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Abstract: We know that the brain is composed of simple neural units given by dendrites, soma, and axons. Every 
neural unit can be modelled by electrical circuits with capacitors and adaptive resistors. To study the neural 
dynamic we use special Ordinary Differential Equations (ODE) whose solutions give us the behaviour or 
trajectory of the neural states in time. The problem with ODE is in the definition of the parameters and in 
the complexity of the solutions that in many cases cannot be found. The key elements that we use are the 
multidimensional vector spaces of the electrical charges, currents and voltages. So currents and voltages are 
geometric references for states in the central neural system (CNS). Any neuro –biological architecture can 
be modelled by an adaptive electrical circuit or neuromorphic network that relates voltage with current by 
conductance matrix or on the contrary by impedance matrix. Given a straight line with a change of reference 
we reshape the straight line in a geodetic and in a new form for the distance. The change of the reference 
transforms a set of variables into another so this transformation is similar to a statement in the digital 
computer that we associate to the software. Every change of variables can be reproduced by a similar 
change of voltages (currents) into currents (voltages) by conductance (impedance) matrix. We use the CNS 
as a material support or hardware in the digital computer to realise the wanted transformation. In conclusion 
geometry fuses the digital computer structure with neuromorphic computing to give efficient computation 
where conceptual intention is the change of the reference space , while material intention is given by the 
neurodynamical processes modelled by the change of the electrical charge space where we define the metric 
geometry and distance. 

1 INTRODUCTION 

This work studies a possible mathematical 
formulation of intentional brain dynamics following 
Freeman’s half century-long dynamic systems 
approach (Freeman, 1975; 2007); (Kozma, 2008) 
We consider the electrical behaviour of the brain. In 
1980 an artificial neural network was built that 
works but has high precision components, slow 
unstable learning, it is non adaptive and needs an 
external control. Now we want low precision 
components, fast stable learning, adapt to 
environment and autonomous. How can we get this? 
We can make dynamical components, add feedback 
(positive & negative) and close the loop with the 
outside world. The ordinary differential equations or 
ODEs to control the neural dynamic are a stiff and 
nonlinear system. Why not just program this on a 

computer? We know that stiff and nonlinear 
dynamical systems are inefficient on a digital 
computer. An example is the IBM Blue Gene project 
with 4096 CPUs and 1000 Terabytes RAM, which, 
to simulate the Mouse cortex uses 8 106 neurons, 2 
1010 synapses 109 Hz, 40 Kilowatts and digital. The 
brain uses 1010 neurons, 1014 synapses 10 Hz and 20 
watts analog system which is more efficient than 
digital by many orders of magnitude.  

(Snider, 2008) suggests to use analog electrical 
circuit denoted CrossNet or neuromorphic computing 
with memristor to solve the problem of the neural 
computation. Let’s recall that for Turing the physical 
devise is not computable by a Turing machine, which 
is the theoretical version of the digital computer. 
(Carved, 1990) suggests that the physics or analog 
computer is more efficient to solve the neural network 
problem. In fact, for analog system we do not have 
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algorithms to program the neurons. Rather, the digital 
program is substituted by the dynamics in non 
Euclidean space. We can program the CrossNet 
(Takashi Kohno, 2008), (Rinzel, 1998) electrical 
system as it was used by Snider to compute the 
parameters useful to generate the desired trajectories 
to solve problems. Geometric and physical 
description of the intentionality (Freeman, 1975) is 
beyond any algorithmic or digital computation. To 
clarify better the new computation paradigm, we can 
refer the following principle: “Animals and humans 
use their finite brains to comprehend and adapt to 
infinitely complex environment.” (Kozma, 2008) We 
show that this adaptive system has a geometric 
interpretation that gives us the possibility to 
implement the required parameters in ODE to achieve 
the desired behaviours. The geometric interpretation 
uses three main spaces. One is the current 
multidimensional space, the other is the electrical 
charge multidimensional space and the last is the 
voltage space (Resconi, 2007; 2009). In (Mandzel, 
1999) we can found geometric method to study 
human motor control. 

