
Fault Tolerance through Interaction and Mutual Cooperation
in Hierarchical Multi-Agent Systems

Rade Stanković1 and Maja Štula2
1Communications, Media and Technology (CMT), Siemens d.d., Put Brodarice 6, 21000, Split, Croatia

2Department of Electronics, Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture in Split (FESB), R. Boškovića 32, 21000, Split, Croatia

Keywords: Fault Tolerance, Failure Handling, Multi-Agent Systems, Intelligent Agents, Agent Hierarchy.

Abstract: Multi-Agent Systems (MASs) are well suited for development of complex, distributed systems. In its
essence MAS is a distributed system that consists of multiple agents working together to solve common
problems. Failure handling is an important property of large scale MAS because the failure rate grows with
both the number of the hosts, deployed agents and the duration of agent’s task execution. Numerous
approaches have been introduced to deal with some aspects of the failure handling. However, absence of
centralized control and large number of individual intelligent components makes it difficult to detect and to
treat errors. Risk of uncontrollable fault propagation is high and can seriously impact the performance of the
system. Although existing research has been extensive, it still needs to attend the MAS failure handling
problem in all its aspects, which makes this topic very interesting. We propose a concept of agent
interaction that enables any hierarchical MAS to become fault tolerant, regardless of the used agent
framework.

1 INTRODUCTION

Employment of intelligent agents in distributed
systems incorporates concepts from both Artificial
Intelligence (AI) and Comuter Science (CS). From
the Computer Science perspective agent can be
described as a peace of code, that when executed has
data and state (Tanenbaum and Steen, 2002). From
the Artificial Intelligence point of view, agents are
defined as executable software entities with varying
degrees of intelligence, autonomy and ability to
communicate to each other in order to solve
common problems (Bellifemine et al., 2007);
(Rudowsky, 2004). Agent oriented paradigm is the
appropriate practice for modelling, design and
implementation of complex and distributed software
systems (Jennings, 2001). Agents execute inside
execution environment or agent framework that
controls agent’s life cycle and provides necessary
mechanism for agent’s execution. Agent is capable
of flexible, autonomous action in that environment
in order to meet its designer objectives (Bellifemine
et al., 2007); (Wooldridge, 1997).

When single agent is incapable of solving a
problem, due to its limited capability or knowledge,

agents join together forming distributed loosely
coupled network to solve their problems. Such
community is called Multi – agent system (Sycara,
1998). In MAS task is decomposed, sub-tasks are
divided among agents, and agents interact with each
other. MAS is applicable in a wide range of
problems, such as information retrieval
(Punithavathi and Duraiswamy, 2010), mobile
telecommunication networks (Jurasovic et al., 2009),
power supply management (Yang et al., 2006)
(Zhang et al., 2004), space exploration and other
(Rudowsky, 2004).

Agents and their resources may become
unavailable due to the machine crashes,
communication breakdowns, process failures, and
numerous other hardware and software failures
(Fedoruk and Deters, 2002). Significant part of the
research effort regarding MAS failure handling is
oriented towards increasing the robustness and
failure resistance of agents themselves (Mitrović et
al., 2010). In today’s connected world where quality
of service is of extreme importance and level of
service is formally defined through Service Level
Agreements (SLA) (Anon, 2002), a system is called
a high – assurance system, when heterogeneous and

337Stanković R. and Štula M..
Fault Tolerance through Interaction and Mutual Cooperation in Hierarchical Multi-Agent Systems.
DOI: 10.5220/0004182003370344
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART-2013), pages 337-344
ISBN: 978-989-8565-38-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

changing requirement levels of the Quality of
Service (QoS) are satisfied (Ahmad et al., 2001)
(Ahmad et al., 2003). High assurance of service in
distributed multi – agent systems is a key feature for
its successful deployment.

