
Evolving a Character in a First-person Shooter

Chishyan Liaw, Ching-Tsorng Tsai, Chung-Chi Lin and Jing-Long Wu
Department of Computer Science, Tunghai University, Taichung 40799, Taiwan

Keywords: First-person Shooter.

Abstract: This paper presents an effective strategy of evolving a character in the Quake III Arena, a first-person
shooter. A genetic algorithm (GA) is used to evolve a character's capabilities and behaviors. In order to
increase a character’s ability, the GA is used to determine the constrained weights for the behavior control.
In the experiments, the GA is implemented to design a non-player character (NPC) which is shown to be
superior to the other characters originally created in the Quake III game. This evolving strategy decreases
the amount of effort required by game designers to design an intelligent character’s behaviors.

1 INTRODUCTION

Choosing a proper set of parameters in a first-person
shooter is not a straightforward process. Various
research efforts have been devoted to exploring
approaches using fuzzy automatons in designing
character behaviors (Alexander, 2002); (Zarozinski,
2002). In a fuzzy-state machine, an output result is
chosen randomly or according to a complex weight
function. In addition to the approach of fuzzified
automatons-based approach, other methods are also
used. For example, Ponsen et al., (2007) used offline
learning to discover effective tactics that can be
utilized to beat static opponent strategies. Smith et
al. (2007) applied an online reinforcement learning
algorithm to develop winning policies in team first-
person shooter games with fixed individual agent
behavior.

Zanetti and El Rhalibi (2004) introduced
machine learning techniques for FPS in the Quake
III Arena. The system is able to learn certain
behaviors, but still lacks in others. Most of the
studies investigated how an NPC can learn from
experience of expert human players. The strategies
take significant time to evolve. It is very difficult for
game developers to decide when and where to
deploy certain tactics (Zanetti and El Rhalibi, 2004).

The Particle Swarm Optimization (PSO) was
applied to evolve game agents. (Messerschmidt and
Engelbrecht, 2004); (Tsai et al., 2011). PSO has the
advantage of being able to converge fast; however, a
local optimum is likely acquired instead of obtaining
a global optimum (Shyr, 2008).

In 1975, Holland introduced the genetic
algorithm (GA), which is an evolutionary algorithm
that imitates natural evolutionary processes such as
inheritance, selection, crossover, mutation, etc., to
search for solutions to optimization problems.
Genetic evolutionary computations, including
genetic algorithms, genetic programming, etc., have
been applied to solve nonlinear problems such as
optimization, automatic programming, machine
learning, economics, etc. (Sipper et al., 2007).

In this paper, GA is used to evolve a character's
behaviors in a first-person shooter. The method was
implemented on the platform of the Quake III. In the
Free for All event of the game, a character is evolved
to compete against original opponents. The
experimental results show that the evolved character
is superior to all the original characters.

2 QUAKE III ARENA -
FIRST-PERSON SHOOTER

In the Quake III Arena, the player and NPCs move
around in a 3D virtual arena to kill opponents with
score points calculated based on the objective of the
game event. The game events include Free for All,
Tournament, Team Death Match, Capture the Flag,
etc.

In the event of Free for All, a player can
challenge a number of gladiators who reside in the
arena. Each of the gladiators has its own tactics and
personality. In the game, everyone is the fragged

265Liaw C., Tsai C., Lin C. and Wu J..
Evolving a Character in a First-person Shooter.
DOI: 10.5220/0004112702650267
In Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA-2012), pages 265-267
ISBN: 978-989-8565-33-4
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

target of others to get score points.
The health of a fighter is displayed as a number.

Health is lost if a combatant is wounded or fragged
and can be regained by running through the health
bonus in an arena. The game ends when the time
limit has been reached, or if a combatant reaches a
specified score.

A character may have its own strategies, such as
attack or retreat in the game. Some tactics may be
self-preservative or aggressive. Each tactic consists
of a few behaviors. Finding suitable parameters for
an intelligent character’s strategies and behaviors is
of major interest in this paper. These parameters
include attitudes used in fighting, offense or defense,
attack or ambush, vengefulness or frag easy target,
etc. The released Quake III source codes are used for
modification. The favorite goals, tactics, and
behaviors of a character can be altered in external
files. These files will be loaded prior to a game so
that the character’s actions in the game can be
changed accordingly.

3 THE EVOLVING METHOD

This section introduces a strategy of evolving an
intelligent gaming character which is able to win in
the first-person shooter, Free for All in the Quake III
Arena.

3.1 Designing the Behaviors

An AI mechanism is available for players to create a
character. The Dynamic Linking Libraries (DLLs)
consist of bot AI open source and bot AI library,
which can be called by the main program of the
Quake III during a game. The external bot files,
which specify a character’s name, weights setting,
and so on, will be loaded by programs of bot AI
library before a character joins the game.

The bot AI library is responsible for loading the
external bot files, perceiving and acting of a bot, and
controlling of certain bot’s behaviors. The bot AI
open source controls most of a bot’s behaviors. In
addition, a strategy and an action will be also
determined according to the description of a bot’s
behaviors and parameters in the external bot files.