2 GEOMETRY AND 
ELECTRICAL CIRCUITS 

Because the brain is a complex electrical circuit with 
capacity and resistors, a network of neurons or an 
electronic network is a general transformation or 
MIMO from many voltages in inputs to many 
currents in output 
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where the currents are vectors in a n-dimensional 
space of the currents and the voltages are vectors in 
a p-dimensional space. In figure 1 we show as 

 

Figure 1: Vector of current in the current space. 

example the three dimensional current space.  
For one dimension the (1) is written in this form 

( )i f v  that in electronics is denoted characteristic 

function. In Figures 2 and 3 we show two different 
cases for (1) in one dimension. 

 

Figure 2: An approximation of the potassium and sodium 
ion components of a so-called "whole cell" I–V curve of a 
neuron. 

 

Figure 3: MOSFET drain current vs. drain-to-source 
voltage for several values of the overdrive voltage, VGS - 
Vth; the boundary between linear (Ohmic) and saturation 
(active) modes is indicated by the upward curving 
parabola. 

The instrument to match intentionality with the 
electrical circuit is the metric geometry of the brain 
state space or electrical charge space. The metric 
geometry in the state space can be obtained by the 
instantaneous electrical power p in the current space 
or in voltage space as we show in equation (2). For 
the linear form of the (1) we have the expression of 
the power. 
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Where ,C   and ,Z   are the conductance matrix 

and the impedance matrix, v are the voltages , i are 
the currents and q are the charges. For example, 
given the electrical circuit. 

 

Figure 4: Simple electrical circuit with three generators 
V1, V2, V3. 

For the Kirchhoff current and voltage laws and 
for Ohm’s law we have for the electrical circuit in 
Figure 4 the following system of equations. 
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For the vector space of currents and voltages the 
Kirchhoff current and voltage laws and Ohm’s laws 
can be represented in this vector form 
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where the solutions can be written in an operational 
way in this form 
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where C is the conductance matrix for which 
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For relation (1) we can compute the dynamical 
conductance  
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C is the dynamical conductance which is the 
function of the voltages 
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In the next chapter we show how it is possible by the 
geodesic in the charge space to generate the ordinary 
differential equation (ODE) that controls the 
dynamics of the neural network and of the electrical 
circuit. 

3 SIMPLE ELECTRICAL 
CIRCUIT AND GEODESIC 

Given the trivial electrical circuit 

V3 V4

 E
i1 

V1  V2  R 

 

Figure 5: Simple electrical circuit with one generator E 
and one resistor R. 

We compute the power p that is dissipated by the 
resistance R. We define the infinitesimal distance ds 
in this way: 

2 2 = ( )  
dq

power Ri R
dt

ds

dt
   

We know that in the electrical circuit the currents 
flow in the circuit in such a way to dissipate the 
minimum power. The geodesic line in the one 

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

460



 

dimension current space i is the trajectory in time. 
For the minimum dissipation of the power or cost C, 
we have 

2
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dq
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We can compute the behavior of the charges for 
which we have the geodesic condition of the 
minimum cost. We know that this problem can be 
solved by the Euler Lagrange (Izrail, 1963) 
differential equations or ODE (ordinary differential 
equation) 
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When R is independent of the charges then R has no 
memory , so the previous equation can be written as 
follows 

( ) 2

0  , ( )  , 2

dq
d

d q dq Edt q t at b i a
dt dt Rdt
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The geodesic is a straight line in the space of the 
charge. In Figure 6 we show the behaviour of the 
geodesic in the charge space and the current space as 
derivatives of the electrical charges 

 

Figure 6: Charge space and derivatives in time of charges 
or currents.  