Despite considerable efforts spent on developing
multi – agent systems, actual number of deployed
systems is not nearly as large; one of the main
reasons for that are failure handling issues, which
make MASs very brittle (Briot and Ghédira, 2003).
Techniques used in traditional distributed
architectures are often static, require special
infrastructural support and restrict functionality of
agent frameworks (Kumar and Cohen, 2000). When
a fault occurs in MAS, interactions between the
agents may cause the fault to spread throughout the
system in unpredictable ways (Almeida, et al.,
2006). This is extremely undesirable in critical
applications, where the occurrence of a fault may
cause the loss of lives, delays in the products
manufacturing process (business loses) or
suboptimal resource utilization.

In this paper, we introduce our solution to
building reliable MAS. It is based on the agent
interaction that enables fault tolerance in the
hierarchical MAS regardless of an agent framework
used; unlike other solutions that are framework
dependent (Almeida et al., 2006), (Faci et al., 2006),
(Helsinger et al., 2004). We introduce special class
of agents, called Arbiters, that help ordinary working
agents recover in case of faults. Our approach relies
on agent communication and cooperation to enable
successful fault recovery.

The remainder of this paper is organized as
follows. In Section 2 we provide an overview of the
related work. Section 3 describes our approach to
building the fault tolerant multi – agent system.
Section 4 shows comparative simulation results.
Finally, Section 5 summarizes our approach and on-
going work.

2 RELATED WORK

Research on the agent based failure handling has
been extensive; it can be classified to a failure
handling by individual agents within an agent
framework and a failure handling by an agent
framework (Figure 1). In this overview we will
show different researchers approaches used to tackle
failures in agent based systems, their key features
and weaknesses.

Failure handling by individual agents within the
agent framework is reported in the following works.

Kumar et al. propose fault tolerance (FT)
architecture based on agent brokers. (Kumar et al.,
2000). Approach arranges brokers in hierarchical
teams, which are then used for communication and
coordination among agents. Fault tolerance mostly
concentrates on the fault tolerance of brokerage team
and not on individual agents doing actual work.
Proposed architecture requires extra computing for
the management of brokerage layers.

Proxy based approach is proposed by Fedoruk et
al., in which a proxy transparently handles the
replication group based on predefined policies
(Fedoruk and Deters, 2002). The proxy is nothing
more than a computational entity, which provides
interface to a set of agent replicas. This approach
suffers from the centralized bottle neck by proxy
itself and only concentrates on replicating agents of
a multi - agent system. It is more costly in terms of
forming replication groups of all the agents in a
multi - agent system. The approach also lacks
reusability in particular concerning the replication
control.

Xu et al. address fault detection techniques
proposed in (Xu and Deteis, 2005), (Dellarocas and
Klein, 1999) by sending periodic events to agents
inspecting their state. Separate query language to
inspect agent state and action language to recover
agent in error are used. This kind of exception
handling requires periodic probing and is quite an
overhead on the system. Agent recovery is vaguely
described.

Varghese at al. propose an agent based approach
that handles single node failures for parallel
summation algorithms in computer clusters.
(Varghese et al., 2010) (McKee and Varghese,
2010). The agents intercommunicate across
computing nodes, when they detect failure they
move away from the faulty node notifying other
agents to stay away from the problematic node.
Solution is narrowly specialized and highly
dependent on accurate prediction; in case of
unpredicted failure calculations must be done again.

Failure handling by the agent framework is
focused on maintaining highly available MAS that
can withstand numerous agent, hardware and
network failures is reported in the following works.
First we will look at researches focused on ensuring
failure handling using agent replication. The
simplified idea behind these techniques is to keep
multiple copies of an agent, distributed across a
number of nodes. In case the original agent fails, one
of the copies automatically takes over its task
execution process. Approaches evolve on how to
define critical agents that should be replicated to