3.2 Evolution of a Character

A bot’s abilities, behaviors, etc. are described in
parameters in the external bot files. A genetic
algorithm is applied to modify those parameters
described in the external bot file based on the

progress of a game.
Initial values are randomly generated for those

parameters before optimization begins. The
character is then allowed to play in a game; at the
end of the game, the performance of the character is
evaluated and a new set of parameters is decided
accordingly. The optimization process is repeated
until a stopping rule is met. The behavior parameters
are adjusted by the GA approach dynamically to
yield the best solution.

3.3 Evolution in the Game

Genetic algorithm is applied to search for an optimal
solution. The best agent evolves from inheritance,
selection, crossover, and mutation after generations.
Initially, randomly-selected individuals, which are
possible solutions to the best strategy in a game, are
created. Their performance is evaluated based on a
preset fitness function after a generation.

The goal in the game is to kill as many bots as
possible while trying not to be fragged. The fitness
function for bot i is defined as:

dkfi (1)

where k is the number of bots killed by bot i, d is the
number of times bot i was fragged to death, and α
and β are the weights of kill and death, respectively.
Agents with high fitness values can breed their
offspring. The evolution process is repeated until an
optimal solution is found or a maximum number of
generations is reached.

The strategies of an agent's behavior are encoded
in a character string. Thus, the chromosomes, which
are the behavior in a game, for bot i in generation j
are

jiB ,
. The proposed method first generates n

agents in which chromosomes are given randomly.
Each one then takes turns playing against a built-in
bot, which is controlled by the Quake III AI. The
performance of all agents is then evaluated
according to Eq. (1). The chromosomes of b best-
performing agents are stored in a gene pool. The
chromosomes of v new bots are generated by
selecting these chromosomes in the pool randomly,
and proceeding to a crossover operation. A mutation
is completed by changing t of the chromosomes
generated from the crossover in each bot. The v
worst-performing bots in the generation are replaced
by the new offspring agents. Thus, the bots of the
next generation are bred by inheriting the best-
performing agents’ chromosomes, as well as their
crossover and mutation.

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

266

4 EXPERIMENTAL RESULTS

The proposed approach was examined in the mode
of the Free for All. The presented evolution system
was coded in Visual Basic. The weights for α=5 and
β=3.

In the experiment, the character created based on
the proposed approach was named Harley. Harley
and 5 other built-in bots fought against each other in
the games.

In the experiments, each match ends when a bot
has killed 15 other bots. The probability of crossover
and mutation are 0.4 and 0.1, respectively. We let
Harley compete against 5 other original bots for a
30-match game. The results are illustrated in Table 1
and Figure 1. They demonstrate that the evolved
agent has better performance than the original
characters.

Table 1: Number of times a bot is fragged and number of
bots killed.

Bot
Number of

death
Death rate %

Number of
kills

Kill rate %

Harley 242 12.3 365 22.5

Anarki 302 15.3 262 16.2
Angel 344 17.5 247 15.2
Biker 379 19.2 277 17.1
Bitter 320 16.2 223 13.8
Bones 383 19.4 246 15.2

Figure 1: The turnament results.

5 CONCLUSIONS

In a first-person shooter, it is difficult to tune an
agent's behavior since there are a large number of
factors that affect the setting for a character. The
proposed approach develops an effective way to
determine the parameters for an intelligent

character’s behavior in a complicated gaming
environment. In the experiment, one of the most
intricate modes of a game, Free for All, is used to
verify the proposed method. The results have
demonstrated that the proposed method is able to
design a character capable of evolving and winning.
The character is able to determine a suitable action
and behavior during the game. Our proposed
approach provides a game designer in designing an
intelligent character with an effective method.

REFERENCES

Messerschmidt, L., Engelbrecht, A. P., 2004. Learning to
play games using a PSO-based competitive learning
approach, IEEE Transactions on Evolutionary
Computation 8(3), 280-288.

Ponsen, M., Spronck, P., Héctor, Muñoz-Avila, Aha, D.
W., 2007. Knowledge acquisition for adaptive game
AI, Science of Computer Programming, 67:59–75.

Shyr W. J., 2008. Introduction and Comparison of Three
Evolutionary-Based Intelligent Algorithms for
Optimal Design, Convergence and Hybrid Information
Technology, 2008. ICCIT '08, 879 - 884.

Sipper, M., Azaria, Y., Hauptman A., Shichel, Y. 2007.
Designing an evolutionary strategizing machine for
game playing and beyond. IEEE Transactions on
Systems, Man, and Cybernetics – Part C: Applications
and Reviews 37(4)583-593.

Smith, M., Lee-Urban, S., Héctor Muñoz-Avila, 2007.
RETALIATE: Learning winning policies in first-
person shooter games, American Association for
Artificial Intelligence, http://www.aaai.org

Tsai, C.-T., Liaw, C., Huang, H.-C., Ko, C.-H., 2011. An
Evolutionary Strategy for a Computer Team Game,
Computational Intelligence, 27(2), 218-234.

Zanetti, S., El Rhalibi, A., 2004. Machine learning
techniques for FPS in Q3, ACM ’04, Singapore.

Zarozinski, M., 2002. An open source fuzzy logic library,
AI Game Programming Wisdom, Charles River Media
Press, 90-101.

Evolving�a�Character�in�a�First-person�Shooter

267

