G_{14,14}$, and $G_{15,15}$ using the SAT-solver clasp (Gebser et al., 2007), lingeling (Biere, 2010), plingeling (Biere, 2010), and precosat (Biere, 2010).

From the utilization of the SAT-solvers we learned that

1. SAT-solver are powerful tools that are able to solve 4-colored grids up to $G_{15,15}$,
2. it was not possible to calculate a 4 -colored grid larger than $G_{15,15}$ directly.
The reasons for the second statement are firstly that the search space for the 4 -colored grid $G_{16,16}$ is $4^{31}=$ $4.61 * 10^{18}$ times larger than the search space for the 4-colored grid $G_{15,15}$, and secondly that the fraction of 4-colorable grids is reduced for the larger grid even stronger.

4 CREATIVE APPROACHES TO SOLVE THE PROBLEM

4.1 Restriction to a Single Color of 4-colored Grids

Due to the high complexity, a divide-and-conquer approach may facilitate the solution of the 4 -colored grid $G_{17,17}$ or even the grid $G_{18,18}$. The divide step restricts first to a single color. At least one fourth of the grid positions must be covered by the first color without contradiction to the color restrictions. When such a partial solution is known, the same fill-up step must be executed taking into account the already fixed positions of the grid. This procedure must be repeated for all four colors.

The advantage of this approach is that a single Boolean variable describes whether the color is assigned to a grid position or not. Such a restriction to one half of the needed Boolean variables reduces the search space from $2^{2 * 18 * 18}=1.16 * 10^{195}$ to $2^{18 * 18}=3.41 * 10^{97}$ for the grid $G_{18,18}$ drastically.

The function $f_{\text {ecb }}$ (1) which describes equal assignments of the four colors in the corners of a rectangle can be simplified to $f_{e c b 1}$ (5) for a single color in the divide and conquer approach.

$$
\begin{align*}
& f_{\text {ecb } 1}\left(a_{r_{i}, c_{k}}, a_{r_{i}, c_{l},}, a_{r_{j}, c_{k}}, a_{r_{j}, c_{l}}\right)= \\
& \quad\left(a_{r_{i}, c_{k}} \wedge a_{r_{i}, c_{l}} \wedge a_{r_{j}, c_{k}} \wedge a_{r_{j}, c_{l}}\right) \tag{5}
\end{align*}
$$

By transformation into a SAT problem we get $N \equiv$

$$
\bigwedge_{i=1}^{m-1} \bigwedge_{j=i+1}^{m} \bigwedge_{k=1}^{n-1} \bigwedge_{l=k+1}^{n} \overline{f_{e c b 1}\left(a_{r_{i}, c_{k}}, a_{r_{i}, c_{l}}, a_{r_{j}, c_{k}}, a_{r_{j}, c_{l}}\right)}=1
$$

A disadvantage of this approach is that the implicit assignment of exactly one color to each grid position is lost. The values of the pair of variables $\left(a_{r_{i}, c_{k}}, b_{r_{i}, c_{k}}\right)$ in the solution of (4) determine one of the four colors for the position of the row r_{i} and the column c_{k}. The value of the single variable $a_{r_{i}, c_{k}}$ in the solution of (6) determines only whether the chosen color is assigned, $a_{r_{i}, c_{k}}=1$, or one of the remaining colors must be used $a_{r_{i}, c_{k}}=0$.

One solution of (6) calculated by a SAT solver will be the assignment of values 0 to all a-variables. This is a correct solution; the chosen color does not conflict with the rectangle condition when it is not assigned to any grid position. However, we are not interested in this trivial solution; we are looking for a solution where the chosen color covers one fourth of the grid positions. Consequently, this approach requires the calculation of all solutions of (6) using a SAT-solver, and the selection of the solutions with a maximal number of 1 values which must be detected by counting. Hence, a SAT solver cannot solve this problem directly.

