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Abstract: Latent Semantic Analyis (LSA) consists in the use of SVD-based dimensionality-reduction to reduce the high
dimensionality of vector representations of documents, where the dimensions of the vectors correspond simply
to word counts in the documents. We show that that there are two contending, inequivalent, formulations of
LSA. The distinction between the two is not generally noted and while some work adheres to one formulation,
other work adheres to the other formulation. We show that on both a tiny contrived data-set and also on a more
substantial word-sense discovery data-set that the empirical outcomes achieved with LSA vary according to
which formulation is chosen.

1 INTRODUCTION

Latent Semantic Analyis (LSA) is a widely used
dimensionality-reduction technique. Section 2 re-
calls the matrix properities upon which LSA is based
and then section 3 gives details of two different
dimensionality-lowering transformations which may
be based on those properites, which we will term the
R1 andR2 representations, and we argue that there is
ambiguity in the literature as to which representation
is intended. Section 4 then shows empirical outcomes
which vary with the adopted formulation.

2 SINGULAR VALUE
DECOMPOSITION

Latent Semantic Analysis (LSA) is based theoreti-
cally and algorithmically on Singular Value Decom-
position (SVD) properties of matrices. The first con-
cerns the existence of a particular decomposition, a
property expressible as the following theorem.1

Theorem 1(SVD). if m×n matrixA has rank r, then
it can be factorised asA = USV′ where:

1. U has the eigen-vectors ofA ×A′ for its first r
columns, in descending eigen-value order; these
columns are orthonormal.

1This follows closely Theorem 18.3 of (Manning et al.,
2008).

2. S has zeroes everywhere, except its diagonal
which has the square roots of the r distinct eigen-
values ofU, in descending order, then 0.

3. V has the eigen-vectors ofA′ × A for its first
columns, in descending eigen-value order; these
column are orthonormal.

Without loss of generality once can assume the di-
mensions of the matrices are:

U : m× r, S : r × r, V : n× r

The second essential fact is that the SVD can be
used to derive optimum2 low-rank approximations of
the orginalA, by truncating the SVD ofA to use just
the firstk columns ofU andV as follows (see again
(Manning et al., 2008))

Theorem 2(Low rank approximation). If U×S×V′

is the SVD of A, then̂A = Uk×Sk×V′
k is a optimum

rank-k approx ofA where

1. Sk is diagonal with top-most k values fromS.
2. Uk is just first k columns ofU.
3. Vk is just first k columns ofV.

Uk×Sk×V′
k can be termed the ’rankk reduced SVD

of A’.

The HCI/Graph Example. Figure 1 shows a 12×9
term-by-document matrix,A (ie. rows ofA express
terms via their document occurrence, columns ofA
express documents via their term occurrence). This

2Optimality being defined as minimising the sum of
squares of corresponding matrix positions.
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A = Uk = Sk = Vk =





































c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 0 0 1 0 0 0 0 0
inter f ace 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0

user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0

respones 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0

survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minor 0 0 0 0 0 0 0 1 1









































































0.22 −0.11
0.20 −0.07
0.24 0.04
0.40 0.06
0.64 −0.17
0.27 0.11
0.27 0.11
0.30 −0.14
0.21 0.27
0.01 0.49
0.04 0.62
0.03 0.45
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0.20 −0.06
0.61 0.17
0.46 −0.13
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0.28 0.11
0.00 0.19
0.01 0.44
0.02 0.62
0.08 0.53

























Figure 1: A term-by-document matrixA, and the components matrices of its rank 2 reduced SVDUkSkV′
k.

term-by-document matrix is used in a number of arti-
cles by the originators of LSA. See (Deerwester et al.,
1990; Landauer et al., 1998). It is based on an artifi-
cial data set concerning two sets of article titles, one
about HCI (titles c1–c5), the other about graph theory
(titles m1–m4). The columns count occurrences of 12
chosen terms. ThisA has rank 9, and has a SVD de-
composition intoU×S×V′, whereU is 12×9, and
V is 9×9 . See p406 of (Deerwester et al., 1990).

Multiplying U, S andV′ gives backexactlyA. To
the right in Figure 1 the component matricesUk, Sk,
Vk of its rank 2 reduced SVD are given, wherebyÂ =
UkSkV′

k (see also p406 of (Deerwester et al., 1990)).