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

338

minimize usage of system resources. FATMAS
methodology introducing guidelines for the analysis
and the design of fault – tolerant MAS is proposed
by Mellouli et al. (Mellouli et al., 2004). Moreover,
it provides guidelines for an agent and task
replication, which enables reduction in the
replication cost. However, the approach addresses to
closed MAS; agent criticality is defined at design
time, meaning replication is static. Almeida et al.
(Almeida et al., 2006), (Marin, 2003) report the
implementation of the Dynamic Agent Replication
Extension (DARX), a failure handling agent
framework. In this model, failure handling is
performed by replicating those agents that are
critical to the system and whose future plans could
influence other agents in the system. Agent’s
criticality is dynamically evaluated by revising
agent’s plans and roles. Faci et al. introduced agent
framework based on DARX named DimaX (Faci et
al., 2006). It uses interdependence graphs for
evaluating the significance of every agent in the
system, and uses DARX to accordingly maintain an
optimum number of replicas (process known as
adaptive replication). The system also employs host
monitors, low-level agents that try to perform early
detection of failures and inform all interested parties
about the problem in a timely manner. This would,
for example, allow an agent and its replicas to leave
the troubling environment, or to move important
data from it. At the basis of the monitoring is a
heartbeat technique, used by the agents in the system
to indicate their valid operational status to each
other. When determining agent criticality, no
guarantee is given that the agent is truly critical, it
can only seem critical to the system; monitoring
technique provides extra communication overhead.

In the MAS fault handling research focus is not
only the agents. Helsinger et al. propose Java-based
architecture for the construction of large-scale
distributed agent based applications named Cougaar
(Helsinger et al., 2004). Cougaar is designed to be
continuously available and degrades gracefully when
its components get disconnected or damaged. Agent
is viewed as a set of problem solving behaviours
interacting via traditional blackboards with standard
publish/subscribe semantics. If an agent is unable to
contact a member of its community it can send a
health alert message to a health monitor agent,
which is responsible for the recovery of agents.
Recovery can be done in two ways; either by
retrieving an appropriate community state needed to
pursue the problem solving or by rejoining the failed
agent to its community which has begun a new
problem solving stage. Approach is adaptable,

however lacks compliance to the standard and is
extremely complex; no guarantee is given that the
MAS will correctly pursue its goals after agent
failures e.g. failures can cause deadlocks and other
problems.

Khan et al. propose approach based on
decentralized architecture (Khan et al., 2005).
Virtual agent cluster (VAC) is an abstraction which
provides scalable transparency among all the
distributed machines over which the agent platform
is deployed. It enables seamless agent migration and
communication between different machines in the
virtual cluster. This approach introduces load
balancing and agent platform fault tolerance in
distributed MAS, meaning even if one machine in
platform is operational, MAS is stable and the agents
can execute. Agent states are preserved using
persistence which is resource costly; after agents are
restored, they rejoin community which can have
different state then when the agent failed. This issue
is not resolved.

Failure handling by agent framework offers fault
handling features of certain quality and is applicable
for some fault scenarios, but at the same time it
neglects some other features of agent framework and
introduces large degree of complexity. As a
consequence interoperability between heterogeneous
multi – agent systems is difficult if not impossible to
realize (D. Mitrović et al., 2011); (Suguri et al., 2002).

Figure 1: Failure handling classification.

3 COOPERATIVE FAULT
TOLERANCE

We propose cooperative fault tolerance (CFT)
solution that can easily be included into any existing
agent framework. Unlike other approaches, we do
not base our solution on replication (Mellouli et al.,
2004), (Deters et al., 2002), (Almeida et al., 2006)

Fault�Tolerance�through�Interaction�and�Mutual�Cooperation�in�Hierarchical�Multi-Agent�Systems

339

or complex framework implementation (Faci et al.,
2006), (Helsinger et al., 2004); instead our approach
uses agent cooperation to enable fault tolerance in
the hierarchical MAS. Agents in the MAS can
organize differently to solve problems (Mladenović,
2011). Our solution focuses on the hierarchical
MAS. Hierarchy is crucial part of many complex
systems (Ravasz et al., 2003). It is an arrangement of
items (objects, names, values, categories, etc.) in
which the items are represented as being “above,”
“below,” or “at the same level” as other items. This
type of organization prevails in big complex systems
like companies, governments, cosmology, religions
and technical systems (Ravasz et al., 2003) (Torrel
et al., 2007). Organization of MAS can be displayed
with a graph; graph consists of two types of
information: vertices (nodes) and edges (connections
that display node interaction) (Wilson, 1990).
Hierarchy can be represented with a tree graph; a
tree is an undirected graph in which any two vertices
are connected by exactly one simple path. In other
words, any connected graph without cycles is a tree
(Wilson, 1990).

