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Abstract: A person’s beliefs and attitudes may change multiple times as they gain additional information/perceptions 
from various external sources, which in turn, may affect their subsequent behavior. Such influential sources, 
however, are often invisible to the public due to a variety of reasons – private communications, what one 
randomly reads or hears, and implicit social hierarchies, to name a few. Many efforts have focused on 
detecting distribution variations. However, the underlying reason for the variation has yet to be fully 
studied. In this paper, we present a novel approach and algorithm to detect such hidden sources, as well as 
capture and characterize the patterns of their impact with regards to the belief-changing trend. We formalize 
this problem as a finite belief fusion model and solve it via an optimization method. Finally, we compare our 
work with general mixture models, e.g. Gaussian Mixture Model. We present promising preliminary results 
obtained from proof-of-concept experiments conducted on both synthetic data and a real-world scenario. 

1 INTRODUCTION 

A person’s beliefs and attitudes are key elements for 
inferring the meaning of opinions held by 
individuals and groups. These elements/perceptions, 
however, are not stable and may change over time 
through the processes of social interaction and first-
hand experiences (Hill and Kriesi, 2001). Studies on 
social influence theories have shown that social 
influence may have qualitatively different effects, 
and that it may produce different kinds of change. 
One simple case is how likely an individual will 
adopt the attitudes and beliefs of other sources and 
by how much. For example, in the context of 
socialization of children, a child who has a strong 
bond with his family is inclined to take parental 
attitudes and actions with full trust. In contrast, 
people only selectively accept the arguments and 
views supported by online news sources, e.g. 
consumer review sites.  Opinions adopted with 
different reliabilities will differ in terms of their 
qualitative characteristics, and affect a person’s 
subsequent behavior. Moreover, the patterns of 
belief-changing behavior can be treated as an 
indicator of different types of social influence 
processes. For instance, in the process of self-

identification, the logic of how an individual 
actually believes in the opinions does not depend on 
observability of the influencing sources. It depends, 
nevertheless, on his identity activated at that given 
moment (Kelman, 1961). Thus, if we know the role 
that social influence plays in behavior change at 
each time period and the impact it has on a person’s 
initial beliefs, we will be able to provide more 
insights and explanations on the observed opinion 
trend, and further, make predictions about other 
likely behavioral consequences.  

However, the characteristics of opinion sources 
that affect people’s beliefs and attitudes are rarely 
open to the public. Likewise, it is impossible to track 
how people view and adopt the opinions held by 
each of the sources they have interacted with.  Such 
information can be concealed subconsciously when 
the influence is subtle or the reliability is not 
quantifiable, whereas sometimes people will 
intentionally conceal this information. For example, 
terrorists tend to protect criminal organizations by 
hiding their connections with the group. Therefore, it 
becomes critical to develop a flexible model that can 
1) support the social influence theory of 
belief/opinion change; 2) detect and characterize the 
hidden influential sources; and, 3) discover the 
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patterns/trend of the source’s impact on the observed 
opinion change. 

Bayesian approaches have been widely used to 
represent belief and opinions (Garg et al., 2004, 
Santos Jr. et al., 2011a).  Among those, Bayesian 
Networks (BNs) (Pearl, 1988) are a popular 
probabilistic model due to its sound theoretical 
foundations in probability theory combined with 
efficient reasoning. For example, (Garg et al., 2004) 
introduces a BN based divergence minimization 
framework to integrate opinions from different 
sources in order to solve the problem of standard 
opinion pooling. However, people’s belief, 
structured as a knowledge-based system, is 
necessarily associated with some degree of 
incompleteness, which turns out to be problematical 
to BNs, as they require a completely specified 
conditional probability table (CPT). BNs also 
require that information be topologically ordered 
which further restricts their general applicability to 
real-world situations. In this work, we build our 
model based on Bayesian Knowledge Bases (BKBs) 
(Santos and Santos, 1999), as it has been extensively 
used to model complex intent-driven scenarios 
(Santos et al., 2011a; Santos et al., 2011b). 

At each time period, the formation of individual 
belief can be viewed as a process of aggregating 
opinion/information from different sources. The goal 
is to arrive at a single probability distribution that 
represents the integrated knowledge base. Santos et 
al. (2011c) proposed an algorithm to encode and 
fuse a set of belief networks from different sources 
into one unified BKB. Due to the nature of BKBs 
and the mathematical foundations of fusion, we 
derive a new modelling approach called a Finite 
Belief Fusion Model (FFM) to capture the 
characteristics of opinion-changing behavior. We 
can then show how to detect underlying hidden 
sources of change together with the corresponding 
influential factors through a non-linear optimization 
problem. 