4 DIGITAL AND NEURAL 
COMPUTING 

To stress the difference between digital computer 
and geometric map of the brain we refer the 
interesting discussion of (Carver, 1990) where are 
present all the main ideas that we use and improve in 
this paper. Biological solutions in formation 

processing systems operate on completely different 
principles from those with which most engineers are 
familiar. For many problems, particularly those in 
which the input data are ill-conditioned and the 
computation can be specified in a relative manner, 
biological solutions are many orders of magnitude 
more effective than those we have been able to 
implement using digital methods. This advantage 
can be attributed principally to the use of elementary 
physical phenomena as computational primitives, 
and to the representation of information by the 
relative values of analog signals, rather than by the 
absolute values of digital signals. A typical 
microprocessor does about 10 million operations and 
uses about 1 W. In round numbers, it costs about  
l0-7 J to do one operation, the way we do it today, on 
a single chip. If we go off the chip to the box level, a 
whole computer uses about 10-5 J /operation. A 
whole computer is thus about two orders of 
magnitude less efficient than is a single chip. Back 
in the late 1960's we analyzed what would limit the 
electronic device technology as we know it; those 
calculations have held up quite well to the present. 
The standard integrated circuit fabrication processes 
available today allow us to build transistors that 
have minimum dimensions of about 1  ( 10-6 m). 
By ten years from now, we will have reduced these 
dimensions by another factor of 10, and we will be 
getting close to the fundamental physical limits: if 
we make the devices any smaller, they will stop 
working. It is conceivable that a whole new class of 
devices will be invented that are not subject to the 
same limitations. But certainly the ones we have 
thought of up to now-including the superconducting 
ones-will not make our circuits more than about two 
orders of magnitude more dense than those we have 
today. The factor of 100 in density translates rather 
directly into a similar factor in computation 
efficiency. So the ultimate silicon technology that 
we can envision today will dissipate on the order of 
10-9 J of energy for each operation at the single chip 
level, and will consume a factor of 100-1000 more 
energy at the box level. We can compare these 
numbers to the energy requirements of computing in 
the brain. There are about 1016 synapases in the 
brain. A nerve pulse arrives at each synapse about 
ten times, on average. So in rough numbers, the 
brain accomplishes 1016 complex operations. The 
power dissipation of the brain is a few watts, so each 
operation costs only 10-16 J. The brain is a factor of 1 
billion more efficient than our present digital 
technology, and a factor of 10 million more efficient 
than the best digital technology that we can imagine. 

From the first integrated circuit in 1959 until 
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today, the cost of computation has improved by a 
factor about 1 million. We can count on an 
additional factor of 100 before fundamental 
limitations are encountered. At that point, a state-of-
the-art digital system will still require 10MW to 
process information at the rate that it is processed by 
a single human brain. The unavoidable conclusion, 
which (Carver, 1990) reached about ten years ago, is 
that we have something fundamental to learn from 
the brain about a new and much more effective form 
of computation. Even the simplest brains of the 
simplest animals are awesome computational 
instruments. They do computations we do not know 
how to do, in ways we do not understand. We might 
think that this big disparity in the effectiveness of 
computation has to do with the fact that, down at the 
device level, the nerve membrane is actually 
working with single molecules. Perhaps 
manipulating single molecules is fundamentally 
more efficient than is using the continuum physics 
with which we build transistors. If that conjecture 
were true, we would have no hope that our silicon 
technology would ever compete with the nervous 
system. In fact, however, the conjecture is false. 
Nerve membranes use populations of channels, 
rather than individual channels, to change their 
conductances, in much the same way that transistors 
use populations of electrons rather than single 
electrons. It is certainly true that a single channel 
can exhibit much more complex behaviors than can 
a single electron in the active region of a transistor, 
but these channels are used in large populations, not 
in isolation (Carver, 1990). We can compare the two 
technologies by asking how much energy is 
dissipated in charging up the gate of a transistor 
from a 0 to a 1. We might imagine that a transistor 
would compute a function that is loosely comparable 
to synaptic operation. In today’s technology, it takes 
about 10-13j to charge up the gate of a single 
minimum-size transistor. In ten years, the number 
will be about 10-15 j within shooting range of the 
kind of efficiency realized by nervous systems. So 
the disparity between the efficiency of computation 

in the nervous system and that in a computer is 

primarily attributable not to the individual device 
requirements,/operation. A whole computer is thus 
about two orders of magnitude less efficient than is a 
single chip. The disparity between the efficiency of 
computation in the nervous system and that in a 
computer is primarily attributable not to the 
individual device requirements, 

but rather to the way the devices are used in the 
system. 