Our solution divides agents into two categories:
worker agents (Workers) and arbiter agents
(Arbiters). Workers represent typical agents in a
MAS that solves different user tasks (Bellifemine et
al., 2007) (Rudowsky, 2004). Worker does
everything in its power to solve the given task; if it
is incapable of solving the problem due to its limited
capability or knowledge, it organizes into hierarchies
and communicates with other agents to solve it.
Arbiters are committed to solving failures that occur
when Worker agent/s fail. To maximize resource
utilization initially only few instances of Arbiters
exist. Main instance is called “Distributor” which
receives initial error notification from Worker agents
and forwards those to the specific Arbiter dedicated
to resolve that specific agent failure. Each arbiter is
dedicated to solving a single problem. Distributor is
also in charge of maintaining optimal number of
Arbiters. If there are more failures than free Arbiter
agents, it creates additional agents. Once the failures
are resolved Distributor disposes of additional
arbiter agents, maintaining original number of
arbiters in a failure free system. In case of the
Distributor failure, first Arbiter that registers its
failure notifies other Arbiters via multicast message
and takes it place. New Distributor then builds up
the list of available Arbiters and their tasks,
completing the transition process. Only agent that is
not protected by our approach is the root agent
which can be protected by the basic replication
approach. For example, let us define hierarchical

MAS as the graph G = {r, w, x, y, z} where vertices
are related in such a way that the r is the root node;
w, x are its child nodes and y, z nodes are the
children of x (Figure 2).

Figure 2: MAS hierarchy structure.

Let us define set of attributes that accurately
describe node tasks with the list of ordered triple:
(<'name1', 'task1', 'solution1'>, <'name2', 'task2',
'solution2'>...). For agent represented by node x
original attribute (task) received from its parent is
defined as	ܽܺݎݐ௢௥௜௚. Original task is defined as
set T={atrX1,atrX2,atrX3}; atrX1 and represents task
that agent x has to do itself. atrX2	and atrX3
represent tasks forwarded to agents y and z
respectively. Algorithm that splits task into subtasks
can be defined as function	 f:T→S that is invertible,
meaning there is a function ݃ with domain ܵ and
range	ܶ, with the property: fሺtሻ=s if and only
if gሺsሻ=t; this is important so that agent can check
consistency when recreated. Tasks and sub tasks
have hierarchical organization.

Relation ܴ, which binds set of sub tasks into the
original task (Johnson, 2009) exists. To prove that ܴ
binds set of sub task into the complex task we
define relation as: R:൛ atrX1,atrX2,atrX3ൟ →
 <atrX1,atrX2,atrX3;atrXorig;R>. This relation can
be displayed via hierarchical cone, where the base of
the cone is formed by sub tasks while the tip of the
cone represents main task atrXorig. If sub task level
is defined	Level (atrXi), then we can write
Level ሺatrXIሻ < Level ൫atrXorig൯ ∀ atrXI, meaning
that the task cannot be part of the sub task. This
principle defines absolute measure of difference
between levels in complex systems. Basic operations
on the nodes of the graph (insert, delete) are defined
as:

Insert(y, tasklist
(<'name1','task1','solution1'>,
<'name2','task2','solution2'>...),
x)

This command inserts node y. If the node does
not exist, it creates the node with appropriate
attributes. First attribute in the list represents
original task. If the node exists, new attributes
overwrite old ones and connection is made to the
parent node x.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

340

Delete(y, tasklist, x)

This command deletes mentioned attributes and
relation between node y and its parent x. If no
attributes are mentioned, only relationship between
nodes is removed. If no attributes are mentioned and
parent node is mentioned, then node y is deleted
with all its attributes and relation to its parent.