4.2 Iterative Greedy Approach for a Single Color of 4-colored Grids

It is a necessary condition for the rectangle-free 4colored grid $G_{18,18}$ that at least one fourth 1 values

1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
0	1	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0	0
0	1	0	0	0	1	0	0	1	0	0	1	0	0	0	0	1	0
0	0	1	0	1	0	0	0	1	0	0	0	0	0	1	1	0	0
0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0	0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1
0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1
0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0
0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0
0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	0
0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1	0	1	0	1	1	0	0	0	0

Figure 2: Rectangle-free grid $G_{18,18}$ colored by one fourth of all positions with the color 1 .
of the $18 * 18=324$ grid positions are colored with the same color without violation of the rectangle condition. The main idea for such a check is the iterative extension of maximal single colored grids $G_{k, k}$ to correct single colored grids $G_{k+1, k+1}$ and the restriction of the solution set by utilization of permutation classes. The details of this approach are the topic of the paper (Steinbach and Posthoff, 2012b). Figure 2 shows the found correct assignment of 81 values 1 to the 324 grid position of $G_{18,18}$.

Our effort to fill up the 1 -colored grid $G_{18,18}$ of Figure 2 with the second color on again 81 grid positions failed. This results from the fact that the freedom for the choice of the positions is restricted by the assignments of the first color. We learned from this approach that it is not enough to know a correct coloring for one color; these assignments must not constrain the assignment of the other colors.

4.3 Cyclic Color Assignments of 4-colored Grids

The smallest restrictions for the coloring of a grid by four colors are given when the number of assignments to the grid positions is equal for all four colors. For quadratic grids $G_{m, n}$ with $m=n$ and an even number of m rows and n columns, quadruples of all grid positions can be chosen which contain all four colors. There are several possibilities of such selections of quadruples. One of them is the cyclic rotation of a chosen grid position by 90 degrees around the center of the grid. Figure 3 (a) illustrates this possibility for a simple grid $G_{4,4}$. The quadruples are labeled by the
(a)

r_{1}	s_{1}	t_{1}	r_{2}
t_{4}	u_{1}	u_{2}	s_{2}
s_{4}	u_{4}	u_{3}	t_{2}
r_{4}	t_{3}	s_{3}	r_{3}

(b)

r_{1}	s_{1}	t_{1}	u_{1}	r_{2}
u_{4}	v_{1}	w_{1}	v_{2}	s_{2}
t_{4}	w_{4}	x_{1}	w_{2}	t_{2}
s_{4}	v_{4}	w_{3}	v_{3}	u_{2}
r_{4}	u_{3}	t_{3}	s_{3}	r_{3}

Figure 3: Cyclic quadruple in quadratic grids: (a) $G_{4,4}$, (b) $G_{5,5}$.
letters r, s, t, and u. The attached index specifies the element of the quadruple.

In addition to the color restriction (6) for the chosen single color we can require that this color occurs exactly once in each quadruple. This property can be expressed by two additional rules. For the corners of the grid of Figure 3 (a), for instance, we model as first rule the requirement:

so that at least one variable r_{i} must be equal to 1. As a second rule, the additional restriction

$$
\begin{align*}
& \left(r_{1} \wedge r_{2}\right) \vee\left(r_{1} \wedge r_{3}\right) \vee\left(r_{1} \wedge r_{4}\right) \vee \\
& \left(r_{2} \wedge r_{3}\right) \vee\left(r_{2} \wedge r_{4}\right) \vee\left(r_{3} \wedge r_{4}\right)=0 \tag{8}
\end{align*}
$$

prohibits that more than one variable r_{i} is equal to 1 .
A SAT-formula can be constructed using (6) and for all cyclic quadruples as illustrated in Figure 3 (a) both the fitted requirements (7) and the fitted restrictions (8) negated using de Morgan's laws. Hence, 7 clauses must be added to the SAT-formula for each quadruple. The solution of such a SAT-formula for a quadratic grid of even numbers of rows and columns must assign exactly one fourth of the variables to 1 . Such a solution can be used rotated by 90 degrees for the second color, rotated by 180 degrees for the third color, and rotated by 270 degrees for the forth color without any contradiction.

We generated the cnf-file of this SAT-formula which depends on 324 variables and contains 23,976 clauses for the grid $G_{18,18}$. The SAT-solver clasp2.0.0 found the first cyclic reusable solution for the grid $G_{18,18}$ after 212,301.503 seconds which means 2 days 10 hours 58 minutes 21.503 seconds. Figure 4 (a) shows this solution for the first color of the grid $G_{18,18}$.

