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Abstract: We have tested how queueing theory can be applied to improve energy efficiency of scientific computing
clusters. Our method calculates the number of required servers based on the arrival rate of computing jobs and
turns on and off computing nodes based on this estimate. Our tests indicated that this method decreases energy
consumption. However simultaneously the average lead time tends to increase because of higher waiting times
in cases when the arrival intensity goes up.

1 INTRODUCTION

It is natural to assume that the number of jobs sent to
a computing cluster varies throughout the day. The
problem of resource underutilization arises because
IT recourses are usually allocated according to the
peak load, which can last only for a short period of
time, forcing servers later become idle. Idle power
consumption can still be around 50% of the peak
power, causing a significant energy loss.

We propose to save electricity by switching
servers on and off depending on the current need. In
the other words, we adjust the number of resources –
servers — to the amount of current workload – the ar-
riving intensity of jobs. Our solution is to use queue-
ing theory for defining the problem and then applying
commonly known results to find a suitable solution.

We tested our method in a dedicated test cluster
using job statistics collected from CERN (European
Organization for Nuclear Research) computing clus-
ter. Our test showed that the method can reduce elec-
tricity consumption over 10% without increasing the
average lead time more than 10%.

2 RELATED WORK

These days servers in data centers usually operate at
a very low utilization level, usually between 10 and
50 percent of the full power (Barroso and Hölzle,
2007). Because current server hardware is not energy-

proportional, an idle server still uses half of its peak
power leading to extremely inefficient use of energy.
Thus it is desirable either to run servers near 100%
utilization or to keep them switched off.

Methods for improving energy efficiency of clus-
ter devices can be roughly divided into three cate-
gories: workload shaping, users’ behavior shaping,
and resource adjustment. Workload shaping is widely
used in network devices. Its idea is to use a proxy
between a service and a user that changes the incom-
ing traffic through buffering to enable longer sleep
times for some continuous period of time and on the
other hand longer periods of high utilization (Nede-
vschi et al., 2008). Shaping users’ behavior is well
tried in electrical power companies, in which the price
of electricity is usually cheaper during low workload
activity periods e.g. nights. This encourages forcing
users to use electricity at least partly during the night
time leading to the smoother workload. A problem
with these methods is that they easily reduce quality
of service for users.

Resource adjustment means that computational
devices are switched off or put into sleep mode when
there is no workload. Solutions for resource ad-
justment have been studied most extensively. The
software solutions utilise power saving modes imple-
mented in hardware. The device enters and leaves
those modes depending on the current workload in-
tensity. The aim of software solutions is to es-
timate when it is appropriate to enter in a power
saving mode and when to leave it. An idea very
close to this approach is presented in (Meisner et al.,
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2009), where switching off a server was associated
to use of power saving modes. Another option is
to use dynamic frequency and voltage scaling meth-
ods (DFVS). It decreases operating power of the
server but also degrades its performance (Kaxiras and
Martonosi, 2008). Related to this, many authors have
studied at which degree performance should be de-
creased to achieve electricity saving while preserving
the same, or almost the same, quality of service (Wu
et al., 2005)(Miyoshi et al., 2002)(Choi et al., 2004).

A crucial aspect of the solutions applying DFVS
and other power saving modes is to reveal the periods
of lower activity. Many different models have been
employed for this purpose. Queueing theory is quite
popular for such use as it nicely captures the relation-
ship between incoming traffic, service efficiency and
quality of service. In (Gandhi et al., 2009) the au-
thors use queueing theory as the model which gives
the optimal number of running servers at each mo-
ment. A problem of queueing theory is that in order
to the predictions about queue length being valid it
is required that the incoming traffic follows a Pois-
son process which is not usually true in wide area
networks (Crovella and Bestavros, 1995)(Paxson and
Floyd, 1995).

Control theory is another widely used model for
power management in computational clusters (Hor-
vath and Skadron, 2008)(Wang et al., 2008). In (Lin
et al., 2011) the authors represented the problem in
general optimization terms: they bound quality of ser-
vice and energy expenses together by expressing the
degraded service in terms of revenue lost due to users
abandoning the service. They also present an algo-
rithm that optimises the time series where the num-
ber of running nodes is an adjustable variable, the to-
tal cost is a target variable and the algorithm returns
the optimal number of running nodes for each period
of time. A similar approach, in which the problem
is modeled as an optimization problem with the aim
to minimize total cost, was used also in (Rao et al.,
2010)(Pakbaznia and Pedram, 2009)(Wendell et al.,
2010)(Liu et al., 2011).