In the case of error Arbiters are used to repair
agents in error. Let us suppose that the agent x fails
and its child agent y detects that while returning a
result of its task. Arbiter Ar is assigned to solve the
problem, it collects information about agents aware
of agent x and their attributes. Now Arbiter Ar has
all data necessary to recreate agent x.

We can define attributes that Arbiter Ar collected
as atrAr={atrXorig,atrX2,atrX3}. Worker x is
recreated with agents sub tasks mapped to the
appropriate existing child agents. Sub task that is
missing is atrX1 and agent assigns it to itself.
Because of this, recreated node x will reuse result of
child Workers y and z; only sub task atrX1 will be
redone, if it was completed, if it was not completed,
it will be only executed once so no impact on
performance will occur. Operations that Arbiter can
do (find, recreate, notify) are defined as:

Findሺxሻ

This is a multicast message to which all agents in
relation to Worker x will answer. Arbiter a will
collect the list of Workers x was related to, its
original tasks and sub tasks and forwarded it to its
children.

Recreate(x,tasklist
(<'name1','task1','solution1'>,
<'name2','task2','solution2'>...),
agentlist(r,y,z))

This command recreates node x as a child node
of r and as a parent node of nodes y and z with set of
attributes that accurately describe the node tasks.
First attribute in the attribute list represents original
task, first node in the node list represents parent
node.

Notify(x)

This is multicast message that notifies all agents
in relation to x that the Worker x is recreated and
running. Timing of the error can be a crucial factor
that diminishes benefits of this approach. Let us get
back to Figure 2 and suppose that Workers y and z
finished their task and returned result to their parent
node; x finishes its calculation and fails at exact that
time. If we do not do anything, Workers x, y and z
would be recreated and all tasks redone. To tackle

this problem we propose result parsing mechanism.
After task is completed result is passed up in the
hierarchy. Each agent in the hierarchy has a memory
buffer in which it stores results received from its
children, grandchildren and so on. Result parsing has
its benefits in following scenarios: providing extra
tolerance to multiple failures in the same branch of
the execution tree and quick recovery of the parent
whose children completed work without extra
calculation. When agent y and z finish and report
their results, data is stored in their parent x but also
grandparent r and if needed further up the hierarchy.
With result parsing if Worker x fails after its
children reported the results there is no problem,
since y and z results are stored in Worker r. Worker
r notices that x is in error and notifies Arbiter agent.
Worker x is restored as before but in the restore
command are also results from workers y and z.
Worker x then combines result from Workers y and
z, does its task and returns result to its parent r.
Parsing operation is defined as:

Parse(x,tasklist
(<'name1','task1','solution1'>),
, y)

Worker x uses this command to parse data from

node y forward up the hierarchy.

4 TESTING AND EVALUATION

In this section we evaluate viability of CFT solution
in comparison to the basic no fault tolerant scenario
and to the active replication DARX like framework.
Simulations where created using NetLogo, a multi –
agent programmable modelling environment, used
for simulating natural and social phenomena.
NetLogo is particularly well suited for modelling
complex systems developing over time. Modellers
can give instructions to hundreds or thousands of
"agents" all operating independently (Wilensky,
1999). This makes it possible to explore the
connection between the micro – level behaviour of
individuals and the macro – level patterns that
emerge from their interaction.

Simulations were comprised in such a way that
they test solutions through the whole working
envelope by varying task complexity and error
probability; the more complex the task the longer
simulation will run (e.g. length 80 means that
simulation will divide task into sub tasks for 80
consecutive steps, task complexity is greater and
total number of agent increases. Simulation lasts for
much longer than length of division, until final result

Fault�Tolerance�through�Interaction�and�Mutual�Cooperation�in�Hierarchical�Multi-Agent�Systems

341

Figure 3: Basic no FT solution, data for various simulation length and error probability.

