
Enhancing the Results of Recommender Systems
using Implicit Ontology Relations

Lamiaa Abdelazziz and Khaled Nagi
Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Keywords: Recommender Systems, Ontology Mapping, Quality of Recommendation, Performance Analysis.

Abstract: Sharing unstructured knowledge between peers is a must in virtual organizations. The huge number of doc-
uments available for sharing makes modern recommender systems indispensable. Recommender systems
use several information retrieval techniques to enhance the quality of their results. Unfortunately, every peer
has his/her own point of view to categorize his/her own data. The problem arises when a user tries to search
for some information in his/her peers’ exposed data. The seeker categories must be matched with its re-
sponders categories. In this work, we propose a way to enhance the recommendation process based on using
simple implicit ontology relations. This helps in recognizing better matched categories in the exposed data.
We show that this approach improves the quality of the results with an acceptable increase in computation
cost.

1 INTRODUCTION

A Virtual Organization is a temporary network or-
ganization, consisting of independent enterprises
that come together swiftly to exploit an apparent
market opportunity. The enterprises utilize their core
competencies in an attempt to create a best-of-
everything organization in a value-adding partner-
ship, facilitated by information and communication
technology (Fuehrer and Ashkanasy, 1998). Due to
the autonomous nature of the participants of virtual
organizations, knowledge sharing cannot be done in
a structured and centralized way. Peers in a virtual
organization have a large amount of documents and
each peer (or group of peers) have their own way of
classifying them. These two facts create great chal-
lenges to any document recommender system. A
typical Recommender System (RS) acting in this
environment should be distributed and autonomous
in order to match the nature of virtual organizations.
Typical RS use several Information Retrieval (IR)
techniques to generate good results. Moreover, RS
should also match the category structure of the seek-
er with that of the responder. For this to work, the
search engines lying within the heart of the RS
should be extended.

We base our work on KARe; which stands for
Knowledgeable Agent for Recommendations
(Gomez Ludermir et al., 2005), (Guizzardi-Silva

Souza et al., 2007). It is a multi-agent recommender
system that supports nomadic users sharing
knowledge in a peer-to-peer environment with the
support of a nomadic service. We extend this system
in order to enhance the quality of the results coming
from search component of the RS. This is done by
enriching the search query and enhancing the rank-
ing process of the result set. Our means is employing
extra ontological information provided by the peers.
Ontology has been used a lot in harmonizing
knowledge sharing where it shows great success. In
our distributed and autonomous scenario, we restrict
ourselves to using simple implicit ontological rela-
tions since we do not want to burden the peer with
defining their own elaborate ontology (or else they
will simply not do it) or force them to use a central-
ized ontology (since it is not applicable in such a
heterogeneous environment).

However, improving the quality of results often
involves more computation. For this reason, we test
our extension against the original system using the
same dataset to quantify the increase in quality ver-
sus the increase in computation cost during indexing
and searching. We also use a second dataset to veri-
fy the generality of our solution.

The rest of the paper is organized as follows.
Section 2 provides a background on recommender
systems. Our proposed system is presented in Sec-
tion 3. Section 4 contains an assessment of our pro-

5Abdelazziz L. and Nagi K..
Enhancing the Results of Recommender Systems using Implicit Ontology Relations.
DOI: 10.5220/0004105700050014
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 5-14
ISBN: 978-989-8565-30-3
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

posed system and its implementation while Section 5
concludes the paper.

2 BACKGROUND

2.1 Recommender Systems

Recommender Systems (RS) are software tools and
techniques providing suggestions for items to be of
use to a user. The suggestions relate to various deci-
sion-making processes, such as what items to buy,
what music to listen to, or what online news to read
(Ricci et al., 2011). (Burke, 2007) provides a good
taxonomy for distinguishing between recommender
systems. Recommender Systems can be categorized
in the following classes: content-based, collabora-
tive filtering, demographic, knowledge-based, com-
munity-based, and hybrid recommender systems.

In content-based RS, the system learns to rec-
ommend items that are similar to the ones that the
user liked in the past. The similarity of items is cal-
culated based on the features associated with the
compared items. Content-based RS can be even
found in early standard literature as in (Balabanovic
and Shoham, 1997).

Collaborative filtering RS are also called "peo-
ple-to-people correlation". In their simplest form,
implementations of this approach recommend to the
active user the items that other users with similar
tastes liked in the past (Schafer et al., 2007). The
similarity in taste of two users is calculated based on
the similarity in the rating history of the users.

Demographic RS recommend items based on the
demographic profile of the user. Many web sites
dispatch their users to particular pages based on their
language or country. Other criteria include age, gen-
der, etc., if this information is collected in the user
profile.

Knowledge-based RS recommend items based on
specific domain knowledge about how certain item
features meet users needs and preferences. Notable
knowledge based recommender systems are con-
straint based or case-based (Bridge, 2006). In these
systems, a similarity function estimates the matching
degree of the recommendations to the user needs.
Here the similarity score can be directly interpreted
as the utility of the recommendation for the user.