3 CONTENDING
FORMULATIONS OF LSA

LSA concerns using the SVD to make lower dimen-
sion versions of the columns ofA (or vectors like
these ie.m dimensional ’document’ vectors).

Whered is an m dimensional vector (such as a
column ofA), we contend that the literature has ba-
sically two contenders for its SVD-based reduced di-
mensionality version, contenders we shall termR1(d)
andR2(d).

Definition 1 (R1 andR2 document projections). If A
is m×n, andUkSkV′

k is its rank k reduced SVD, and
d is an m dimensional vector, then k-dimensional ver-
sions R1(d) and R2(d) are defined by

R1(d) = d×Uk (1)

R2(d) = d×Uk×S−1
k = R1(d)×S−1

k (2)

and if d is ith column ofA and V i
k is ith row of Vk

(ie. [V(i,1) . . .V(i,k)]) the above defintions are equiv-
alent to

R1(d) = V i
k×Sk (3)

R2(d) = V i
k (4)

That the alternative formulations in (3) and (4) are
equivalent to the formulations in (1) and (2), for the
case whered is a column ofA, is not immediately
apparent. You can show the equivalence of (3) and
(1), that is,d×Uk = V i

k×Swhend is theith column
of A starting from the defining SVD equationA =
USV′ as follows:

A′ = (USV′)′ = VSU′

hence A′U = VSU′U = VS
hence dUk = VkSk

The equivalence of (4) and (2), that is,d×Uk×S−1 =
V i

k whend is the ith column ofA, follows from the
equivalence of (3) and (1) by post-multiplication by
S−1

WhereA is am×n matrix, the matrixVk of its re-
duced SVD is an× k matrix. For the example shown
in Figure 1,Vk has exactly as manyrows(9) as there
were columnvectors representing documents in the
original term-by-document matrixA. Therein lies the
possibility to identify these rows ofVk as the reduced
representation of the columns ofA. The fact that (2) is
equivalent to (4) leads to the naturally accompanying
assumption that (2) –d×Uk ×S−1 – is the formula
for projecting an arbitrary document vectord.

On the other hand, whereA is am×n matrix, the
matrix Uk of its reduced SVD is am× k matrix, so
its columnsare of exactly the size for it to be possible
to take dot products with anmdimensional document
vector, as expressed in (1). For the example shown in
Figure 1 the columns of the matrixUk of A’s reduced
SVD are of size 12, the same as that of document vec-
tors. Additionally the columns ofUk are orthogonal
to each other and of unit length and thus theR1 for-
mulation is simply the projection onto a new set of
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orthogonal axes defined by the columns ofUk.
Ultimately the relationship between theR1 and

R2 formulations is a simple one of scaling:R2(d) =
R1(d)×S−1. However, since the entries on the diag-
onal ofSare not equal, such a scaling changes the es-
sential geometry. In particular, the nearest neighours,
or the set within a certain cosine range of a given vec-
tor d, is not generally preserved under a scaling. For
example, given a scaling which transformsx and y
according tox′ = x

2, y′ = y
8, the table below gives the

coordinates of 3 points before and after the scaling:

a (0,8) a′ (0,1)
b (4,8) b′ (2,1)
c (4,0) c′ (2,0)

and before the scalingb has nearest neighboura,
whilst afterwardsb′ has nearest neighbourc′, on both
the euclidean distance and cosine measures. Machine
learning methods for adapting distance measures are
often predicated on precisely this fact. In view of this,
the R1 formulation of LSA, as expressed by (1) and
(3) is genuinely different to theR2 formulation, as ex-
pressed by (2) and (4) and one should expectR1 and
R2 to give diverging outcomes when deployed within
a system. We contend that this has been overlooked.
To this end we will consider the work of a number
of authors, arguing that some are adhering to theR1
formulation and some to theR2 formulation.

The R2 formulation of LSA is one presented in
many, fairly widely cited, publications, for example
(Rosario, 2000; Gong and Liu, 2001; Zelikovitz and
Hirsh, 2001), the relevant parts of which are below
briefly noted.