Many approaches attack the problem of energy ef-
ficiency from a different angle; they try to improve
energy efficiency of the data center by taking into ac-
count the specific nature of cluster workload. In (Fan
et al., 2007) the authors found out that in thousands-
server-size data centers there is a 7% to 16% gap
between the achieved peak power and the theoreti-
cal peak power reported by the manufacturer. They
suggest to host additional servers under the existing
power budget and to mix different workloads to get
smoother combined workload. In (Govindan et al.,
2011) the authors propose to exploit data center unin-

terrupted power supplies (UPSs) during the increased
workload period to shave such power peaks. The
UPSs are then loaded during the lower activity work-
load. The authors present an algorithm which inves-
tigates the whole day workload and draw electricity
from UPSs during the highest activity.

Elnozahy et al.(Elnozahy et al., 2002) have stud-
ied cluster energy usage and evaluated different clus-
ter management policies and introduced a cluster
scale coordinated voltage scaling system. Their sim-
ulations show that dynamic cluster resource manage-
ment can save up to 42% of energy comsumption.
In their simulation the best performance is achieved
by combining coordinated voltage scaling with load
based server pool management.

3 MATHEMATICAL MODEL

We start to attack the problem by defining the real
configuration of the cluster. Thereafter we study
carefully the cluster characteristics which affect the
choice of a model. It turns out that there are only a
few crucial aspects that determine whether the use of
a model is justifiable. We discuss those aspects in de-
tail.

Description of the Cluster

We are dealing with a computational cluster, in which
there are server nodes connected in parallel via net-
work with each node consisting of multiple cores.
A population of users is sending jobs to the cluster.
An arriving job enters first the batch scheduler queue,
from which it proceeds, in its turn, to a computational
node. By default a batch scheduler performs load bal-
ancing, i.e., it sends the next job to the node with the
least workload. The allowed number of jobs per node
is called slot number. Usually it equals the number of
cores per node, but it could be changed to an arbitrary
value. All jobs running on the same node are pro-
cessed simultaneously. If the number of jobs is less
than or equal to the number of cores, each job has its
own core. Otherwise a node performs process sharing
to share computational time equally between the jobs.

Queueing Model

The queueing model we propose for the cluster is nc
parallel and independent M/G/1-PS queues, where n
refers to the current number of active server nodes
(that are switched on), c to the number of cores per
node, and PS to the well-known processor sharing
queueing discipline. Each parallel M/G/1-PS queue

EHST/ICGREEN 2012

84



represents a single core. We assume that new jobs
arrive to the cluster according to a Poisson process
with intensity l (arrivals per time unit), and an arriv-
ing job is sent to any of the parallel queues with equal
probabilities 1=(nc), independently of the states of
the queues and the other arrivals. Processing times of
jobs are assumed to be independently and identically
distributed (i.i.d.) with mean 1=µ. As a result, each
parallel queue behaves as an independent M/G/1-PS
queue with arrival rate l=(nc). It is well-known (see,
e.g., (Kleinrock, 1976)) that the mean response time
E[T ] for such a system is given by

E[T ] =
1

µ� l

nc

: (1)

When the predefined level of service is given by
means of the required mean response time E[T ], we
end up with the following dimensioning rule for the
required number n of parallel server nodes:

n =
lE[T ]

c(µE[T ]�1)
(2)

Thus, in addition to fix the level of service, E[T ],
we need to estimate the current arrival rate l and the
mean processing time 1=µ to apply the formula.

Note that we do not model explicitly the batch
scheduler queue in front of the nodes. Including
such a queue in the model would result in a queueing
network representation with dependence between the
queues, viz., arriving jobs have to wait in the sched-
uler queue as long as all the slots are reserved in the
nodes. In addition, the state-dependent (i.e., closed-
loop) load balancing in the batch scheduler breaks
down the assumption that the arrivals in each paral-
lel queue constitutes a Poisson process. By omitting
the scheduler queue, we result in an approximative
but mathematically tractable model. In addition, the
load balancing property of the batch scheduler is re-
flected in the model by splitting the arrival stream of
jobs evenly to all cores, which is an open-loop load
balancing method.

Another reason to justify the choice is that we as-
sume the number of running nodes to be sufficient to
receive all currently arriving jobs. In this case, the
scheduler sends an arriving job immediately to a node
so that the scheduler queue remains empty most of the
time, thus diminishing its own role in the model. The
assumption is justified if the slot numbers are suffi-
ciently large with respect to the total arrival rate l.