2 BELIEF FUSING MODEL 

2.1 Related Work 

Anomaly detection has been applied to detect the 
presence of any observations or patterns that are 
different from the normal behavior of the data (Das 
et al., 2008). Works based on Bayesian Networks 
include detecting anomalies in network intrusion 
detection (García-Teodoro et al., 2009) and disease 
outbreak detection (Wong et al., 2003). The typical 

approach of BN-based anomaly detection is to 
compute the likelihood of each record in the dataset 
and report records with unusually low likelihoods as 
potential anomalies. Different from these approaches 
whose main goals are to achieve early detection and 
identify anomalous change in terms of a probability 
distribution (Das et al., 2008), we focus on detecting 
the reasons behind the behavior change. Moreover, 
many statistics-based anomaly detection methods 
only focus on detecting events whose patterns are 
anomalous enough to be distinguishable from 
normal data. Furthermore, they overlook the 
situation when certain external opinion sources that 
have subtle influences at present, may cause a 
butterfly effect later, as triggered by other events. 
We show that our work overcomes the above 
limitations by being able to detect less substantial 
influencing sources. 

There are some other techniques that attempt to 
handle changing belief networks. Methods based on 
learning Dynamic Bayesian Networks (DBNs) 
(Dean and Kanazawa 1989) have provided 
mechanisms for identifying conditional 
dependencies in time-series data, such as for 
reconstructing transcriptional regulatory networks 
from gene expression data (Robinson and 
Hartemink, 2010) and speech recognition using 
HMM (Gale and Young, 2008). Nevertheless, most 
DBN implementations assume for the sake of 
efficiency that the Markov property holds for the 
domain they represent, which restricts knowledge 
engineering by requiring that the probability 
distribution of variables at time ݐ depends solely on 
the single snapshot at time ݐ െ 1 . Thus, for real 
world cases when the future outcomes are highly 
dependent on the hidden factors whose prior 
information is unidentified, we need another model 
that can easily express such abstract temporal 
relationships. 

For each of the opinion sources, we would 
expect the probability of generating a series of 
responses follows a particular type of pattern. 
Similarly, the reliability of an opinion is also likely 
to vary across sources. This results in a natural 
expectation that we need a model that is capable of 
mixing belief networks from different sources 
together. Hill and Kriesi (2001) apply a Finite 
Mixture Model to support their theory of opinion-
changing behavior, where the attitude of each of the 
group is represented by a distribution and the mixed 
distribution is described by a weighted aggregation 
of ݊  different distributions. However, the 
Expectation-maximization (EM) based mixture 
decomposition methods show propensity to identify 
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local optima (McLaughlan and Peel, 2000), which 
makes it also sensitive to initial guesses. In addition, 
the separation of parameter estimation and 
component identification increases the probability of 
converging to boundary values when the number of 
model components exceeds the true one (Figueiredo 
and Jain, 2002). These considerations led us to 
develop a variant mixture model that is suitable for 
our problem of detecting hidden belief sources by 
taking advantage of time-varying information, as 
well as loosening the requirement of a predefined 
number of sources. 

2.2 BKB 

In this work, we assume that both of the initial 
beliefs and hidden influencing sources at each time 
period are represented by BKBs. BKBs are a rule-
based probabilistic model that represents possible 
world states and their (causal) relationships using a 
directed graph. BKBs subsume BNs by specifying 
dependence at the instantiation level (versus BNs 
that specify only at the random variable level); by 
allowing for cycles between variables; and, by 
loosening the requirements for specifying complete 
probability distribution. BKBs collect the 
conditional probability rules (CPR) in an “if-then” 
style. Each instantiation of a random variable is 
represented by an I-node and the rule specifying the 
conditional probability of an I-node is encoded in an 
S-node with a certain weight/probability. Fig. 1 
presents an example BKB fragment, with square 
blocks and circles representing I-nodes and S-nodes, 
respectively. Multiple fragments can be combined 
into a single BKB using the Bayesian fusion 
algorithm (Santos et al., 2011c). The idea behind this 
algorithm is to take the union of all input fragments 
by incorporating source nodes, indicating the source 
and reliability of the fragments. Reasoning 
algorithms are used in BKBs to make predictions 
and provide explanations (Santos and Santos, 1999).  

