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Abstract: The topic of this paper is the rectangle-free coloring of grids using four colors which is equivalent to the edge
coloring of complete bipartite graphs without complete monochromatic subgraphsK2,2. So far unsolved are
the grids of the sizes 17×17, 17×18, 18×17, and 18×18. The number of different 4-color patterns of the
grid 18×18 is equal to 4324≈ 1.16798∗10195. We summarize in this paper some basic approaches in order to
gain the required knowledge. Three creative approaches are steps so solve the most complex grid of the size
18×18. Two advanced creative approaches reduce the required runtime to less than 12 percent.

1 INTRODUCTION

We became aware of this problem by chance reading
the publication (Fenner et al., 2009). Because of our
long-time interest and experience in solving binary
problems and in the recent successes ingraph color-
ing, set covering, combinatorics on the chess board,
and even Sudokuit was a challenge for us to deal with
this problem.

There are many practical tasks which can be mod-
eled and solved by graph coloring (Marx, 2004). The
colors can be assigned either to the vertices or to the
edges of a given graph. In the paper (Fenner et al.,
2009) the problem is shortly defined as follows. ”A
two-dimensionalgrid is a setGn,m = [n]× [m]. A grid
Gn,m is c-colorableif there is a functionχn,m : Gn,m→
[c] such that there are no rectangles with all four cor-
ners of the same color.” Arectangleis defined by the
intersection points of two rows and two columns. In
comparison with (Fenner et al., 2009) we exchanged
in this definition the variablesmandn to get a natural
alphabetic order ofm rows andn columns.

By some theorems it is known that grids 18×19,
19× 18, and 19× 19 are not 4-colorable, and it was
also known (including examples) that a grid 16×16
is 4-colorable. The problem was not solved for the
grids 17×17,17×18,18×17,18×18.

The set of possible color configurations for the

grid G18,18 has 4324 elements because each grid point
can have 1 out of 4 values, and the number of rect-
angles is equal to 23,409. Each rectangle must be
checked four times whether the corner points have
the same color or not. Here afirst simplificationcan
be seen: we only deal with the problem 18×18, be-
cause a solution for this size gives also solutions for
the smaller sizes, simply by deleting rows or columns,
respectively.

Each solution gives 4! solutions because permuta-
tions of the 4 colors give more solutions. Addition-
ally, any solution gives 18!× 18! solutions, because
the permutations of rows and columns give new so-
lutions again. This means that we have no solution
or a gigantic number of solutions which cannot even
be recorded. However, the number of 4!∗18!∗18!≈
9.8∗ 1032 equivalent solutions is negligibly small in
comparison to all 1.16798∗10195 different color pat-
terns of the gridG18,18.

2 LOGIC MODELS OF THE
PROBLEM TO SOLVE

Due to the restricted space we refer for our four-
valued model to our paper (Steinbach and Posthoff,
2012a). The next modeling step is themapping into
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Table 1: Mapping of a 4-valued colorx to 2 Boolean vari-
ablesa andb.

x a b
1 0 0
2 1 0
3 0 1
4 1 1

the Boolean space. This was not necessary for many
other problems, they were binary by nature - a queen
or a bishop was on a field or not etc. Here we express
the four different color values by two Boolean values.
Table 1 shows the used mapping.

Function (1) depends for one rectangle on eight
Boolean variables and has a Boolean result that is true
in the case that the colors in all four corners of the
rectangle selected by the rowsr i and r j and by the
columnsck andcl are equal to each other:

fecb(ar i ,ck,br i ,ck,ar i ,cl ,br i ,cl ,

ar j ,ck ,br j ,ck ,ar j ,cl ,br j ,cl ) =

(ar i ,ck ·br i ,ck ·ar i ,cl ·br i ,cl ·ar j ,ck ·br j ,ck ·ar j ,cl ·br j ,cl )∨

(ar i ,ck ·br i ,ck ·ar i ,cl ·br i ,cl ·ar j ,ck ·br j ,ck ·ar j ,cl ·br j ,cl )∨

(ar i ,ck ·br i ,ck ·ar i ,cl ·br i ,cl ·ar j ,ck ·br j ,ck ·ar j ,cl ·br j ,cl )∨

(ar i ,ck ·br i ,ck ·ar i ,cl ·br i ,cl ·ar j ,ck ·br j ,ck ·ar j ,cl ·br j ,cl ).