Figure 4: DARX like replication solution, data for various simulation length and error probability.

Figure 5: CFT solution, data for various simulation length and error probability.

is returned to the user). For every solution baseline
information was obtained by running the simulation
with no errors for various task sizes.

For each algorithm/complexity pair ten
simulation runs where performed; average values for
each run are presented. Numerous parameters where
monitored, but the focus of our tests were on the
total message count (network load) and total number
of calculations done (CPU load). Those parameters
where selected as they represent most significantly
load on the system.

Total number of messages exchanged in the
system is sum of real messages needed for normal
task execution and helper ones needed for failed task
recreation, fault tolerance and replication if it is
used. Total number of calculations done by the
system is sum of normal calculations done by

agents, extra calculation done when node fails and
extra calculation done by replicated nodes if
replication is used.

For the no FT solution (Figure 3) situation is
quite straightforward; number of messages and
calculations grow as the number of agents needed to
solve the task grows; as the error probability
increases, so does the number of messages and
calculations. This is the most efficient scenario when
there are no errors in the system, but even the
slightest error probability sky rockets number of
extra messages and calculation, stressing importance
of the fault tolerant solution.

Results for replication solution are shown in
Figure 4; we simulated DARX like active replication
mode using available sources (Almeida et al., 2006),
(Marin, 2003) for reference to make the simulation

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

342

results more accurate. It is important to notice that
the message and calculation count has only the slight
increase regardless of error probability, remaining
pretty much the same throughout the increase of task
complexity. This solution excels over the basic no
FT solution in all except “no error” scenario.

Proposed CFT solution results are shown on
Figure 5. Our solution excels over the no FT
solution. In no error scenario our solution has a
bigger message count than no FT scenario because
of extra parsing messages, while number of
calculations is the same meaning our approach does
not waste processor time; As the error probability
increases our solution achieves on average five times
less number of calculations, for all group sizes than
no FT scenario. Our message count results are
comparable to the DARX like active replication
solution (slightly better for all but the largest task
complexity). Comparing number of calculations our
solution excels over results achieved by active
replication solution, number of calculations are two
times lower for all group sizes and error
probabilities.

5 CONCLUSIONS

Multi-Agent Systems are well suited for
development of complex, distributed systems;
therefore usage of the MAS is expected to grow in
the future. Fault tolerance is an important property
of large scale MAS which enables successful
application of the system. In recent years a lot of
research has been done addressing specific aspects
of fault tolerance, however none of the proposed
solutions gives a complete coverage of the problem
leaving a lot of opened areas for new approaches and
improvements. After extensive overview of the
available FT solutions in section 3 we proposed a
novel solution for creating fault tolerant MAS.
Proposed solution can be used as a set of
implementation guidelines that enable its application
to any agent framework, providing that agents form
hierarchies when solving problems. Our approach
enables: easy substitution of agent in error by
replacement agent, preservation of child agent’s
data so no extra work is necessary. This enables
MAS to recover quickly and without wasting
valuable system resources, ensuring that agents
continue to pursue their goals fast and correctly.

In section 4 we provided extensive simulation
and compared results between our solution, basic no
FT scenario and active replication solution. We
focused on the two main parameters that represent

most significantly load on the system, calculation
count (CPU load) and message count (network
load). Simulation results show advantages of our
solution and proves that our solution enables
performance light FT for hierarchical MAS
regardless of agent framework. We should point out
the fact that our solution is easy to implement in any
existing or future MAS regardless of framework in
use while most of other FT solutions have high
degree of complexity and are often related to
specific agent framework. This means that
complexity and ease of use should be important
factor in any future comparisons.