Using the core solution of Figure 4 (a) we have constructed the 4-colored grid $G_{18,18}$ of Figure 4 (b) by three times rotating around the grid center by 90 degrees each and assigning the next color.

Many other 4-colored grids can be created from the solution in Figure 4 (b) by permutations of rows, columns, and colors. Several correct 4-colored grids

0	0	1	1	0	0	1	0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	0	1
0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0
0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	1
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0
1	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0
0	1	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	1
0	0	0	1	1	0	0	1	0	0	1	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0
0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0
0	0	1	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0
1	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0

(a)

2	4	1	1	4	2	1	3	3	4	4	2	2	2	1	3	1	3
4	2	4	3	3	4	1	3	2	2	1	1	2	4	2	1	3	1
2	4	2	2	1	4	3	4	2	1	3	1	3	1	4	3	1	2
4	1	3	1	3	3	2	4	1	3	4	1	4	2	2	3	4	2
1	3	4	1	4	1	2	3	2	3	2	2	3	1	4	2	4	1
1	1	2	3	2	3	3	1	4	2	2	4	4	2	4	1	1	3
1	4	4	4	1	3	1	3	1	2	3	2	4	3	3	4	2	2
3	4	2	3	1	1	2	2	3	3	3	4	2	4	1	1	4	4
3	1	4	2	2	1	1	2	4	1	4	2	1	3	2	3	3	4
2	1	1	4	1	3	4	2	3	2	4	3	3	4	4	2	3	1
2	2	3	3	2	4	2	1	1	1	4	4	3	3	1	4	2	1
4	4	2	1	1	2	4	1	4	3	1	3	1	3	2	2	2	3
1	3	3	2	4	2	2	4	4	2	3	1	1	4	1	4	3	3
3	2	4	2	3	1	4	4	1	4	1	4	3	2	3	2	1	3
4	2	1	4	4	2	3	2	1	3	2	4	1	1	3	1	3	2
4	3	1	2	3	1	3	1	3	4	2	1	2	3	4	4	2	4
3	1	3	4	2	4	3	3	4	4	1	3	2	1	1	2	4	2
1	3	1	3	4	2	2	4	4	1	1	3	4	2	3	3	2	4

(b)

Figure 4: Cyclic colored grid $G_{18,18}$: (a) basic solution for one color; (b) complete solution by merging the solution of (a) rotated by 90,180 , and 270 degrees for the other colors.
$G_{17,18}$ originate from the 4-colored grid $G_{18,18}$ by removing any single row, and by removing any single column we get 4 -colored grids $G_{18,17}$. Obviously, several so far unknown 4-colored $G_{17,17}$ can be selected from the 4 -colored grid of Figure 4 (b) removing both any single row and any single column.

It should be mentioned that the approach of cyclic reusable single assignments can be applied to 4colored square grids of an odd number of rows and columns, too. The central position must be colored with the first chosen color. Figure 3 (b) shows the principle of the quadruple assignment in this case.
(a)

$$
\begin{array}{|ll|ll|ll|ll|}
\hline \bar{a}_{3} & \bar{a}_{4} & \bar{a}_{5} & \bar{a}_{6} & \bar{a}_{7} & \bar{a}_{8} & \bar{a}_{3} & a_{4} \\
\hline a_{7} & a_{8} & \bar{a}_{1} & \bar{a}_{2} & \bar{a}_{1} & a_{2} & \bar{a}_{5} & a_{6} \\
\hline a_{5} & a_{6} & a_{1} & a_{2} & a_{1} & \bar{a}_{2} & \bar{a}_{7} & a_{8} \\
\hline a_{3} & a_{4} & a_{7} & \bar{a}_{8} & a_{5} & \bar{a}_{6} & a_{3} & \bar{a}_{4} \\
\hline
\end{array}
$$

(b)