(1)

The conditions of the 4-color problem on a grid
Gm,n will be satisfied when the functionfecb (1) is
equal to 0 for all rectangles which can be expressed
by

m−1∨

i=1

m∨

j=i+1

n−1∨

k=1

n∨

l=k+1

fecb(ar i ,ck ,br i ,ck ,ar i ,cl ,br i ,cl ,

ar j ,ck ,br j ,ck ,ar j ,cl ,br j ,cl ) = 0 . (2)

Now we have a logic model for the problem, it
is already more comprehensive than the problem to
solve. It is valid for any value ofm andn; if we want,
we can explicitly setm= 18 andn= 18. Any solution
of this equation is a solution of the problem. Here and
in many other AI solutions we are facing a next prob-
lem, thequestion of the correctnessof the solution.
At all 23,409 rectangles must be checked relating the
4 colors for a single color pattern of the gridG18,18. A
human being can not be sure that he checked all these
4∗23,409= 93,636 conditions without any mistake.
Hence, the required 93,636 checks require a next soft-
ware package - the question for the correctness of a
solution isshiftedand depends on the correctness of
something else (in this case on the correct working
of some soft- and hardware). Up to now the problem
of correctness cannot be answered at all. The check

of the rectangle condition for a given color pattern by
several independent software programs can reduce the
remaining uncertainness.

3 BASIC APPROACHES AND
RESULTS

In order to solve this coloring problem we need deep
knowledge of its properties. The details of our ba-
sic exploration are published in the paper (Steinbach
et al., 2010). Due to the restricted space, we summa-
rize here the main results in a very compressed man-
ner.

• The Boolean equation (2) could be solved using
XBOOLE (Posthoff and Steinbach, 2004), and
(Steinbach and Posthoff, 2009) for the the grid
G7,2 within 4.383 seconds. There are already
67,420,672 color patterns of the 4-colored grid
G7,2 which do not satisfy the rectangle-free con-
dition; that is a ratio of 25.12 %.

• Based on a heuristic which uses a single fixed uni-
form distribution of the colors in the top row and
in the leftmost column the number of Boolean
variables could be enlarged from 28 forG7,2 to
76 for G19,2. That means, by utilizing properties
of the 4-color problem mentioned above, we have
solved problems that are 248 = 2.82∗1014 times
larger than before.

• An iterative approach utilizes theDIF-operation
of XBOOLE (Posthoff and Steinbach, 2004), and
(Steinbach and Posthoff, 2009) as shown in Figure
1 for all rectangles expressed by:

|rectangle|=

(

m
2

)

∗

(

n
2

)

. (3)

• The exchange of space and time allows solve for
4-colored grids which are modeled with up to 384
Boolean variables instead of 76 variables in the
second (already improved) approach. This means
that this approach allows solving problems which
are 2308 = 5.214812∗ 1092 times larger than be-
fore.

for(i = 0; i < all_rect; i++)
aps = DIF(aps, f_ecb[i]);

Figure 1: Iterative approach with unrestricted space require-
ments.