Alternative Queueing Model

An alternative model, which also could be consid-
ered, is an M/G/k multi-server queue with k parallel
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Figure 1: Interarrival times in a test data.

servers having a joint queue for all waiting jobs. In
this model, the parallel servers represent single cores
(and not the whole nodes) and the joint queue for
waiting jobs is an explicit model for the batch sched-
uler queue. The benefits of this model are that (i) the
scheduler queue is preserved leading to a more natural
representation, and (ii) the closed-loop load balancing
is implicitly reflected by this multi-server queueing
model. The problem with this model is the fact that
specific cores belong to the same node and that it is
possible to send more jobs to the node than there are
cores on it. Thus, we leave the investigation of the
applicability of this model for future research.

Model Validation

Now we examine the interarrival times (Figure 1) be-
tween jobs from real cluster data and check whether
they follow exponential distribution as required by the
model.

We applied the well-known Kolmogorov-Smirnov
test to a real cluster data log for testing whether in-
terarrival times follow exponential distribution. We
picked up from the data log short intervals of vary-
ing length and performed Kolmogorov-Smirnov test
on them. We applied the test for 10 randomly chosen
time intervals – 3 of 20 samples, 3 of 30 samples, 3 of
40 samples and 1 of 50 samples. Their duration var-
ied from 3.32 minutes to 4.97 hours. It turned out that
6 of 10 passed the test. We argue that this is sufficient
accuracy to apply queueing theory approach. In addi-
tion, the final basis to use or not to use the approach
will be the amount of saved energy gained with the
aid of the method.

Analysis of the Empirical Processing
Time Distribution

While the key result (2) of our model is insensitive
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Figure 2: Distribution of process times.

to the form of the processing time distribution de-
pending just on its mean value, we still want to es-
timate the distribution itself. It is needed for our ex-
periments where we test the proposed energy-efficient
algorithms for switching nodes on and off. The distri-
bution of processing times in our test data is shown in
Figure 2.

4 ALGORITHMS FOR
SWITCHING NODES ON AND
OFF

We implemented two algorithms that incorporate the
idea described above. The first one, called Queue-
ing theory with averaging filter, operates as follows.
It takes m subsequent interarrival times of the last-
arrived jobs, and calculates the average from them.
To make the system better adapt recent changes in the
intensity, the time since the last arrival has also been
taken into account. The inverse of the average is used
as an estimate for the current arrival intensity. The es-
timate is substituted into the queueing theory formula
(2), which determines the number of nodes required
to process current workload with a given quality of
service and service efficiency. Based on this, we can
appropriately switch on additional nodes or switch off
unnecessary nodes.

The second algorithm, called Queueing theory
with exponential filter, follows the same approach as
the first algorithm but it calculates the estimate for the
current arrival intensity by using exponential decay,
i.e., the last interarrival time is multiplied by a factor
C and the previous estimate (based on all previous in-
terarrival times) by 1�C resulting in a new estimate,
which is the sum of these two terms.

The choice of m and C is a matter of fine-tuning.

In our implementation, we chose m to be equal to 6
and C equal to 0.8, but of course in the further so-
lutions their effect should be investigated more care-
fully. The same applies to the choice of quality of
service, E[T ], the average response time in our case.
It has a predefined fixed value, which is twice the av-
erage processing time. In a more advanced algorithm,
the value should be also optimized, because in some
situations having slightly larger E[T ] may lead to con-
siderable energy savings.

The third algorithm is similar to the first one ex-
cept a node is not disabled if the cluster queue has
any jobs left. In this way the number of resources is
decreased only if there are no jobs to process.

5 TESTS AND TEST
ENVIRONMENT

Our test cluster consists of one front-end server and
six computing nodes running a batch scheduling sys-
tem, Sun Grid Engine (SGE)(SGE, 2008). All the
servers in the cluster have two single core Intel Xeon
2.8 GHz processors (Supermicro X6DVL-EG2 moth-
erboard, 2048 KB L2 cache, 800 MHz front side bus)
with 4 gigabytes of memory and 160 gigabytes of disk
space. The operating system used was Rocks 5.4.3
with Linux kernel version 2.6.18. Servers are con-
nected with D-Link DGS-1224T 1GB switch.

The electricity consumption of the computing
nodes was measured with the Watts Up Pro electricity
consumption meter. We tested the accuracy of our test
environment by running the same tests several times
with exactly the same settings. The differences be-
tween the runs were around +-1% both in time and
electricity consumption.