2.3 Building a Model 

Our goal is to detect hidden opinion sources and the 
corresponding impact patterns that result in behavior 
change over time. However, without a sound 
theoretical foundation, the methods developed will 
simply be ad hoc. Social influence theories show 
how the way people adopt beliefs and attitudes from 
other sources varies across conditions/situations. 
Sometimes, a person will not accept these external 
ideas in total but only adopts the pieces that fit into 
his own situation (Kelman, 1961). Therefore, we 

develop a model that is specifically tailored to take 
into account of all these points. 

 

Figure 1: Sample BKB fragment from an intent 
framework. 

2.3.1 Finite Belief Fusion Model (FFM) 

We develop a finite belief fusion model to represent 
a person’s actual belief distribution. Formally, a 
finite belief fusion model is defined as 

p'(x) fuse(w0, p,

w,

h)

wi 1
i0







 

where  and ݓ denote the initial belief distribution 
and initial reliability, respectively. ݓሬሬറ ൌ
ሾݓଵ, ,ଶݓ …  ሿ  represents how a person views andݓ,
trusts the opinion sources ሬ݄റ ൌ ሾ݄ଵ, ݄ଶ, … , ݄ሿ, where 
both ݓሬሬറ and ሬ݄റ are implicit to the observer.  Instead of 
simply adding up the weighted input distributions 
linearly like general mixture model, the new belief 
distribution ′ is generated through the BKB fusion 
algorithm. An important property of the fusion 
algorithm is the capability to support transparency in 
analysis. In other word, all perspectives are 
preserved in the fused BKB without loss of 
information. Since the fused belief is still a valid 
BKB, for each of the random variable ݒ  in ′, let  
 We have .ݒ  be the parent  variables ofݒ
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Social influence theory suggests that people’s beliefs 
are partially affected by the external sources. In this 
work, we consider a simplified situation when each 
of the hidden sources only affects one part of the 
initial belief , such that the conditional probability 
distribution of a particular variable ݒ  will not be 
changed by more than one source. This could 
happen when people prefer to take the attitude from 
the source whose belief/opinion is most convincing 
in a particular field of knowledge. Then, the above 
model can be simplified as: 

'( , ) ( , )  
                              (1 ) ( , )

'( ) ( ) (1 ) ( )
'( , ) '( )

pa pa

pa

pa pa pa

pa pax

p v x v y wh v x v y
w p v x v y

p v y wh v y w p v y
p v x v y p v y

     
   
      
    

 
(1)

where ݄ is the only influencing source that affects ݒ.   

2.3.2 Detection Algorithm 

Now, we generalize the problem by considering a 
series of beliefs: given belief trend , ,ଵ ,ଶ … ,  ௧
generated over t time periods, the goal is to learn the 
probability distribution for each of the potential 
hidden BKBs ݄  ( ݅ ൌ 1: ݊ ), as well as its time 
varying impact ݓሺ݆ ൌ 1: ሻݐ . Considering that the 
causal relationship in human belief systems is less 
likely to change, we assume that all belief networks 
share the same (causal) structure, but vary on 
probability distribution. Note, ݓ ൌ 0  if source ݄ 
has no impact at time ݆. 

Let ݒ  be the variable influenced by source ݄ 
and let ߠ  and ߮  denote two states representing 
ሼݒ ൌ ݒሼ	 ሽ andݕ ൌ ,ݔ ݒ ൌ :ሽ, we rewrite (1) asݕ
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where ݓ, ݄ሺߠሻ and ݄ሺ߮ሻ are unknown parameters 
needed to be learned from the given belief trend.  

Let ݓሬሬറ ൌ ሾݓଵ, ,ଶݓ … , ௧ሿݓ  be the impact series 
of source ݄ , we learn ݓሬሬറ , ݄ሺߠሻ and ݄ሺ߮ሻ via the 
following constrained optimization problem 

( , ) ( , )* * *

1, ,
[ ( ), ( ), ] argmin ( )j ij j ij

i

t f w f w
i i i jw

h h w e e
 

  
 


   

  

s.t.    ∀߮,∑ ሻఏߠሺ െ ሺ߮ሻ  0, ݆ ൌ 1: ݐ
 

where   

݂ሺݔ, ሻݕ ൌ ሾሺݔሻ െ ሻݔሺ݄ݕ െ ሺ1 െ  ሻሿଶݔሺሻݕ

We apply Sequential Quadratic Programming (SQP) 
algorithm (Nocedal and Wright, 2006) to do the 
optimization, as the linear algebra routines it uses 
are more efficient in both memory usage and speed 
than the active-set routines. 