We tried to solve the 4-color grid problem using
the best SAT-solvers from the SAT-competitions of
the last years. Equation (2) can be easily transformed
into a SAT-equation by negation of both sides and the
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Table 2: Time to solve quadratic 4-colored grids using different SAT-solver.

time in minutes:seconds
rows columns variables clasp-1.2.0 lingeling plingeling precosat
12 12 288 0:00.196 0:00.900 0:00.990 0:00.368
13 13 338 0:00.326 0:01.335 0:04.642 0:00.578
14 14 392 0:00.559 0:03.940 0:02.073 0:00.578
15 15 450 46:30.716 54:02.304 73:05.210 120:51.739

application of de Morgan’s law to the Boolean expres-
sion on the left-hand side. In this way we get the re-
quired conjunctive form for the SAT-solver (4):

m−1∧

i=1

m∧

j=i+1

n−1∧

k=1

n∧

l=k+1

fecb(ar i ,ck,br i ,ck,

ar i ,cl ,br i ,cl ,ar j ,ck,br j ,ck ,ar j ,cl ,br j ,cl ) = 1 . (4)

Table 2 shows the required time to find the first
solution for quadratic 4-colored gridsG12,12, G13,13,
G14,14, andG15,15 using the SAT-solverclasp (Geb-
ser et al., 2007),lingeling (Biere, 2010),plingeling
(Biere, 2010), andprecosat(Biere, 2010).

From the utilization of the SAT-solvers we learned
that

1. SAT-solver are powerful tools that are able to
solve 4-colored grids up toG15,15,

2. it was not possible to calculate a 4-colored grid
larger thanG15,15 directly.

The reasons for the second statement are firstly that
the search space for the 4-colored gridG16,16 is 431=

4.61∗1018 times larger than the search space for the
4-colored gridG15,15, and secondly that the fraction
of 4-colorable grids is reduced for the larger grid even
stronger.

4 CREATIVE APPROACHES TO
SOLVE THE PROBLEM

4.1 Restriction to a Single Color of
4-colored Grids

Due to the high complexity, a divide-and-conquer ap-
proach may facilitate the solution of the 4-colored
grid G17,17 or even the gridG18,18. The divide step
restricts first to a single color. At least one fourth of
the grid positions must be covered by the first color
without contradiction to the color restrictions. When
such a partial solution is known, the same fill-up step
must be executed taking into account the already fixed
positions of the grid. This procedure must be repeated
for all four colors.

The advantage of this approach is that a single
Boolean variable describes whether the color is as-
signed to a grid position or not. Such a restric-
tion to one half of the needed Boolean variables re-
duces the search space from 22∗18∗18= 1.16∗10195 to
218∗18= 3.41∗1097 for the gridG18,18 drastically.

The function fecb (1) which describes equal as-
signments of the four colors in the corners of a rect-
angle can be simplified tofecb1 (5) for a single color
in the divide and conquer approach.

fecb1(ar i ,ck,ar i ,cl ,ar j ,ck ,ar j ,cl ) =

(ar i ,ck ∧ar i ,cl ∧ar j ,ck ∧ar j ,cl ) (5)

By transformation into a SAT problem we get
m−1∧

i=1

m∧

j=i+1

n−1∧

k=1

n∧

l=k+1

fecb1(ar i ,ck ,ar i ,cl ,ar j ,ck ,ar j ,cl ) = 1 .

(6)

A disadvantage of this approach is that the implicit
assignment of exactly one color to each grid position
is lost. The values of the pair of variables(ar i ,ck,br i ,ck)
in the solution of (4) determine one of the four colors
for the position of the rowr i and the columnck. The
value of the single variablear i ,ck in the solution of (6)
determines only whether the chosen color is assigned,
ar i ,ck = 1, or one of the remaining colors must be used
ar i ,ck = 0.

One solution of (6) calculated by a SAT solver will
be the assignment of values 0 to alla-variables. This
is a correct solution; the chosen color does not con-
flict with the rectangle condition when it is not as-
signed to any grid position. However, we are not in-
terested in this trivial solution; we are looking for a
solution where the chosen color covers one fourth of
the grid positions. Consequently, this approach re-
quires the calculation ofall solutions of (6) using a
SAT-solver, and the selection of the solutions with a
maximal number of 1 values which must be detected
by counting. Hence, a SAT solver cannot solve this
problem directly.