Where did all the energy go? There is a factor of 1 

million unaccounted for between what it costs to 
make a transistor work and what is required to do an 
operation the way we do it in a digital computer. 
There are two primary causes of energy waste in the 
digital systems we build today. 
1) We lose a factor of about 100 because, the way 
we build digital hardware, the capacitance of the 
gate is only a very small fraction of capacitance of 
the node. The node is mostly wire, so we spend most 
of our energy charging up the wires and not the gate. 
2) We use far more than one transistor to do an 
operation; in a typical implementation, we switch 
about 10 000 transistors to do one operation. So 
altogether it costs 1 million times as much energy to 
make what we call an operation in a digital machine 
as it costs to operate a single transistor. (Carver, 
1990) does not believe that there is any magic in the 
nervous system, that there is a mysterious fluid in 
there that is not defined, some phenomenon that is 
orders of magnitude more effective than anything we 
can ever imagine.  

 

There is nothing that is done in the nervous 
system that we cannot emulate with electronics if 
we understand the principles of neural 
information processing by suitable conceptual or 
software transformations in general reference 
(geometry ). 

 

We can starts by letting the device physics define 
elementary operations. These functions provide a 
rich set of computational primitives, each a direct 
result of fundamental physical principles. They are 
not the operations out of which we are accustomed 
to building computers, but in many ways, they are 
much more interesting. They are more interesting 
than AND and OR. They are more interesting than 
multiplication and addition. But they are very 
different. (Carver,1990) tries to fight them, to turn 
them into something with which we are familiar, he 
thinks to end up making a mess. We show in this 
paper that this is not true. In fact (Carver,1990) 
forgot that the new operations must be oriented to a 
specific goal or intension. Now we are in agreement 
with and his neuromorphic network but we add a 
new dimension to the electrical system by the 
geometry in multidimensional space of charges to 
mimic the wanted transformation in the 
multidimensional space of the states. 

 

So the real trick is to invent a vector 
representation of the electrical charges that 
takes advantage of the inherent capabilities of 
the medium, such as the abilities to mimic the 
wanted transformation. These are powerful 
primitives. In conclusion we use the nervous 
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system as an instrument to simulate system-
design strategy oriented to the wanted goal or 
intentionality. 

5 GEOMETRY AND 
CONCEPTUAL PART IN 
NEURAL NETWORK 

Now the electrical power gives us the material 
aspect of intentionality. The other part of 
intentionality is the conceptual one which is given 
by the wanted transformation 
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where ( , ,..., )1 2x x xp  are the initial variables and 
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with the transformation (7) we can write the local 
linear equation 
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   
   
   
   
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      

(8a)

The identity between the geometric metric G with 
the electrical circuit metric Z is the fundamental 
equation that connects conceptual transformation (7) 
with physical transformation (1).

 

   where the distance is in the charge space, ,G Zi j i j  

With the fundamental equation we can compute the 
parameters of the distance as the square of the power 
in the electrical circuit. The square of the power is a 
non Euclidean distance in the state space of the 
electrical circuit that simulates the non Euclidean 
space of the classical geometry. 

Example: 

Let’s begin with an example. When the conceptual 
intention moves on a sphere given by simple 
equation 

2 2 2 2
1 2 3y y y r    

 

Figure 7: sphere where the green, red and blue lineas are 
geodetic. 

we have the transformations ( conceptual intention ) 

sin( ) cos( )1
sin( ) sin( )   2

cos( )3

x r

x r

x r

 

 













  

Let’s compute the geodesic in the space (x1 , x2 , x3 ) 
So we have 

  2 2 2 231 2( , ) ( ) ( ) ( ) ]

2 21 1 2 2( ) ( )  

dxdx dx
ds

dt dt dt

dx dx dx dxd d d d

d dt d dt d dt d dt

 

   

   

  

   
 

(8b)

  
2 2 2 2 2 23 3( ) ( ) sin ( )( )

dx dxd d d d
r r

d dt d dt dt dt

   


 
   

 
for the fundamental equation Gi,j= Zi,j we have 

2 0
2 20 sin ( )

r
Z

r 

 
 
   
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The current is 

 1

2
,

d
i 2 2 2 2 2dt  power = r i + r sin (q )i1 1 2i d

dt






 
  