In the notation of (Rosario, 2000), the reduced
rank SVD of thet × d, term-by-document matrix is
Tt×kSk×k(Dd×k)

T , with T andD used in place ofUk
andVk. This is described (p3) as providing a repre-
sentation in an alternative space whereby

the matrices T and D represent terms and doc-
uments in this new space

and additionally the repesentation of a query is given
(p4) asqTTt×kS

−1
k×k. Thus for pre-existing documents

and novel queries, this matches, modulo notational
switches, theR2 formulations of (4) and (2).

In the notation of (Zelikovitz and Hirsh, 2001), the
SVD of a t × d term-by-document matrix isTSDT .
The representation of a query, based on this SVD is
given as

a query is represented in the same new small
space that the document collection is repre-
sented in. This is done by multiplying the
transpose of the term vector of the query with
matrices T and S−1

Again modulo notational switches, this is theR2 for-
mulation of (2).

In the notation of (Gong and Liu, 2001), the SVD
of anm×n term-by-sentence matrix isUΣVT , and the
SVD is described as defining a mapping which (p21)

projects each column vector i in matrixA
. . . to column vectorΦi = [vi1vi2 . . .vir ]

T of
matrix VT

thus thei-th column ofA is represented by thei-th
row of V, which is theR2 formulation given in (4).

On the other hand, theR1 formulation of LSA is
also presented in many, fairly widely cited, publica-
tions, for example (Bartell et al., 1992; Papadimitriou
et al., 2000; Kontostathis and Pottenger, 2006), the
relevant parts of which are below briefly noted.

In the notation of (Bartell et al., 1992) the reduced
rank SVD of a term-by-document matrix isUkLkAT

k ,
and their definitions of document and query represen-
tations are (p162)

row i of AkLk gives the representation of doc-
ument i in k-space. . . . Let the query be en-
coded as a row vectorq in R t . Then the query
in k-space would beqUk

These coincide, modulo notational differences, with
theR1 formulations of (3) and (1).

In the notation of (Papadimitriou et al., 2000) the
reduced rank SVD of a term-by-document matrix is
UkDkVT

k . Then concerning document representation
they have (p220)

The rows of VkDk above are then used to rep-
resent the documents. In other words, the col-
umn vectors of A (documents) are projected to
the k-dimensional space spanned by the col-
umn vectors of Uk

which coincides, modulo notation, with theR1 formu-
lations in (3) and (1).

In the notation of (Kontostathis and Pottenger,
2006), the reduced rank SVD of a term-by-document
matrix isTkSk(Dk)

T , with Tk andDk used in place of
Uk andVk. Their definition of query representation
and document representation is (p3)

Queries are represented in the reduced space
by TT

k q. . . . Queries are compared to the re-
duced document vectors, scaled by the singu-
lar values (SkDT

k )

These column vector formulations would be a row
vector formulationqTk andDkSk, which, modulo no-
tational differences are theR1 formulations of (1) and
(3).

On the basis of these works, there would appear
to be anR1-vs-R2 ambiguity in the formulation of
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Figure 2:Left: shows theR1 representation of thec1–c5 andm1–m4 documents from Figure 1 and asq1 andq2, theR1 and
R2 representations of the query from the text; also shows cosine 0.9 cone aroundq1 Rightscreen shot from (Deerwester et al.,
1990), also showingc1–c5, m1–m4 and the query.

LSA, possibly a fairly wide-spread one. Let us now
return to the HCI/Graph example from (Deerwester
et al., 1990). We shall see that there is ambiguity as
to whether it is theR1 or R2 representation that is in-
tended by the text of (Deerwester et al., 1990).

Recall that Figure 1 showed the basic term-by-
document matrix for this example, and the component
matrices of its rank-2 reduced SVD. The two dimen-
sional nature of the reduced representations allows for
simple plotting. The left part of Figure 2 plots the 9
documents using theR1 projection, based on the rank-
2 reduced SVD shown in Figure 1. The positions of
the documents are indicated by boxes labelled ’c’ and
’m’.

To the right in Figure 2 is a reproduction of the
figure on p397 of (Deerwester et al., 1990). Their
plot shows (amongst other things)a reduced repre-
sentation of the documents, as boxes labeled c1-c5
and m1-m4. Whether their plot is intended to depict
the documents in theR1 or R2 representation is moot:
the axes in the original plot are not labeled. We have
endeavoured to scale the two plots in such a way that
the document vectors are identically placed in the two
pictures.