4.2 Iterative Greedy Approach for a
Single Color of 4-colored Grids

It is a necessary condition for the rectangle-free 4-
colored gridG18,18 that at least one fourth 1 values
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1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0

Figure 2: Rectangle-free gridG18,18 colored by one fourth
of all positions with the color 1.

of the 18∗ 18= 324 grid positions are colored with
the same color without violation of the rectangle con-
dition. The main idea for such a check is the itera-
tive extension of maximal single colored gridsGk,k to
correct single colored gridsGk+1,k+1 and the restric-
tion of the solution set by utilization of permutation
classes. The details of this approach are the topic of
the paper (Steinbach and Posthoff, 2012b). Figure 2
shows the found correct assignment of 81 values 1 to
the 324 grid position ofG18,18.

Our effort to fill up the 1-colored gridG18,18 of
Figure 2 with the second color on again 81 grid po-
sitions failed. This results from the fact that the free-
dom for the choice of the positions is restricted by the
assignments of the first color. We learned from this
approach that it is not enough to know a correct col-
oring for one color; these assignments must not con-
strain the assignment of the other colors.

4.3 Cyclic Color Assignments of
4-colored Grids

The smallest restrictions for the coloring of a grid by
four colors are given when the number of assignments
to the grid positions is equal for all four colors. For
quadratic gridsGm,n with m= n and an even num-
ber of m rows andn columns, quadruples of all grid
positions can be chosen which contain all four col-
ors. There are several possibilities of such selections
of quadruples. One of them is the cyclic rotation of a
chosen grid position by 90 degrees around the center
of the grid. Figure 3 (a) illustrates this possibility for
a simple gridG4,4. The quadruples are labeled by the

(a)

r1 s1 t1 r2

t4 u1 u2 s2

s4 u4 u3 t2

r4 t3 s3 r3 (b)

r1 s1 t1 u1 r2

u4 v1 w1 v2 s2

t4 w4 x1 w2 t2

s4 v4 w3 v3 u2

r4 u3 t3 s3 r3

Figure 3: Cyclic quadruple in quadratic grids: (a)G4,4, (b)
G5,5.

lettersr,s, t, andu. The attached index specifies the
element of the quadruple.

In addition to the color restriction (6) for the cho-
sen single color we can require that this color occurs
exactly once in each quadruple. This property can be
expressed by two additional rules. For the corners of
the grid of Figure 3 (a), for instance, we model as first
rule the requirement:

r1∨ r2∨ r3∨ r4 = 1 , (7)

so that at least one variabler i must be equal to 1. As
a second rule, the additional restriction

(r1∧ r2)∨ (r1∧ r3)∨ (r1∧ r4)∨

(r2∧ r3)∨ (r2∧ r4)∨ (r3∧ r4) = 0 (8)

prohibits that more than one variabler i is equal to 1.
A SAT-formula can be constructed using (6) and

for all cyclic quadruples as illustrated in Figure 3 (a)
both the fitted requirements (7) and the fitted restric-
tions (8) negated using de Morgan’s laws. Hence, 7
clauses must be added to the SAT-formula for each
quadruple. The solution of such a SAT-formula for a
quadratic grid of even numbers of rows and columns
must assign exactly one fourth of the variables to 1.
Such a solution can be used rotated by 90 degrees for
the second color, rotated by 180 degrees for the third
color, and rotated by 270 degrees for the forth color
without any contradiction.

We generated the cnf-file of this SAT-formula
which depends on 324 variables and contains 23,976
clauses for the gridG18,18. The SAT-solverclasp-
2.0.0 found the first cyclic reusable solution for the
grid G18,18 after 212,301.503 seconds which means 2
days 10 hours 58 minutes 21.503 seconds. Figure 4
(a) shows this solution for the first color of the grid
G18,18.

Using the core solution of Figure 4 (a) we have
constructed the 4-colored gridG18,18 of Figure 4 (b)
by three times rotating around the grid center by 90
degrees each and assigning the next color.