\bar{a}_{5}	\bar{a}_{6}	\bar{a}_{7}	\bar{a}_{8}	\bar{a}_{9}	\bar{a}_{10}	\bar{a}_{11}	\bar{a}_{12}	\bar{a}_{5}	a_{6}
a_{11}	a_{12}	\bar{a}_{1}	\bar{a}_{2}	\bar{a}_{3}	\bar{a}_{4}	\bar{a}_{1}	a_{2}	\bar{a}_{7}	a_{8}
a_{9}	a_{10}	a_{3}	a_{4}			\bar{a}_{3}	a_{4}	\bar{a}_{9}	a_{10}
a_{7}	a_{8}	a_{1}	a_{2}	a_{3}	\bar{a}_{4}	a_{1}	\bar{a}_{2}	\bar{a}_{11}	a_{12}
a_{5}	a_{6}	a_{11}	\bar{a}_{12}	a_{9}	\bar{a}_{10}	a_{7}	\bar{a}_{8}	a_{5}	\bar{a}_{6}

Figure 5: Cyclic Boolean angle encoding of grids: (a) $G_{4,4}$, (b) $G_{5,5}$.

The SAT-solver clasp-2.0.0 found the first cyclic 4-colorable solution for odd grids up to $G_{15,15}$ in less than 0.6 seconds, but could not solve this task for the grid $G_{17,17}$ until now.

At this point we can state that the combination of our creativity to select the subproblem of cyclic color assignments with the AI of the used SAT-solvers allowed to find a rectangle-free 4-colored grid $G_{18,18}$ out of the exceptionally large number of $1.16798 *$ 10^{195} color patterns. That means that we have solved the explored problem. For Mathematicians in the area of bipartite Ramsey numbers we can state: instead of $17 \leq B R(2,4) \leq 19$ we have now $B R(2,4)=19$.

5 ADVANCED CREATIVE APPROACHES

5.1 Reduced Cyclic Model

The search space of a SAT-solver depends exponentially on the number of Boolean variables used in the model. The first key for our successful solution for the grid $G_{m, n}$ with $m=n=18$ was the separation of a subproblem that depends only on $m^{2}=18^{2}=324$ Boolean variables instead of $2 * m^{2}=2 * 18^{2}=648$ as needed for the complete grid coloring problem with four colors. Further restrictions of the needed model variables may be a source to reduce the calculation effort in order to find more cyclic solutions in a shorter period of time.

The source for the further simplification must be given by the problem to solve itself: the search for a cyclic rectangle-free coloring for a quadratic grid with a single color. The quadruples introduced in subsection 4.3 describe regions in which exactly one of the four grid elements must be equal to 1 . Instead of this

1-out-of-4 encoding by four Boolean variables (7), (8) a direct binary encoding by conjunctions of only two Boolean variables a_{i}, a_{j} can be used:

- the angle of rotation is equal to 0 degrees: $\bar{a}_{i} \bar{a}_{j}$,
- the angle of rotation is equal to 90 degrees: $\bar{a}_{i} a_{j}$,
- the angle of rotation is equal to 180 degrees: $a_{i} \bar{a}_{j}$,
- the angle of rotation is equal to 270 degrees: $a_{i} a_{j}$.

These two Boolean variables describe the angle of rotation. Hence, we call this encoding cyclic Boolean angle encoding. Figure 5 shows the assignment of the Boolean variables for this encoding to elements of the grids $G_{4,4}$ and $G_{5,5}$.

The number of Boolean model variables of a quadratic grid with an even number of m rows and $n=m$ columns for the angle encoding is equal to $\mathrm{m}^{2} / 2$ which is only $18^{2} / 2=162$ for the grid $G_{18,18}$.

The center element of a quadratic grid with an odd number of m rows and $n=m$ columns can be assigned with each color due to the assumed cyclic reusable coloring. Hence, this property must be taken into account for the setup of the model but no Boolean variable is needed for the central grid element. The angle encoding of a quadratic grid with an odd number of rows and columns requires consequently $\left(m^{2}-1\right) / 2$ which is only $\left(17^{2}-1\right) / 2=144$ for the grid $G_{17,17}$.