Community-based RS recommend items based
on the preferences of the user friends. The emer-
gence of social networks, such as Facebook, gave
rise to this type of systems. Social networks contain
billions of records holding user behavioral patterns
and combining them with a mapping of their social

relationships.
Hybrid RS are based on the combination of the

above mentioned techniques. Collaborative filtering
methods suffer from new item problems, i.e., they
cannot recommend items that have no ratings. This
does not limit content-based approaches since the
prediction for new items is based on their descrip-
tion (features) that are typically available. Given two
(or more) basic RS techniques, several ways have
been proposed for combining them to create a new
hybrid system. Four different recommendation tech-
niques and seven different hybridization strategies
are compared in (Burke, 2007).

2.1.1 Complementary Role of Information
Retrieval

Information Retrieval (IR) assists users in storing
and searching various forms of content, such as text,
images and videos (Manning, 2008). IR generally
focuses on developing global retrieval techniques,
often neglecting the individual needs and prefer-
ences of users.

Nevertheless, both IR and RS are faced with sim-
ilar filtering and ranking problems. That's why at the
heart of RS usually lies a search engine, such as the
open source Lucene (Hatcher and Gospodnetic,
2004). Queries submitted to the search engine are
enriched with RS-relevant attributes collected by the
RS and associated to the resultset.

Nowadays, various search engines also apply
some form of personalization by generating results
to a user query that are not only relevant to the query
terms but are also tailored to the user context (e.g.,
location, language), and his/her search history.
Clearly, both RS and IR will eventually converge to
one intelligent user assistant agent.

2.1.2 Complementary Role of Taxonomies
and Ontologies

Taxonomy is a hierarchical grouping of entities.
Ontologies are a machine readable set of definitions
that create a taxonomy of classes and subclasses and
relationships between them (Deng and Peng, 2006).

Both taxonomies and ontologies are used to en-
hance the quality of results suggested by RS. The RS
can use the taxonomy structures and ontology to
refine the filtering and adjust the ranking of the re-
sults sent by the IR internal component. Since most
of our knowledge is not hierarchical, it is intuitive to
assume that an ontology-based approach would lead
to better results. Yet, there is an overhead in defining
ontologies by the user and creating a match for the
nodes of different ontologies in case of peer-based

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

6

autonomous systems, such as multi-agent environ-
ments.

Clearly, a trade-off would be using implicit on-
tology relations which can easily be defined by the
user and then matched by the system. The simplicity
of the definition of the ontology is critical factor in
convincing the autonomous peer to define it.

2.2 Example of Artifact
Recommendation System

KARe (Knowledgeable Agent for Recommenda-
tions) is a typical example of artifact recommender
systems (Gomez Ludermir et al., 2005), (Guizzardi-
Silva Souza et al,. 2007). KARe is a multi-agent
recommender system that supports nomadic users
sharing knowledge in a peer-to-peer environment.
Supporting social interaction, KARe allows users to
share knowledge through questions and answers.
Furthermore, it is assumed that nearby users are
more suitable for answering user questions in some
scenarios and it uses this information for choosing
the answering partners during the recommendation
request process.

The first goal of KARe is to develop a distribut-
ed system for artifact recommendation. It aims at
increasing the precision of current recommendation
algorithms. KARe mainly consists of the following
components, illustrated in Figure 1 (Gomez Lu-
dermir, 2005).

The information retrieval component is divided
into two parts. The first part is the process where the
user creates an index of the knowledge artifacts and
concepts. The second is the recommendation mech-
anism which consists of a searching process for the
knowledge artifacts. KARe includes the user context
in the searching mechanism, providing semantics to
the artifacts (i.e., relating it to the concept it is asso-
ciated with). Similar documents are grouped by the
user under the same concept in the context tree. Be-
fore submitting the query, the user assigns it to a
specific concept. By doing this, the user gives the
system extra information on the query content lead-
ing to more accurate results.

The recommendation agent component simulates
the natural social process involved in knowledge
sharing by exchanging requests (questions) and rec-
ommendations (answers). Furthermore, the agents
have to control the user knowledge base, i.e., when-
ever a recommendation arrives, the agent stores it in
his knowledge base. Social interaction involved in
the recommendation process is modeled as agent
interaction.

The peer discovery component finds potential

peers based on proximity information. The system
scans the neighborhood for other devices. When new
bluetooth-enabled devices are found this information
is forwarded to the KARe scanner to check whether
the device participates in the KARe platform or not.
The KARe scanner prepares a message and sends it
to the peer assistant agent. If the peer assistant finds
the agent representing the device in the KARe plat-
form, then it sends a message back to the KARe
scanner.

Figure 1: KARe Architecture.

We choose KARe as a base for our work due to
the following reasons:
 Its multi-agent nature suits the environment of

autonomous virtual organizations.
 Documents fit perfectly in the artifact concept

of KARe.
 It comprises a standard search engine: Lucene

(Hatcher and Gospodnetic, 2004).
 It originally uses taxonomies in structuring its

recommendations.
 It is extendible due to its origins in research

labs.
 It belongs to the most general class of RS;

which is the hybrid family. It combines
knowledge-based, location (similar to demo-
graphic), community-based, and content-based
approaches.