Many other 4-colored grids can be created from
the solution in Figure 4 (b) by permutations of rows,
columns, and colors. Several correct 4-colored grids
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(a)

0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1
0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

(b)

2 4 1 1 4 2 1 3 3 4 4 2 2 2 1 3 1 3
4 2 4 3 3 4 1 3 2 2 1 1 2 4 2 1 3 1
2 4 2 2 1 4 3 4 2 1 3 1 3 1 4 3 1 2
4 1 3 1 3 3 2 4 1 3 4 1 4 2 2 3 4 2
1 3 4 1 4 1 2 3 2 3 2 2 3 1 4 2 4 1
1 1 2 3 2 3 3 1 4 2 2 4 4 2 4 1 1 3
1 4 4 4 1 3 1 3 1 2 3 2 4 3 3 4 2 2
3 4 2 3 1 1 2 2 3 3 3 4 2 4 1 1 4 4
3 1 4 2 2 1 1 2 4 1 4 2 1 3 2 3 3 4
2 1 1 4 1 3 4 2 3 2 4 3 3 4 4 2 3 1
2 2 3 3 2 4 2 1 1 1 4 4 3 3 1 4 2 1
4 4 2 1 1 2 4 1 4 3 1 3 1 3 2 2 2 3
1 3 3 2 4 2 2 4 4 2 3 1 1 4 1 4 3 3
3 2 4 2 3 1 4 4 1 4 1 4 3 2 3 2 1 3
4 2 1 4 4 2 3 2 1 3 2 4 1 1 3 1 3 2
4 3 1 2 3 1 3 1 3 4 2 1 2 3 4 4 2 4
3 1 3 4 2 4 3 3 4 4 1 3 2 1 1 2 4 2
1 3 1 3 4 2 2 4 4 1 1 3 4 2 3 3 2 4

Figure 4: Cyclic colored gridG18,18: (a) basic solution for
one color; (b) complete solution by merging the solution of
(a) rotated by 90, 180, and 270 degrees for the other colors.

G17,18 originate from the 4-colored gridG18,18 by re-
moving any single row, and by removing any single
column we get 4-colored gridsG18,17. Obviously,
several so far unknown 4-coloredG17,17 can be se-
lected from the 4-colored grid of Figure 4 (b) remov-
ing both any single row and any single column.

It should be mentioned that the approach of cyclic
reusable single assignments can be applied to 4-
colored square grids of an odd number of rows and
columns, too. The central position must be colored
with the first chosen color. Figure 3 (b) shows the
principle of the quadruple assignment in this case.

(a)

a3 a4 a5 a6 a7 a8 a3 a4

a7 a8 a1 a2 a1 a2 a5 a6

a5 a6 a1 a2 a1 a2 a7 a8

a3 a4 a7 a8 a5 a6 a3 a4

(b)

a5 a6 a7 a8 a9 a10 a11 a12 a5 a6

a11 a12 a1 a2 a3 a4 a1 a2 a7 a8

a9 a10 a3 a4 a3 a4 a9 a10

a7 a8 a1 a2 a3 a4 a1 a2 a11 a12

a5 a6 a11 a12 a9 a10 a7 a8 a5 a6

Figure 5: Cyclic Boolean angle encoding of grids: (a)G4,4,
(b) G5,5.

The SAT-solverclasp-2.0.0found the first cyclic
4-colorable solution for odd grids up toG15,15 in less
than 0.6 seconds, but could not solve this task for the
grid G17,17 until now.

At this point we can state that the combination of
our creativity to select the subproblem of cyclic color
assignments with the AI of the used SAT-solvers al-
lowed to find a rectangle-free 4-colored gridG18,18
out of the exceptionally large number of 1.16798∗
10195 color patterns. That means that we have solved
the explored problem. For Mathematicians in the area
of bipartite Ramsey numbers we can state: instead of
17≤ BR(2,4)≤ 19 we have nowBR(2,4) = 19.