  

   
   

(9)

6 NEURAL SYSTEM AS A 
COMPLEX ELECTRICAL 
CIRCUIT (FIGURE 12) 

In opposition to actual digital sequential computers 
where computations are carried out by a single 
complex processor there are Cellular Neural/Non-
linear Networks (CNN) (Torralba, 1999) which are 
analog parallel machines with a high number of 
simple processors, which are disposed in a regular 
array, and each processor is connected to the other 
processors in a reduced neighborhood. One of these 
analog processors is represented by the electrical 
activity of the synapse given by the electrical circuit 

 

Figure 8: Electrical circuit of the synapse. 

The impedance matrix is 

3 1 0

1 3

0 2

Rins
Z R Rm m

R R Rm syn m



 

 

 
 
 
   

The geodesic trajectory of the synapse activity is 
controlled by the relation  

power = iT Z i  

where Z is the impedance matrix in the currents 
space. In an extensive form we have 

  2 2 2
( ) ( 3) ( 3) 52

2
( 2) + 2 25 58 2 8

2 2
( 3)( ) ( 3)( )

2
( 2)( ) + 2( )( )

52

8 52

ds
power R i R imins

dt

R R i i i R i im sys m

dqdq
R Rmins

dt dt

dq dqdq
R Rm sys

dt dt dt

     

   

   

  



 

2 ( )( )5 8
dq dq

Rm
dt dt


 

(10)

We will show examples of simulation of a neuronal 
network by an equivalent electrical circuit. 

 
Figure 9: Example of axon and electrical circuit. 

 
Figure 10: Axon with myelin and equivalent electrical 
circuit. 

 

 

Figure 11: On the left there are the cones, the orizontal 
neurons and bipolar neurons. On the right there are the 
neuromorphic diagram or equivalent electrical circuit. 

 

Figure 12: Complex electrical circuit of neural network 
system. 

For more complex neural networks, we can 
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derive the corresponding geodesics in a similar 
fashion. For example, we could consider have the 
electrical representation of a neural network as 
shown in Figure 12. 

7 CONCLUSIONS 

With the neural network we can simulate the 
geodesic movement for any transformation of 
reference. For a given transformation of reference, 
we can build the associate geodesic, which allows to 
implement the transformation of reference in the 
neural network. The neural network as analog 
computer gives the solution of the ODE of the 
geodesic inside the wanted reference. The Freeman 
K set (Freeman, 1975) is the ODE of the geodesic 
that is the best trajectory in the space of the 
electrical charges. (Freeman, 1975) introduced the 
concept of intentionality, which can be recognized 
and studied in its manifestations of goal-directed 
behavior. Intention is interpreted as, respectively, an 
attribute of mental representations, the expression of 
motivations and biological driver. The mental 
representation is the conceptual part (software) of 
the intention, the biological driver is the material 
part (hardware) of the intention. 

In this paper we showed that any part of the brain 
can be represented by a complex electrical circuit. 
Intention has two different parts: the one is the 
conceptual part given by wanted transformation of 
the brain states. In the new reference the deformed 
straight line, geodesic, is the minimum distance 
between two points in the state space as in the 
classical straight line. The other part is the material 
part of the intention. In fact because any part of the 
brain can be modelled by an electrical circuit, and 
because the transformations between the voltages 
and currents give us the change of the reference ,the 
real transformation in the brain states is the material 
part of the intention. The conceptual parameters and 
the material parameters G (conductance C or 
impedance Z) must be equal. When the two parts are 
equal we have defined the central nervous system 
CNS dynamics in agreement with the wanted 
transformation in the conceptual space. The CNS 
realizes in the material world the wanted 
transformation. We define a task in the conceptual 
domain and we can implement the task in the 
material neural network parametric structures. In 
comparison with the traditional digital computer the 
conceptual part of intention is the software and the 
material part of intention is the hardware. The 
difference in the geometry of intention theory and 

digital computer is in the representation of the 
software and hardware. In the digital computer we 
have logic statements for the software and logic 
gates for the hardware. In the geometry of the 
intention we have geometric changes of the 
references in the multidimensional space as software 
and neural network as hardware. 
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