There are two more sources of improvements originated from the cyclic Boolean angle encoding:

1. One of four rotated solutions be predefined by fixed values of both Boolean variables of one of the grid cells.
2. Tautologies of rectangle rules can be excluded from the SAT-instance.
We developed a generator that creates .cnf-files for cyclic SAT instances using the suggested cyclic Boolean angle encoding. While the SAT-solver clasp2.0 .0 needs $212,301.503$ seconds for the calculation of the first solution of a single cyclic reusable color assignment expressed by 324 Boolean variables for the grid $G_{18,18}$, the same SAT-solver found the first solution already after $98,140.862$ seconds using the cyclic Boolean angle encoding. This reduction of the required runtime to 46.23 percent indicates both the benefit of the cyclic Boolean angle encoding and the unchanged extremely high complexity of the problem itself.

5.2 Knowledge Transfer

Due to (3) there are 23,409 clauses for the grid $G_{18,18}$. Each clause describes a single rectangle condition. A SAT-solver is able to remove tautology clauses or add learned additional clauses. However, the SAT-solver
does not know properties of the problem which can be utilized within the solution process.

We know, that the SAT-instance (the SAT formula as .cnf file given to the SAT-solver) describes the color patterns for a single color of a quadratic grid which can be reused after a rotation by an angle of $k * 90^{\circ}, k=1,2,3$ for the other three colors. Based on this knowledge we can conclude that four solutions of the SAT-instance can be mapped to a unique pattern applying a rotation by $k * 90^{\circ}$. Because one of such four solutions answers our purpose we can exclude the rotated solutions by constant values of any pair of variables which describe a quadruple. We transfer this knowledge by adding clauses for $a_{1}=0$ and $a_{2}=0$. In this way the number of free variables for the grid $G_{18,18}$ is reduced from 162 to 160 and the number of clauses is increased from 23,409 to 23,411.

The SAT-solver knows all these 23,411 clauses but does not know their semantics. For that reason the SAT-solver must take into account all remaining $2^{160} \approx 1.46 * 10^{48}$ combinations of value assignments. This large amount of combinations can be restricted by a simple creative conclusion.

If we have a cyclic solution pattern of a quadratic grid $G_{k, k}$ and remove both the first and the last row and the left and the right column we get a cyclic solution pattern of the quadratic grid $G_{k-2, k-2}$. That means it cannot create a correct cyclic color pattern of a quadratic grid $G_{18,18}$ that includes an incorrect pattern of a quadratic grid $G_{16,16}$ as center part.

Using the cyclic Boolean rectangle encoding the grid $G_{18,18}$ needs $2 * 17=34$ additional Boolean variables in comparison to the next central internal grid $G_{16,16 \text {. Hence, only a very small fraction of }}$ the $2^{160-34} \approx 8.5 * 10^{37}$ possible pattern for rotationfrozen grids $G_{16,16}$ must be evaluated to find a correct solution of the grid $G_{18,18}$. The expansion step can be solved in a very short period of time by a SAT-solver again because only valid values of 34 Boolean variables must be found and many conflicts to the rectangle rule exist.

In order to find all different cyclic rectangle-free solutions of the grid $G_{18,18}$ we suggest the following algorithm in which the knowledge about the cyclic rectangle-free solutions for the grid $G_{16,16}$ is transferred to the SAT-instance of the larger grid $G_{18,18}$.

1. Create a SAT-instance using the cyclic Boolean encoding shown in Figure 5 (a) for the grid $G_{16,16}$.
2. Frozen the rotation of the SAT-instance of step 1 by two clauses for $a_{1}=0$ and $a_{2}=0$.
3. Calculate all solutions of the SAT-instance of step 2.

Table 3: Correct cyclic grids $G_{18,18}$ of different equivalence classes extended by knowledge transfer from correct cyclic grids $G_{16,16}$ calculated within a period of 60 days and the results of the same experiment applied to the extension of cyclic grids $G_{15,15}$ to cyclic grids $G_{17,17}$.