In (Deerwester et al., 1990), they consider the
query ’human computer interaction’. Given the terms
chosen for the document vectors, the unreduced vec-
tor q is [1,0,1,0,0,0,0,0,0,0,0,0]. Applying the
R1 definition (1), we haveR1(q) = [0.46,−0.07]
and applying theR2 definition (2), we R2(q) =
[0.14,−0.03]. We have plotted these alternative re-
ductions ofq also in the left part of Figure 2, where
they are are shown asq1 andq2.

In the plot reproduced from (Deerwester et al.,
1990) a reduced image of the same query vector was
depicted. Considering their placement of the repre-
sentation of the query relative to the document rep-
resentations, and comparing it to our own placment
of its R1 andR2 representation relative to theR1 rep-
resentations of the documents, it seems the only in-
terpretation that can be put on the plot from (Deer-
wester et al., 1990) is that it shows thedocumentsin
theR1 projection, but thequeryin the the R2 projec-
tion. Note that because theR2 representation is sim-
ply a scaling of theR1 representation, with a different
scaling of each dimension, the relative position of the
document and query points in the plot from (Deer-
wester et al., 1990) is not consistent with all points
being shown in theR2 representation. To emphasize
this, Figure 3 gives the plot of documents and query
in theR2 representation, again in such a way that the
documents are positioned identically to the plot from
(Deerwester et al., 1990) and one can see that the
query representations are differently placed.

This seeming equivocation between theR1 andR2
projection occurs in the text of (Deerwester et al.,
1990) also. In their notation the SVD of the term-by-
document matrix isTSD′, thus usingT andD in place
of ourU andV. Concerning document representation,
there is (p398)

’the rows of the reduced matrices of singular
vectors are taken as coordinates of points rep-
resenting the documents and terms in a k di-
mensional space’

As we noted above, identifying therowsof Vk as the
reduced representations of documents means adopt-
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ing the R2 representation (see (4)). Concerning a
query, if its unreduced representation as a column
vector isXq, they give its reduced representation as
X′

qTS−1, which again, modulo notation, is theR2 for-
mulation (see (2))

On the other hand p399 has (recall their ’D’ isVk
in our notation)

so one can consider rows of a DS matrix as
coordinates for documents, and take dot prod-
ucts in this space . . . note that the DS space is
just a stretched version of the D space

As we noted above, in equation (3), this amounts to
adopting theR1 representation for documents.

4 CONTRASTING OUTCOMES

Setting aside these expository details, it is more
important to know whether system outcomes may
change according to which representation,R1 or R2,
is adopted. The LSA dimensionality reduction tech-
nique has been deployed in quite a variety of con-
texts and in each one might investigate the effect of
whetherR1 or R2 is adopted. In this section we con-
sider two such contexts.

The first context is the original one presented in
(Deerwester et al., 1990): the issue is which docu-
ments should count as similar to a given query un-
der the two representations. Returning again to the
HCI/Graph example, in ourR1 depiction of the docu-
ments and query that is the left-hand plot of Figure 2,
we have also shown a cone which encloses the points
that have a cosine value of 0.9 or higher toR1(q). Fig-
ure 3 shows the documents and the queryq instead in
theR2 projection, and shows the corresponding cone
aroundR2(q).

On theR1 projection, the representations of c1–
c5 are all included in the cone around the query. In
(Deerwester et al., 1990), this inclusion of all the HCI
document representations (c1–c5) within cosine 0.9
of the given query is also noted, notwithstanding the
above-notedR1-vs-R2 ambiguities concerning their
plot of the data. As Figure 3 shows, on theR2 projec-
tion (of queries and documents), the representations
of c5 and c2 arenot included. Note that the visual
similarity of Figure 3 and the left part of Figure 2 is a
bit misleading, as the values on the axes in theR2 rep-
resentation in Figure 3 are considerably smaller than
those on the axes in theR1 representation, (by a fac-
tor of 0.29 for the first dimension, and 0.39 for the
second).

