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Abstract: The problem of dataset classification with frequent itemsets is defined as the problem of determining whether
or not two different datasets have the same frequent itemsets without computing these itemsets explicitly. The
reasoning behind this approach is high computational cost of computing frequent itemsets. Finding well-
defined and understandable normal forms for this classification task would be a breakthrough in dataset clas-
sification field. The paper proves that classification of datasets with frequent itemsets is a hopeless task since
canonical forms do not exist for this problem.

1 INTRODUCTION

Suppose that we are given a dataset that consists
of transactions (tuples) each containing one or more
items. Frequent itemsets are subsets that appear in
a large fraction of dataset tuples, where the exact
fraction value is defined by the user and is called
support. Frequent pattern mining was proposed by
Agrawal (Agrawal,Srikant 1994) for shopping basket
analysis; both frequent itemsets and association rules
were introduced in this paper. Many additional algo-
rithms have been suggested other the years, such as
FPGrowth (Han, Pei, Yin 2000), Eclat (Zaki 2000),
Genmax (Gouda,Zaki 2005) and many others. This
problem has numerous applications in both theoreti-
cal and practical knowledge discovery, but its com-
putational complexity is another matter. It has been
shown that generating and counting frequent itemsets
is #P-complete (see (Yang 2004)).

We focus here on using frequent itemsets in
datasets as the means for dataset characterization.
Frequent itemsets are important dataset property and
they have been used as a classifying feature in virus
signature detection (see (Ye et al. 2007)), text catego-
rization (see (Zaı̈ane, Antonie 2002)) and biological
data mining (see (Zaki et al. 2010)). A through ex-
perimental study of the issue can be found in (Flou-
vat, De Marchi, Petit 2010). The classifying feature
problem is also computationally difficult as it requires
computing frequent itemsets for each dataset. In
(Palmerini, Orlando, Perego 2004), the authors pro-
posed a statistical property of transactional datasets
to characterize dataset density. Paper (Parthasarathy,
Ogihara 2000) proposes a similarity measure for ho-

mogeneous datasets that is based on frequent patterns
appearing in these datasets; this measure is then used
to enable dataset clustering. The diff operator, pro-
posed in (Subramonian 1998), is another correlation
indicator between datasets that captures user beliefs
in terms of events and conditional probabilities.

This paper addresses the issue of using frequent
itemsets as a classifying feature of datasets. The an-
swer is given in category-theoretic form; we prove
that the task of finding well-structured normal forms
for frequent itemsets in this case is a hopeless one.

2 PROBLEM STATEMENT

Let D be a dataset composed of transactions
ft1; :::; tmg, where m is the dataset size. Each trans-
action contains items from a finite set V . The size
of V , denoted by n, is called the cardinality of the
dataset. The number of items may vary from transac-
tion to transaction, but the items in each transaction
form a set, i.e. they cannot appear more than once.
Additionally, we have a support value 1 � S � m. A
set I of items (itemset) is called frequent if it appears
in at least S transactions as a subset.

The three main approaches to frequent set genera-
tion are Apriori (Agrawal,Srikant 1994), FPGrowth
(Han, Pei, Yin 2000) and Eclat (Zaki 2000). This
task is computationally expensive as the number of
frequent itemsets in D can be exponential in jV j. We
are asking the following question:
� Is it possible to classify datasets according to their

frequent itemsets without explicit computation?
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Figure 1: Dataset equivalence as frequent itemset equality.

3 CLASSIFICATION OF
DATASETS

3.1 Canonical Forms

Suppose now that datasets D1 and D2 are defined on
set V on items, and we are given support constraints
S1 and S2. We wish to check whether or not datasets
D1 and D2 are equivalent up to their frequent item-
sets. In other words, we ask if frequent itemsets F1
and F2 of D1 and D2 are identical. Figure 1 shows an
example of such classification.

There are three main ways of answering this ques-
tion, some computationally harder than others.
1. (approach 1) Compute both frequent itemset sets

and find their symmetric difference.
This type of answer is usually the hardest one to
compute.

2. (approach 2) Find an algorithm comparing fre-
quent itemset sets without computing them and
provide a ”yes” or ”no” answer.
This type of answer can sometimes be easier to
achieve.

3. (approach 3) Find canonical representations for
both datasets, i.e. find mathematical objects
whose equality implies dataset equivalence and
inequality implies lack of equivalence.
This type of answer tells us everything there is
to know about dataset equivalence. Once canon-
ical representations are found, their comparison
should be easy and straightforward.
In case of dataset equivalence approach 1 is very

hard to implement, since enumeration of frequent
itemsets in a dataset is a #P-complete problem by re-
duction from the problem of determining the number
of maximal bipartite cliques in a bipartite graph. This
fact is proved in the next claim. Approach 2 to dataset
equivalence can provide the answer faster than fre-
quent itemset set computation, since the difference
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Figure 2: Jordan normal form of a square complex matrix.

between frequent sets may be determined at early
stages of frequent itemset enumeration, thus saving
a great deal of time and effort. But do we have a hope
of finding a classification for sets of frequent item-
sets in various datasets using approach 3? The most
prominent advantage of this method is that such a rep-
resentation needs to be computed only once for each
dataset, thus eliminating the need is pairwise dataset
comparison. However, the answer to this question is
no and the explanation follows.

The problem of classification of objects in a small
category is defined as the problem of finding canon-
ical forms for objects in that category. The issue of
deciding on equivalence of two objects up to a certain
set of transformation in this case reduces to the prob-
lem of comparing their canonical forms up to equality.
In our case the category of datasets consists of finite
datasets identical up to row permutations.