So far, we have addressed the problem of 
characterizing the hidden source ݄  and its impact 
pattern with respect to variable ݒ . We apply the 
algorithm to all variables (݇ ൌ 1:݉ ) and get ݉ 
impact trends.  

Considering that some hidden sources may affect 
a fragment of initial belief that contains more than 
one variable, it is reasonable to believe that the 
variables that generate similar impact trends are 
affected by the same hidden source and should be 
represented in one distribution. We treat the weight 
at each time step as a feature and apply clustering 
algorithms (Xu and Wunsch, 2005) such as K-means 
to detect similar trends. The optimal number of 
hidden sources is achieved when the sum of inter-
class variance is less than a threshold.  

3 EXPERIMENTS 

In what follows, we present results of experiments 
that were carried out on both simulated data and a 
real world scenario. We studied the performance 
characteristics of our algorithm in simulation studies 
that vary by several orders of magnitude in the 
number of variables, number of hidden sources and 
number of time steps.  

3.1 Simulated Data Set 

To evaluate the effectiveness of our method, we 
simulate a person’s actual belief trend from his 
initial belief and some hidden external sources, 
where the external sources are unknown to the 
detection model. We start with a small dataset, in 
which both of the initial belief and hidden sources 
are represented by a simulated five variables BKB 
(same structure, different distribution). In this 
experiment, we select only one hidden source. Then 
for every time period, we sample 1000 records from 
initial belief and hidden source respectively. The 
testing data is generated by mixing samples from 
two different distributions together with a randomly 
assigned hidden weight ranging from 0 to 1.  
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Figure 2: Comparison of detected weight for FFM (blue line) and GMM (green line) methods with different number of time 
steps. The red line with diamond mark is the real weight trend.  

In order to examine how the amount of time-
varying data affects our detection performance, we 
choose three different numbers of time steps: 10, 50 
and 100. The conditional probability parameters of 
the belief network at each time step are learned from 
the testing data using smoothed maximum likelihood 
estimation (Das et al., 2008). To compare with the 
state-of-art mixture models, we run the same testing 
data on Gaussian Mixture models (GMMs), one of 
the most statistically mature methods for mixture 
model clustering. The weight of each component is 
learned through mixture decomposition. Figure 2 
plots the impact trend detected using FFM and 
GMM respectively in terms of number of time steps, 
from which we can see that the hidden impact 
pattern we captured is pretty consistent with the true 
trend. Also, when the hidden impact values are very 
small, our detection results are still accurate. This 
fact enables us to detect less substantial influencing 
sources. The mean and standard deviation of the 
detection errors (difference between true and learned 
weight) can be found in Table 1a. In contrast to 
GMM, our method shows a higher accuracy with a 
smaller variance. Additionally, we see that the 
average accuracy of FFM increases with the number 
time steps, which indicates that our method is 
capable of improving detection performance by 
leveraging time-varying knowledge. Moreover, we 
compare the distribution of a hidden source learned 
during the detection process with the true one. Chan 
and Darviche (2002) proposed a distance measure 
between two probability distributions, where the 
distance is defined as: 

D(P,P')  lnmax
w

P'(w)

P(w)
 lnmin

w

P'(w)

P(w)  

We apply this metric in our evaluation due to its 
ability to bound belief changes comparable to KL-
divergence. The results provided in Table 1b suggest 
that the distribution of the hidden source we learned 
is closer to the real distribution than GMM.  

Table 1a: Mean and Std of the detection errors. 

Detection Error 10 steps 50 steps 100 steps 
FFM (Mean) 0.0385 0.0281 0.0253 

GMM (Mean)  0.3123 0.2219 0.2361 
FFM (std) 0.0263 0.0160 0.0166 
GMM (std)  0.1248 0.1386 0.1361 

Table 1b: Distance measure between the true and learned 
probability distribution using different algorithm.  

Distance 10 steps 50 steps 100 steps 
FFM 0.5618 0.5137 0.4742 
GMM 2.3145 1.9723 2.1687 

To evaluate the scalability of our technique, we 
also simulate data from a 30 variables network with 
100,000 mixture records generated at each time step. 

We ran our experiment on nine different hidden 
sources and present the results in Figure 3. 
Apparently, our method scales well to large network.  