Another context in which LSA dimensionality re-
duction has been used is inword clustering. The aim

0.0 0.2 0.4 0.6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

c1

c2

c3

c4

c5

m1

m2

m3

m4

q2

Figure 3: TheR2 representation of thec1–c5 andm1–m4
documents from Figure 1 and asq2 theR2 representation of
the query from the text; also shows cosine 0.9 cone around
q2.

is to cluster occurrences of an ambiguous word into
coherent clusters, clusters each of which reflect a dis-
tinct sense of the word. To this end each occurrence
of an ambiguous term at a positionp is represented by
its so-calledfirst-order context vector, C1(p), a vec-
tor which for a given uni-gram vocabularyΣ f records
for each unigram its frequency in the window between
p−10 andp+10.

We conducted an experiment making use of the
so-called HILS dataset, which consists of manually
sense annotated occurrences of the four wordshard-
interest-line-serve. Thus for each word there is a
sub-corpus consisting of its occurrences, and for each
word, a 60% subset was taken and clustered by the
k-means algorithm, wherek is set to the number of
attested senses of the given word. The clustering
is evaluated using the remaining 40% test-set: these
items are first assigned to their nearest cluster centres
and then for each possible sense-to-cluster mapping,
a precision score on the test set is determined, with
the maximum of these reported as the final score.

All so-called non-stop unigrams constitute the fea-
tures of the context vectors. making the context vec-
tors high dimensional: around 104, and before clus-
tering SVD-based dimensionality reduction was ap-
plied. Each of the occurrences of an ambiguous word
is thus treated as a miniature 20 word document to
give a term-by-’document’ matrix, the dimensions of
which were of the order of 104 × 103. Then from
this, the reduced rank SVD was calculated for various
percentages of the original dimension size, between
1% and 14%. To give an idea of absolute numbers,

Latent�Ambiguity�in�Latent�Semantic�Analysis?

119



2 4 6 8 10 12 14

20
30

40
50

60 R1
R2 hard

2 4 6 8 10 12 14

20
30

40
50

60 R1
R2 interest

2 4 6 8 10 12 14

20
30

40
50

60 R1
R2 line

2 4 6 8 10 12 14

20
30

40
50

60 R1
R2 serve

Figure 4: Unsupervised clustering results usingR1 andR2
representations. Vertical axis is accuracy, horizontal axis is
% reduction of dimensions.

for the various words the 10% reduction level corre-
sponds to a dimensionality of 856(hard), 494(inter-
est), 1297(line) and 1304(serve). From these reduced
SVDs, the thereby definedR1 andR2 versions of the
context vectors were then used. Figure 4 gives the
results (the 60-40 split was randomly made, and re-
peated 4 times, with the figure summarising the out-
comes over these splits).

This confirms the indications from the tiny 2-
dimensional HCI/Graph example, namely that the
outcomes under theR1 andR2 representations are not
identical. In this word clustering context, at each level
of reduction, the outcomes with theR1 andR2 repre-
sentations are clearly different. In fact there is a per-
sistent pattern of theR1 representation giving consis-
tently better outcomes than theR2 representation.

5 CONCLUSIONS

We have shown that there is a discrepancy amongst
researchers concerning the precise dimensionality re-
duction technique to which they give the name ’LSA’.
TheR1 representation is defined by equations (1) and
(3) whilst theR2 representation is defined by (2) and
(4), and these alternatives give a different geometry
to the space of reduced representations, manifesting
itself in different nearest-neighbour sets. We showed
that, unsurprisingly, this can lead to different system
outcomes according to which representation,R1 or
R2, is adopted in a given system.

We have not argued for one of these representa-

tions over the other one. Whilst Theorem 2 estab-
lishes thatÂ = Uk ×Sk ×V′

k is the optimum rank-k
approximation ofA in the sense of minimising the
sum of squared differences between corresponding
matrix positions, there is a good deal of conceptual
clear water between this and consequent ’optimality’
of a particular SVD-based reduction of document vec-
tors in a particular system. This is testified to by the
range of attempts there have been to give a theoretical
justification for an observed system ’optimality’ of a
given deployed SVD-based reduction. Therefore the
R1 andR2 alternatives are as theoretically motivated
(or unmotivated) as each other, at least at first glance,
and there is some merit in putting both to the test em-
pirically. What is beyond doubt, though, is that these
R1 andR2 altneratives are genuinely different and will
not always give the same empirical outcomes.
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