For some problems, such as matrix similarity,
well-structured canonical forms exist.
Example 1. Let A;B be n� n matrices over an al-
gebraically closed field (finite or infinite). The ma-
trices are similar if there exists a matrix S such that
A = S�1BS. Three approaches to matrix equiva-
lence discovery in case of matrix similarity can be re-
formulated as follows.
(1) Test all possible matrices S until the one that en-
sures A = S�1BS is found. This approach is infeasible
over infinite fields and #P-hard over finite fields.
(2) Find an algorithm that attempts to construct the
matrix S from A;B. Such algorithms exist, and they
are quire efficient (see e.g. (Giesbrecht 1995)).
(3) Find canonical representations for both matrices.
Canonical representations of square matrices over
fields for similarity exist and are called Jordan nor-
mal forms of matrices. There representations are also
square matrices over the same field that have special
structure. Figure 2 shows Jordan normal form for ma-
trices over C.

Existence of canonical forms is not limited to ma-
trix problems. For instance, the fundamental theorem
of finite abelian groups describes canonical forms that
do not have matrix form.
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3.2 Matrix Problems

Let us, following (Belitskii, Sergeichuk 2003), define
a matrix problem as a pair A = fA1;A2g where A1 is
a set of a-tuples (A1; :::;Aa) of m� n matrices over
an algebraically closed field and A2 are operations
on tuples from A1. Given two matrix problems A =
fA1;A2g and B = fB1;B2g, A is said to be contained
in B if there exists a b-tuple T (x) = T (x1; :::;xa) of
matrices, whose entries are non-commutative polyno-
mials in x1; :::;xa, such that
1. T (A) = T (A1; :::;Aa) 2 B1 if

A = (A1; :::;Aa) 2 A1;
2. for every A;A0 2 A1, A reduces to A0 by transfor-

mations A2 if and only if T (A) reduces to T (A0)
by transformations B2.

Example 2. For the problem of matrix similarity, A1
contains square matrices over C and A2 contains an
operation of multiplication of a matrix by an invert-
ible matrix S and its inverse on left and right.
The problem of simultaneous similarity for a pair of
n�n matrices over a field (i.e. pairs (A;B) and (C;D)
is defined as follows. Pairs (A;B) and (C;D) are si-
multaneously similar if and only if there exists S such
that C = S�1AS and D = S�1BS). In this case, canoni-
cal forms do not exist (see (Drozd 1980) and (Gabriel
1972) for detailed explanation).

Problems containing the matrix problem of si-
multaneous similarity for pairs of matrices are called
wild as opposed to tame problems for which canon-
ical forms exist. In other words, instances of some
problems cannot be packed into convenient and self-
explainable classes.
Example 3. The problem of classifying finite groups
(even if they are 2-nilpotent) is wild since it contains
the problem of classifying pairs of matrices up to si-
multaneous similarity (see (Sergeichuk 1975)).

3.3 Dataset Classification

One surprising corollary from the work (Sergeichuk
1975) is the following.
Corollary 4 ((Vanetik, Lipyanski 2010)). The prob-
lem of classifying graphs up to isomorphism is wild,
i.e. well-defined canonical forms for graphs up to iso-
morphism do not exist.

Corollary 4 implies that while the hope of find-
ing an efficient algorithm that distinguishes graphs up
to isomorphism still exists, such an algorithm can-
not take advantage on some special canonical form of
graphs, since these canonical forms do not exist. Un-
fortunately, this is also the case for frequent itemset
sets, as the following shows.

Bipartite clique K2,3 

Figure 3: Maximal bipartite clique in a bipartite graph.

Claim 5. Frequent itemset equivalence is as hard as
the graph isomorphism problem.

Proof. Equivalence of datasets up to frequent item-
sets is at least as hard as comparing the number of
maximal bipartite cliques in a bipartite graph (see
(Zaki 2000) for proof), even if we are talking about
closed or maximal itemsets only. A maximal bipar-
tite clique in bipartite graph G is a maximal com-
plete bipartite subgraph Ki; j of G (see Figure 3 for
an illustration). Finding the size of maximal bipartite
clique in a bipartite graph is an NP-complete problem
(see (Kuznetsov 1989)) and therefore there exists a
polynomial-time reduction from the subgraph isomor-
phism problem to the maximal bipartite clique prob-
lem. Reduction from the graph isomorphism problem
to subgraph isomorphism is straightforward.

Theorem 6. The problem of classifying datasets up
to frequent itemsets is wild.

Proof. Wildness of the classifying problem for
graphs follows from the famous result by V. Serge-
ichuck (see (Sergeichuk 1975)) and has been proved
in Corollary 4. Since the problem of classifying
datasets up to their frequent itemsets contains (in the
matrix sense) the problem of classifying graphs up to
isomorphism, by Claim 5 the classifying problem for
datasets up to frequent itemsets is wild.

Corollary 7. Dataset classification problem is wild
for maximal or closed frequent itemsets as well.

Note that wildness of a problem does not neces-
sarily imply nonexistence of an efficient algorithm
telling whether or not two objects are equivalent up
to a certain set of transformations. It does, however,
imply that no well-defined representation (represen-
tation with normal forms) for equivalence classes of
these objects exists.

4 CONCLUSIONS

This paper addresses the problem of classifying
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datasets with (maximal, closed, all) frequent itemsets.
We show that high computational cost is not the only
problem of this approach and that there is in fact a
deeper reason to why the approach fails. We use
category-theoretic results to prove that well-described
normal forms for the dataset classification problem do
not exist.
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