Next, we conduct a more detailed analysis of 
performance by looking at detection results on each 
run. The largest error comes from the sixth trial. We 
examine the hidden sources involved in this trial and 
find that the distribution of the hidden source is very 
similar to the initial belief. Thus, it becomes more 
difficult to accurately detect the hidden impact, as 
the varied belief at each time step is insensitive to 
the value of impact.  

Finally, we examine the ability of our method to 
detect multiple hidden sources. We choose n hidden
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Figure 3: Comparison of detection results on large dataset. 

sources (݊	 ൌ 	1: 9), where each of them affects one 
fragment of the initial network with a certain weight. 
We follow the same procedure as the second 
experiment except that the mixture records are 
generated from n different hidden sources. Figure 4 
depicts the average detection error with respect to 
the number of hidden sources. As we can see, the 
error grows with the number of sources. This is due 
to the increased degree of freedom brought about by 
multiple fragments fusion as it enlarges the potential 
solution space. Nevertheless, the largest error is still 
less than 0.1. 

 

Figure 4: Average detection error in terms of the number 
of hidden sources. 

3.2 H1N1 

In this subsection, we apply our method to identify 
the impact patterns behind the events that happened 
during the H1N1 pandemic in Mexico. Santos et al. 
(2011a) conducted a Cross-Border Epidemic Spread 
project to study why and under what circumstances 
would people be driven to cross the border both 
legally and illegally with respect to epidemic spread. 
In order to understand such human behavior as well 
as the intent, they employed the intent framework 

represented by BKBs to model people’s reaction to 
the various events that took place during the 
pandemic in 2009. The whole intent system is 
constructed through the fusion of cultural BKB 
fragments that are created based on sources such as 
demographic information and news articles. When a 
major event occurs, the intent system will update its 
probability distribution adaptively to reflect an 
individual/group’s belief change caused by the 
event. Therefore, the characteristics of these events 
and their impact patterns are key to analysing 
people’s reactions. We apply our method on a series 
of intent systems modelled in the paper (Santos et 
al., 2011a) to detect the implicit events without any 
foreknowledge. Figure 5 displays our detection 
results, where two potential/unknown events, 
represented by blue and red dotted lines are 
successfully detected.  

To figure out what these two events could be, we 
plot the probability of “people believe disease is 
contagious” over time in Figure 5. As we can see, 
the probability achieves its peak on May-1-09 and 
starts to decline on Jul-15-09, which shows a strong 
correlation with the impact pattern from the second 
event. This finding indicates that the breakout of the 
second event causes a temporary increase on 
people’s belief regarding the contagious nature of 
the disease. In comparison, the event that happened 
on Apr-24-09 had no direct impact on such belief 
change. In fact, according to the timeline of H1N1, 
we find that two events: “WHO sends experts to 
Mexico” on Apr-24-09 and “Government published 
an announcement to advise people staying at home” 
on May-1-09 match perfectly with our detection 
result.  The learned distribution of the WHO event 
suggests an increase in the probability of “believe 
healthcare is effective” by 0.225. However, there is 
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no direct causal relationship between the 
effectiveness of healthcare and the contagiousness of 
H1N1, so the impact from the “WHO” will not be 
reflected by how people think of the disease. This 
explains why people did not change their beliefs 
about the contagiousness of H1N1 until they 
received the government’s announcement, even 
though the WHO was already sending in experts 
since April. Moreover, we compare the impact 
patterns we detected with the true trend. As shown 
in Figure 5, our results are very close to the 
modelled scenario (solid lines), which helps point 
towards the effectiveness of our approach.  

 

Figure 5: Detection results on event impact. Two events 
represented by blue and red lines are detected. The black 
solid line indicates the probability of “people believe 
disease is contagious”. 

4 CONCLUSIONS 

In this paper, we presented a new approach to detect 
hidden sources of influence, as well as capture and 
characterize the patterns of their impact with regards 
to belief-changing trends. We formalize the problem 
as a finite belief fusion model and solve it via an 
optimization method. We demonstrate that FFM 
outperforms the classic Gaussian Mixture Models in 
both small and large synthetic datasets. In addition, 
we applied our method to identify implicit events 
that happened during the H1N1 pandemic in 
Mexico. Also, the detection results generated by 
FFM were consistent with the modelled scenario.  

In future work, we will expand our approach by 
allowing multiple sources to affect the same part of 
the belief network. This happens when there is no 
convincing source for a particular fragment and the 
final knowledge/belief system is formed by 
integrating all possible explanations.  
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