days	$G_{16,16}$	$G_{18,18}$	$G_{15,15}$	$G_{17,17}$
2	9,900	0	$1,455,000$	0
4	20,000	0	$2,960,000$	0
6	31,500	4	$4,435,000$	0
8	41,700	8	$6,030,000$	0
10	51,400	24	$7,625,000$	0
12	62,900	32	$9,255,000$	0
14	75,000	44	$10,940,000$	0
16	87,000	52	$12,580,000$	0
18	98,000	60	$14,390,000$	0
20	111,300	85	$16,150,000$	0
22	123,700	92	$17,320,000$	0
24	137,900	112	$18,870,000$	0
26	149,300	116	$20,195,000$	0
28	162,000	120	$21,800,000$	0
30	173,900	120	$23,200,000$	0
32	187,000	120	$24,355,000$	0
34	198,300	124	$25,630,000$	0
36	210,500	136	$27,005,000$	0
38	224,500	148	$28,335,000$	0
40	238,400	152	$29,645,000$	0
42	250,400	152	$30,905,000$	0
44	262,500	164	$32,080,000$	0
46	274,100	164	$33,520,000$	0
48	284,500	172	$35,045,000$	0
50	297,500	180	$36,600,000$	0
52	309,800	188	$37,880,000$	0
54	322,300	192	$39,310,000$	0
56	334,600	192	$40,705,000$	0
58	345,600	192	$42,290,000$	0
60	357,200	208	$43,970,000$	0

4. For each solution found in step 3 create a SATinstance based on the cyclic Boolean encoding shown in Figure 5 (a) for the grid $G_{18,18}$ and extend this SAT-instance by constant clauses of one solution found in step 3.
5. Solve the logically restricted SAT-instances which were created in step 4.
We run an experiment over 60 days and found that 208 of $43,970,000$ cyclic rectangle-free grids $G_{15,15}$ can be extended to cyclic rectangle-free grids $G_{17,17}$. The the last two columns of Table 3 show the details of this experiment. It can be concluded that

Using a slightly changed knowledge transfer approach it can be verified whether this statement is true for quadratic grids with an odd number of rows and columns. We describe this adopted approach for the most interesting case of the knowledge transfer from
the correct cyclic solution of the grid $G_{15,15}$ to check for cyclic solutions of the grid $G_{17,17}$.

1. Create a SAT-instance using the cyclic Boolean encoding shown in Figure 5 (b) for the grid $G_{15,15}$.
2. Frozen the rotation of the SAT-instance of step 1 by two clauses for $a_{3}=0$ and $a_{4}=0$ (the variable a_{1} and a_{2} describe the center element, do not contain rotation information, and must not be used explicitly in the SAT-formula).
3. Calculate all solutions of the SAT-instance of step 2.
4. For each solution found in step 3 create a SATinstance based on the cyclic Boolean encoding shown in Figure 5 (b) for the grid $G_{17,17}$ and extend this SAT-instance by constant clauses of one solution found in step 3.
5. Solve the logically restricted SAT-instances which were created in step 4.

We run a similar experiment again over 60 days and found that none of 357,200 cyclic rectangle-free grids $G_{16,16}$ can be extended to cyclic rectangle-free grids $G_{18,18}$. A conjecture of this experiment is that no correct cyclic rectangle-free 4-coloring for the grid $G_{17,17}$ exists. The rationale of this conjecture is that the central element of the grid $G_{17,17}$ originates with 8 values 1 in the middle row and the middle column fixed parts of possible rectangles which restrict the assignment of values 1 strongly. In the apparently more complicated grid $G_{18,18}$ these values 1 can be chosen within the quadruples such that no restriction commonly with the 1 value of the central four grid positions originates.

It should be mentioned that the knowledge transfer can be utilized recursively for all levels of a cascade of quadratic grids of either an even number or an odd number of rows and columns. The benefit in terms of runtime depends on the ratio between the time to solve the next smaller grid and the time for the transfer of the knowledge .

6 COMPARATIVE STUDY

Many scientists all over the world tried to solve the four-valued rectangle-free grid $G_{18,18}$ but all of them failed due to the extreme complexity of the problem. For that reason we cannot compare our results with solutions of other scientists but must refer to our own solutions.

The description of the significantly simpler problem of the grid $G_{17,17}$ on the web page (Fortnow and Gasarch, 2009) and more than 150 comments about
failed approaches in the period of time from 2009 to 2012 confirm our scientific progress. In February 2012 we published our found solution for the grid $G_{17,17}$ on the web page (Fortnow and Gasarch, 2012) and announced that we solved even the extremely more complex grid $G_{18,18}$. At this time our paper (Steinbach and Posthoff, 2012a) about the solution of the $G_{18,18}$ was accepted.