Further research is directed to free our solution
from its limited usage to MAS that form hierarchies
while solving problems. This would enable the
solution to be used in any type of MAS. Basic idea
behind this direction is to use peer-to-peer (P2P)
communication between unrelated agents in the MAS,
so agents can save their state among their peers. In the
case of error Arbiters can recreate agent in error with
the help of data stored at its peers. To successfully
improve current solution we must overcome number
of challenges. Most prominent of them is the optimal
usage of P2P communication so the system would not
suffer performance degradation due to the intensive
messaging. Second challenge is to develop viable
incentive model that will encourage agents to give up
part of their resources for unrelated peers pursuing
unrelated goals. Third challenge is to ensure that the
solution has distinct advantage over other FT
solutions in parameters that we see as relevant in the
MAS now (CPU load, network load, overall
complexity and ease of use) and others that we may
include in the future.

REFERENCES

Ahmad, H. F., Sun, G. and Mori, K., 2001. Autonomous
Information Provision to Achieve Reliability for Users
and Providers. s.l., IEEE Proc. of the Fifth International
Symposium on ADS (ISADS01), pp.65-72.

Ahmad, H. F., Sun, G. and Mori, K., 2003. Dynamic
Information Allocation Through Mobile Agents to
Achieve Load Balancing in Evolving Environment. s.l.,
IEEE Proc. of the Sixth International Symposium on
ADS (ISADS03), pp.25-33.

Almeida, A. d. L., Aknine, S., Briot, J.-. P. and Malenfant,
J., 2006. Plan-based replication for fault-tolerant
multi-agent systems. s.l., Proceedings of the 20th IEEE
International Parallel and Distributed Processing
Symposium.

Anon., 2002. SLA Information Zone. [Online] Available

at: http://www.sla-zone.co.uk/ [Accessed June 2011].

Fault�Tolerance�through�Interaction�and�Mutual�Cooperation�in�Hierarchical�Multi-Agent�Systems

343

Bellifemine, F. L., Caire, G. and Greenwood, D., 2007.
Developing multi-agent systems with JADE. s.l., John
Wiley & Sons, Inc..

Briot, J.-P. and Ghédira, K., 2003. Déploiement des
systemes multi-agents. s.l., Revue des Sciences et T
echnologies de l’Information, hors série/JFSMA 2003.

D.Mitrović, Ivanović, M., Budimac, Z. and Vidaković, M.,
2011. An overview of agent mobility in heterogeneous
environments. s.l., Proceedings Of The Workshop On
Applications Of Software AgentS.

Dellarocas, M. and Klein, C., 1999. Exception Handling in
Agent Systems. s.l., Proceedings of the Third
International Conference on Autonomous Agents,
Seattle, WA.

Faci, N., Guessoum, Z. and Marin, O., 2006. DimaX: a fault-
tolerant multi-agent platform. s.l., In Proceedings of the
2006 international workshop on Software engineering for
large-scale multi-agent systems, pp. 13- 20.

Fedoruk, A. and Deters, R., 2002. Improving fault-
tolerance by replicating agents. s.l., In Proc. AAMAS-
02, pp. 737-744, Bologna.

Helsinger, A., Thome, M. and Wright, T., 2004. Cougaar:
a scalable, distributed multi-agent architecture. s.l., In
Preccedings of International Conference on Systems,
Man and Cybernetics pp. 1910–1917.

Jennings, N. R., 2001. An agent based approach for
building complex software systems. s.l.,
Communication of the ACM, 44(4) pp. 35-41.

Johnson, J., 2009. Hypernetworks of Complex Systems;
Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications
Engineering. Complex Sciences, 4(pp. 364-375).

Jurasovic, K., Kusek, M. and Jezic, G., 2009. Multi-agent
service deployment in telecommunication networks.
s.l., In Agent and multi-agent systems: technologies
and applications, LCNS Springer Berlin / Heidelberg,
pp. 560 — 569,.

Khan, Z. et al., 2005. Decentralized architecture for fault
tolerant multi agent system. s.l., In Proc. of Autonomous
Decentralized Systems (ISADS), pp. 167-174..

Kumar, S. and Cohen, P., 2000. Towards fault-tolerant
multi-agent system architecture. s.l., In proceedings of
the fourth international conference on Autonomous
agents, pp459 – 466.