5 ADVANCED CREATIVE
APPROACHES

5.1 Reduced Cyclic Model

The search space of a SAT-solver depends exponen-
tially on the number of Boolean variables used in the
model. The first key for our successful solution for
the gridGm,n with m= n= 18 was the separation of
a subproblem that depends only onm2 = 182 = 324
Boolean variables instead of 2∗m2 = 2∗182 = 648 as
needed for the complete grid coloring problem with
four colors. Further restrictions of the needed model
variables may be a source to reduce the calculation ef-
fort in order to find more cyclic solutions in a shorter
period of time.

The source for the further simplification must be
given by the problem to solve itself: the search for a
cyclic rectangle-free coloring for a quadratic grid with
a single color. The quadruples introduced in subsec-
tion 4.3 describe regions in which exactly one of the
four grid elements must be equal to 1. Instead of this
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1-out-of-4 encoding by four Boolean variables (7), (8)
a direct binary encoding by conjunctions of only two
Boolean variablesai ,a j can be used:

• the angle of rotation is equal to 0 degrees:aiaj ,

• the angle of rotation is equal to 90 degrees:aia j ,

• the angle of rotation is equal to 180 degrees:aia j ,

• the angle of rotation is equal to 270 degrees:aia j .

These two Boolean variables describe the angle of ro-
tation. Hence, we call this encodingcyclic Boolean
angle encoding. Figure 5 shows the assignment of the
Boolean variables for this encoding to elements of the
gridsG4,4 andG5,5.

The number of Boolean model variables of a
quadratic grid with an even number ofm rows and
n = m columns for the angle encoding is equal to
m2/2 which is only 182/2= 162 for the gridG18,18.

The center element of a quadratic grid with an odd
number ofmrows andn=mcolumns can be assigned
with each color due to the assumed cyclic reusable
coloring. Hence, this property must be taken into ac-
count for the setup of the model but no Boolean vari-
able is needed for the central grid element. The angle
encoding of a quadratic grid with an odd number of
rows and columns requires consequently(m2− 1)/2
which is only(172−1)/2= 144 for the gridG17,17.

There are two more sources of improvements orig-
inated from the cyclic Boolean angle encoding:

1. One of four rotated solutions be predefined by
fixed values of both Boolean variables of one of
the grid cells.

2. Tautologies of rectangle rules can be excluded
from the SAT-instance.

We developed a generator that creates.cnf-files
for cyclic SAT instances using the suggested cyclic
Boolean angle encoding. While the SAT-solver clasp-
2.0.0 needs 212,301.503 seconds for the calculation
of the first solution of a single cyclic reusable color
assignment expressed by 324 Boolean variables for
the gridG18,18, the same SAT-solver found the first
solution already after 98,140.862 seconds using the
cyclic Boolean angle encoding. This reduction of the
required runtime to 46.23 percent indicates both the
benefit of the cyclic Boolean angle encoding and the
unchanged extremely high complexity of the problem
itself.

5.2 Knowledge Transfer

Due to (3) there are 23,409 clauses for the gridG18,18.
Each clause describes a single rectangle condition. A
SAT-solver is able to remove tautology clauses or add
learned additional clauses. However, the SAT-solver

does notknowproperties of the problem which can be
utilized within the solution process.

We know, that the SAT-instance (the SAT formula
as .cnf file given to the SAT-solver) describes the
color patterns for a single color of a quadratic grid
which can be reused after a rotation by an angle of
k∗90◦,k= 1,2,3 for the other three colors. Based on
this knowledge we can conclude that four solutions of
the SAT-instance can be mapped to a unique pattern
applying a rotation byk∗ 90◦. Because one of such
four solutions answers our purpose we can exclude
the rotated solutions by constant values of any pair of
variables which describe a quadruple. We transfer this
knowledge by adding clauses fora1 = 0 anda2 = 0.
In this way the number of free variables for the grid
G18,18 is reduced from 162 to 160 and the number of
clauses is increased from 23,409 to 23,411.

The SAT-solver knows all these 23,411 clauses
but does not know their semantics. For that reason
the SAT-solver must take into account all remaining
2160≈ 1.46∗1048 combinations of value assignments.
This large amount of combinations can be restricted
by a simple creative conclusion.