In this ICAART-2013 paper we suggested two advanced creative approaches and reached the following improvements.

1. The reduced cyclic Boolean angle encoding allows to solve the four-valued rectangle-free grid $G_{18,18}$ using only 162 Boolean variables and reduces the required runtime to 46.23 percent.
2. Using the approach of the knowledge transfer we found 256 four-valued rectangle-free grid $G_{18,18}$ of different equivalence classes within 71 days, which reduces the average runtime for each of these solutions to 11.29 percent.

S딭N드 ANロ TEㄷN

7 CONCLUSIONS

We explored in this paper the so far unsolved problem whether the grids $G_{17,17}, G_{17,18}, G_{18,17}$, and $G_{18,18}$ are rectangle-free 4 -colorable. Our study has shown that the fraction of 4 -colorable grids of the size 18×18 is extremely small. Hence, finding a rectangle-free 4-colored grid $G_{18,18}$ out of the unimaginably large number of $1.16798 * 10^{195}$ of all possible assignments of 4 colors is significantly more difficult than detecting a single electron within the whole universe and requires both AI and creativity.

Our suggested advanced approaches for strong complex problems are:

- the utilization of problem specific constraints by a fitting special encoding,
- the knowledge transfer from simpler subtasks in order to restrict the remaining search space.
In the special case of the explored edge coloring our suggested cyclic Boolean angle encoding allows to reduce the number of Boolean variables again to one half from 324 to 162 for the grid $G_{18,18}$ which basically has required a model of 648 Boolean variables. For the same application the knowledge transfer from subtasks reduces the effort to solve the next more complex task strongly.

REFERENCES

Biere, A. (2010). Lingeling, plingeling, picosat and precosat at sat race 2010. Technical Report 10/1, Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria.
Fenner, S., Gasarch, W., Glover, C., and Purewal, S. (2009). Rectangle free coloring of grids. http:// www.cs.umd.edu/ \sim gasarch/papers/grid.pdf.
Fortnow, L. and Gasarch, B. (2012). Computational complexity - the 17×17 problem solved! (also 18×18). http://blog.computationalcomplexity.org/ 2012/ 02/ 17×17-problem-solved-also- $18 \times 18 . \mathrm{html}$.
Fortnow, L. and Gasarch, W. (2009). Rectangle free coloring of grids. http://blog.computationalcomplexity.org/ 2009/11/ 17x17-challenge-worth-28900-this-is-not.html.
Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. (2007). Logic Programming and Nonmonotonic Reasoning, chapter clasp: A Conflict-Driven Answer Set Solver, pages 260-265. Springer, Berlin, Heidelberg.
Marx, D. (2004). Graph colouring problems and their applications in scheduling. Periodica Polytechnica, Electrical Engineering, 48(1):11-16.
Posthoff, C. and Steinbach, B. (2004). Logic Functions and Equations - Binary Models for Computer Science. Springer, Dordrecht, The Netherlands.
Steinbach, B. and Posthoff, C. (2009). Logic Functions and Equations - Examples and Exercises. Springer Science + Business Media B.V.
Steinbach, B. and Posthoff, C. (2012a). Extremely complex 4-colored rectangle-free grids: Solution of open multiple-valued problems. In Proceedings of the IEEE 42nd International Symposium on Multiple-Valued Logic (ISMVL 2012), pages 37-44, Victoria, British Columbia, Canada.
Steinbach, B. and Posthoff, C. (2012b). Utilization of permutation classes for solving extreme complex 4colorable rectangle-free grids. In The 2012 International Conference on Systems and Informatics (ICSAI 2012), pages 2361-2370, Yantai, China.

Steinbach, B., Posthoff, C., and Wessely, W. (2010). Approaches to shift the complexity limitations of boolean problems. In Computer - Aided Design of Discrete Devices - CAD DD 2010, Proceedings of the Seventh International Conference, pages 84-91, Minsk, Belarus.