We formed five test cases based on our algorithms
presented in Section 4:

1. Queueing theory with averaging filter,

2. Queueing theory with exponential filter,

3. Queueing theory with averaging filter and a con-
trol feature not to disable nodes if there are jobs
in the queue,

4. No control, i.e. all nodes running all the time, and

5. A simple control based on the cluster queue being
empty of not.

We calculated arrivals and processing times based
on data collected a scientific computing cluster at
CERN. The original data set contains all arrival
to three computing nodes during approximately 50
hours. The number of arrivals was 500. We scaled
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Figure 3: State diagram of a cluster computing node.

down the original interarrival times and processing
times to be able to run a test set in around ten hours.

As workload for all methods, we used the Beam-
beam application, which is a simulation tool been
used in the design of the LHC collider at CERN. It
simulates the beam-beam effect, i.e. the forces that
act on the beam when bunches of particles cross in the
LHC interaction points. These simulations are impor-
tant because beam-beam effect is one the major lim-
itations to LHC collider performance (beam, 2006;
Herr and Zorzano, 2001). The run time of the test ap-
plication was controlled artificially by terminating it
before finishing. This made it possible to have differ-
ent application run times, that would match the pro-
cessing times of the CERN cluster log data. Jobs were
sent and managed with the Sun Grid Engine.

The nodes of the cluster switch between three
states; 1) running, 2) disabled, 3) stopped. These
states are illustrated in Figure 3. In the running state
the computing node executes existing jobs and accept
new ones. In stopped state the computing node is
shutdown. Between running and stopped we have a
disabled state in which the computing node still pro-
cesses existing jobs, but does not accept new ones.

In Methods 1 and 2, a node was disabled if, ac-
cording to the queueing theory formula, there was too
many nodes running. A disabled node did not take
new jobs but continued computing existing jobs. Af-
ter all jobs were finished, the node was turned off.

Instead, in Method 3 if the estimated number of
running nodes does not increase and a disabled node
finishes its jobs, it will be turned off. If the inten-
sity increases and more nodes would be needed, a dis-
abled node will be switched back to the running state.
If there are no disabled nodes and the intensity in-
creases, a stopped node must be turned on. This is of
course a more expensive operation than just changing
a disabled node to the running state.

To test whether using queueing theory improves
results, we performed two control runs: 1) all nodes
running all the time, 2) switching nodes on and off us-
ing a simple control algorithm. The algorithm works
as follows: 1) A node is switched off if it has no jobs
and there are no jobs in the cluster queue. 2) A node

is switched on if there are jobs in the cluster queue.
The situation was checked every 40 seconds to avoid
too rapid changes.

6 RESULTS

Our test results showed that using queuing theory
models can reduce energy consumption by 9% to 17%
compared to no control at all. The most energy effi-
cient method was still our simple method based on
jobs in the cluster queue (Method 5). It reduced en-
ergy consumption by 33%. In all methods the lower
energy consumption did not happen without a cost:
waiting time of jobs increased 135% to 264%. How-
ever, waiting times were relatively short compared to
the processing time that was the same 337 seconds in
all methods. The average lead time (waiting + pro-
cessing time) increased only 13% to 26%. Method 3
gave the best results when using both criteria: it re-
duced energy consumption 13.1% and increased the
average lead time 13.7%. The results are collected in
Table 1.

Table 1: Summary of test results.

Method Description Energy
(Wh)

Mean
waiting
time (s)

Mean
lead
time (s)

1 Averaging filter 9540 138 475
2 Exponential fil-

ter
10380 89 426

3 Averaging filter
+ queue control

9939 89 426

4 No control 11443 38 375
5 Simple control 7660 124 461

To evaluate the system better, we also measured
idle consumption and server shutdown and powering
up energy costs in our test cluster. The results are
shown in Table 2. A server consumes 154W when
being idle and 3.54 W when switched off. From this
we can calculate that a server should switch off if it
were to stay idle for more than 160 seconds.

Table 2: Energy consumption of powering on and off a com-
puting node.

Time (s) Energy (Wh)

Power on 113.3 5.57
Power off 27.0 1.17
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7 CONCLUSIONS AND FUTURE
WORK

We developed a queuing theory model for controlling
a number of running computing nodes in a computing
cluster. The method observes arrival rate of incom-
ing computing jobs and estimates how many servers
should be running. The extra servers are then turned
off to save energy.

Energy savings and a possibly decreased service
level, i.e. increased waiting time in the cluster queue,
highly depends on changes in the arrival rate and pro-
cessing times of jobs. Therefore our future work will
focus on finding out how the parameters in the al-
gorithm should be set for different workloads. We
will also study alternative queueing theory models
and their suitability for the problem.
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