If we have a cyclic solution pattern of a quadratic
grid Gk,k and remove both the first and the last row
and the left and the right column we get a cyclic so-
lution pattern of the quadratic gridGk−2,k−2. That
means it cannot create a correct cyclic color pattern
of a quadratic gridG18,18 that includes an incorrect
pattern of a quadratic gridG16,16 as center part.

Using the cyclic Boolean rectangle encoding the
grid G18,18 needs 2∗ 17 = 34 additional Boolean
variables in comparison to the next central internal
grid G16,16. Hence, only a very small fraction of
the 2160−34 ≈ 8.5∗1037 possible pattern for rotation-
frozen gridsG16,16 must be evaluated to find a correct
solution of the gridG18,18. The expansion step can be
solved in a very short period of time by a SAT-solver
again because only valid values of 34 Boolean vari-
ables must be found and many conflicts to the rectan-
gle rule exist.

In order to find all different cyclic rectangle-free
solutions of the gridG18,18 we suggest the following
algorithm in which the knowledge about the cyclic
rectangle-free solutions for the gridG16,16 is trans-
ferred to the SAT-instance of the larger gridG18,18.

1. Create a SAT-instance using the cyclic Boolean
encoding shown in Figure 5 (a) for the gridG16,16.

2. Frozen the rotation of the SAT-instance of step 1
by two clauses fora1 = 0 anda2 = 0.

3. Calculate all solutions of the SAT-instance of step
2.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

416



Table 3: Correct cyclic gridsG18,18 of different equivalence
classes extended by knowledge transfer from correct cyclic
grids G16,16 calculated within a period of 60 days and the
results of the same experiment applied to the extension of
cyclic gridsG15,15 to cyclic gridsG17,17.

days G16,16 G18,18 G15,15 G17,17

2 9,900 0 1,455,000 0
4 20,000 0 2,960,000 0
6 31,500 4 4,435,000 0
8 41,700 8 6,030,000 0

10 51,400 24 7,625,000 0
12 62,900 32 9,255,000 0
14 75,000 44 10,940,000 0
16 87,000 52 12,580,000 0
18 98,000 60 14,390,000 0
20 111,300 85 16,150,000 0
22 123,700 92 17,320,000 0
24 137,900 112 18,870,000 0
26 149,300 116 20,195,000 0
28 162,000 120 21,800,000 0
30 173,900 120 23,200,000 0
32 187,000 120 24,355,000 0
34 198,300 124 25,630,000 0
36 210,500 136 27,005,000 0
38 224,500 148 28,335,000 0
40 238,400 152 29,645,000 0
42 250,400 152 30,905,000 0
44 262,500 164 32,080,000 0
46 274,100 164 33,520,000 0
48 284,500 172 35,045,000 0
50 297,500 180 36,600,000 0
52 309,800 188 37,880,000 0
54 322,300 192 39,310,000 0
56 334,600 192 40,705,000 0
58 345,600 192 42,290,000 0
60 357,200 208 43,970,000 0

4. For each solution found in step 3 create a SAT-
instance based on the cyclic Boolean encoding
shown in Figure 5 (a) for the gridG18,18 and ex-
tend this SAT-instance by constant clauses of one
solution found in step 3.

5. Solve the logically restricted SAT-instances which
were created in step 4.

We run an experiment over 60 days and found that
208 of 43,970,000 cyclic rectangle-free gridsG15,15
can be extended to cyclic rectangle-free gridsG17,17.
The the last two columns of Table 3 show the details
of this experiment. It can be concluded that

Using a slightly changed knowledge transfer ap-
proach it can be verified whether this statement is true
for quadratic grids with an odd number of rows and
columns. We describe this adopted approach for the
most interesting case of the knowledge transfer from

the correct cyclic solution of the gridG15,15 to check
for cyclic solutions of the gridG17,17.