Kumar, S., Cohen, P. R. and Levesque, H. J., 2000. The
adaptive agent architecture: Achieving fault-tolerance
using persistent broker teams. s.l., In Proceedings of
the 4th International Conference on Multi-Agent
Systems, Boston, MA.

Marin, O., 2003. The DARX Framework: Adapting Fault
Tolerance For Agent Systems. s.l.:THÈSE DE
DOCTORAT DE L’UNIVERSITÉ DU HAVRE.

McKee, B. and Varghese, G., 2010. Exploring Carrier Agents
in Swarm-Array Computing. s.l., Scalable Computing:
Practice and Experience, Volume 11, pp. 53–62.

Mellouli, S., Moulin, B. and Mineau, G., 2004. Towards a
modelling methodology for fault-tolerant multi-agent
systems. s.l., In Informatica Journal 28, pp. 31–40.

Mitrović, D., Budimac, Z. and Vidaković, M., 2010.
Improving Fault-Tolerance of Distributed Multi-Agent

Systems with Mobile Network-Management Agents.
s.l., Proceedings of the International Multiconference
on Computer Science and Information Technology pp.
217–222.

Mladenović, S., 2011. Interoperability in hierarchical and
heterogeneous systems. s.l.:Doctoral thesis, Faculty of
Electrical Engineering, Mechanical Engineering and
Naval Architecture in Split.

Punithavathi, R. and Duraiswamy, K., 2010. A fault tolerant
mobile agent information retrieval system. s.l., In
Journal of computer science, Vol. 6, pp. 553 - 556.

Ravasz, E. and Barabási, A. L., 2003. Hierarchical
organization in complex networks. 67(2).

Rudowsky, I., 2004. Intelligent Agents. New York,
Proceedings of the Americas Conference on
Information Systems, New York.

Suguri, H., Kodama, E., Miyazaki, M. and Kaji, I., 2002.
Assuring Interoperability between Heterogeneous
Multi-Agent Systems with a Gateway Agent. s.l.,
Proceedings of the 7th IEEE International Symposium
on High Assurance Systems Engineering.

Sycara, K. P., 1998. Multiagent Systems. s.l., AI
Magazine, American Association for Artificial
Intelligence.

Tanenbaum, A. S. and Steen, M. v., 2002. Distributed
Systems: Principles and Paradigms. Upper Saddle
River, New Jersey 07458: Prentice Hall.

Torrel, J.-.C., Lattaud, C. and Heudin, J. -. C., 2007.
Complex Stellar Dynamics using a hierarchical
multi-agent mode. Erice, Italy, Modelling and
simulation in science, Proceedings of the 6th
International Workshop on Data Analysis in
Astronomy pp.307-312.

Varghese, B., McKee, G. and Alexandrov, V., 2010.
Handling single node failures using agents in
computer clusters. s.l., International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems (SPECTS).

Wilensky, U., 1999. NetLogo Home Page. [Online]
Available at: http://ccl.northwestern.edu/netlogo/
[Accessed 06 May 2012].

Wilson, R. J., 1990. Graphs and heir use. s.l.:New
Mathematical Library.

Wooldridge, M., 1997. Agent based Software Engineering.
s.l., IEE Proceedings of Software Engineering 144, pp:
26-37.

Xu, P. and Deteis, R., 2005. Fault Management in Multi
Agent Systems. s.l., In Proceedings of Symposium on
Applications and the Internet.

Yang, Z. et al., 2006. A multi-agent framework for power
system automation. s.l., In International journal of
innovations in energy systems and power, Vol. 1, No. 1.

Zhang, Z., McCalley, J. D., Vishwanathan, V. and
Honavar, V., 2004. Multiagent system solutions for
distributed computing, communications, and data
integration needs in the power industry. s.l., In
Proceedings of the General Meeting of the IEEE
Power Engineering Society, IEEE Press, pp. 45 - 49.

ICAART�2013�-�International�Conference�on�Agents�and�Artificial�Intelligence

344