1. Create a SAT-instance using the cyclic Boolean
encoding shown in Figure 5 (b) for the gridG15,15.

2. Frozen the rotation of the SAT-instance of step 1
by two clauses fora3 = 0 anda4 = 0 (the vari-
ablea1 anda2 describe the center element, do not
contain rotation information, and must not be used
explicitly in the SAT-formula).

3. Calculate all solutions of the SAT-instance of step
2.

4. For each solution found in step 3 create a SAT-
instance based on the cyclic Boolean encoding
shown in Figure 5 (b) for the gridG17,17 and ex-
tend this SAT-instance by constant clauses of one
solution found in step 3.

5. Solve the logically restricted SAT-instances which
were created in step 4.

We run a similar experiment again over 60 days
and found that none of 357,200 cyclic rectangle-free
grids G16,16 can be extended to cyclic rectangle-free
grids G18,18. A conjecture of this experiment is that
no correct cyclic rectangle-free 4-coloring for the grid
G17,17 exists. The rationale of this conjecture is that
the central element of the gridG17,17 originates with
8 values 1 in the middle row and the middle column
fixed parts of possible rectangles which restrict the as-
signment of values 1 strongly. In the apparently more
complicated gridG18,18 these values 1 can be chosen
within the quadruples such that no restriction com-
monly with the 1 value of the central four grid posi-
tions originates.

It should be mentioned that the knowledge transfer
can be utilized recursively for all levels of a cascade
of quadratic grids of either an even number or an odd
number of rows and columns. The benefit in terms
of runtime depends on the ratio between the time to
solve the next smaller grid and the time for the trans-
fer of the knowledge .

6 COMPARATIVE STUDY

Many scientists all over the world tried to solve the
four-valued rectangle-free gridG18,18 but all of them
failed due to the extreme complexity of the problem.
For that reason we cannot compare our results with
solutions of other scientists but must refer to our own
solutions.

The description of the significantly simpler prob-
lem of the gridG17,17 on the web page (Fortnow and
Gasarch, 2009) and more than 150 comments about
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failed approaches in the period of time from 2009
to 2012 confirm our scientific progress. In Febru-
ary 2012 we published our found solution for the grid
G17,17 on the web page (Fortnow and Gasarch, 2012)
and announced that we solved even the extremely
more complex gridG18,18. At this time our paper
(Steinbach and Posthoff, 2012a) about the solution of
theG18,18 was accepted.

In this ICAART-2013 paper we suggested two ad-
vanced creative approaches and reached the following
improvements.

1. The reduced cyclic Boolean angle encoding al-
lows to solve the four-valued rectangle-free grid
G18,18 using only 162 Boolean variables and re-
duces the required runtime to 46.23 percent.

2. Using the approach of the knowledge transfer we
found 256 four-valued rectangle-free gridG18,18
of different equivalence classes within 71 days,
which reduces the average runtime for each of
these solutions to 11.29 percent.

7 CONCLUSIONS

We explored in this paper the so far unsolved problem
whether the gridsG17,17, G17,18, G18,17, andG18,18 are
rectangle-free 4-colorable. Our study has shown that
the fraction of 4-colorable grids of the size 18× 18
is extremely small. Hence, finding a rectangle-free
4-colored gridG18,18 out of the unimaginably large
number of 1.16798∗10195of all possible assignments
of 4 colors is significantly more difficult than detect-
ing a single electron within the whole universe and
requires both AI and creativity.

Our suggested advanced approaches for strong
complex problems are:

• the utilization of problem specific constraints by a
fitting special encoding,

• the knowledge transfer from simpler subtasks in
order to restrict the remaining search space.

In the special case of the explored edge coloring
our suggested cyclic Boolean angle encoding allows
to reduce the number of Boolean variables again to
one half from 324 to 162 for the gridG18,18 which
basically has required a model of 648 Boolean vari-
ables. For the same application the knowledge trans-
fer from subtasks reduces the effort to solve the next
more complex task strongly.
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