In our work, we concentrate on the first (lowest
component): the information retrieval component.

3 PROPOSED SOLUTION

KARe inherently supports a distributed knowledge
management approach. One challenge, however, is
gaining user acceptance to spend more time in feed-
ing the system with documents and classifying them.
Since the way each user classifies his/her own
knowledge is particular, we cannot impose a com-
mon classification for their artifacts.

Enhancing�the�Results�of�Recommender�Systems�using�Implicit�Ontology�Relations

7

Each user is allowed to define and use his/her
own taxonomy represented in OWL format (OWL,
2009) to classify artifacts. Figure 2 illustrates a user-
defined ontology that holds the artifacts; computer
science research papers in this case. This ontology
expresses the peer’s point of view and does not typi-
cally match with the standard classification system
of the Association of Computing Machinery (ACM,
1998) used as a reference base in KARe and illus-
trated in Figure 3.

Figure 2: User-defined ontology.

Figure 3: ACM ontology.

We integrate the Protégé Ontology Editor (Tu-
dorache et al., 2008) in our proposed system to ena-
ble the peer editing his/her OWL ontology file.
Through the editor, the user can extend the basic
taxonomy trees with other implicit relations such as
sibling, parent and related-to between the different
tree nodes. The more relations are added, the more
support is given for the recommender system in de-
tecting the best matched categories. Figure 4 illus-
trates a sample ontology relation added to the ACM
taxonomy.

Figure 4: Sample ontology relation added to ACM.

3.1 Component Architecture

The ontology files defined in the previous section
are fed to the adapted information retrieval compo-
nent. Figure 5 illustrates the integration of new com-
ponents of our proposed system within the infor-
mation retrieval layer.

Figure 5: System components of the information retrieval
layer.

The question contains the name of the document;
the questioner is searching for and expecting rec-
ommendations around it. It is important to note that
the answer will contain this document- if found - as
a special case, since the answer of the responder
involves recommendations related to this document
and not only the document in question. The
knowledge artifacts represent the document libraries
exposed by each peer and constitute the search pool
for the recommendation seekers. The index terms are
the words contained in each document after perform-
ing text preprocessing steps. The term frequency
vector defines the frequency of occurrence of each
specific term in a document. The document vector
represents the terms in the documents together with
their frequencies. It is used to formulate the docu-
ment matrix where the documents are represented as
rows and the terms as columns and the term fre-
quencies as cell values. The concept vectors repre-
sent concepts or nodes in the ontology. The dimen-
sion size is that of the vocabulary (i.e., number of
indexed terms). In order to create the vectors it is

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

8

necessary to read all indexed terms and count their
occurrences in the documents during the indexing
process. The questioner and responder indices rep-
resent the store for the concept and document vec-
tors representing the indexed terms and term fre-
quencies.

3.2 The Indexing Process

Figure 6 shows the indexing sequence diagram in
UML notation. The indexing process is triggered by
the user usually after adding documents to the
knowledge artifact store. The Indexer is the class
that receives the method call createIndex from
the user and is responsible for handling the process.
The Indexer receives two parameters: a list of docu-
ments to be indexed and the ontology that classifies
them. The first step towards the creation of the index
is to parse each concept of the ontology and the re-
lated relations associated with each concept. During
the concept parsing, the indexer parses each
knowledge artifact to create the vocabulary and in-
dex terms. Once indexing is completed, the Indexer
creates the vectors for the concepts and knowledge
artifacts. During this step, the weight for each term
in each document and concept is calculated and
stored within the index.

Figure 6: Indexing sequence diagram.

3.3 The Searching Process

The searching sequence diagram is shown in Fig-
ure 7. The major contribution is shown in the last
part of the sequence diagram after returning the best
matching concepts. Here, we use the implicit ontol-
ogy relations saved during the indexing process and
retrieve the corresponding concept vectors and their
artifacts to include them in the calculation process.
The similarity is calculated and the query vector and
the list of the retrieved documents are ranked ac-
cording to the similarity. The following is a descrip-
tion of the methods in Figure 7.

 Query: is an indication from the user that a
question is posted. The parameters are the
question itself, the vocabulary spoken by the
questioning peer and the concept vector asso-
ciated with the question.

 ParseQuery: is a method for pre-processing
the question. It performs stemming and re-
moves the stop words from the query.

 CreateQueryVector: compares the question
with the knowledge artifacts. For this method
to work, we must create a vector representa-
tion of the question itself.

 GetVector, StoreSimilarity and Get-
BestConcepts: the questioning concept vec-
tor is compared to each concept vector on the
destination taxonomy. For that, we retrieve
each vector and check its similarity with the
questioning concept vector. At the end of the
process, we are able to retrieve the best match-
ing concepts with the questioning concept.

 NormalizeConceptVector: aligns the ques-
tioning concept vector with the targeted vec-
tors and vocabulary.

 GetListOfRelatedConcepts: for each of
the best matched concepts, we retrieve the re-
lated concepts to include in the next compari-
son.

 RecalculateSimilarity: in this step, we
check the similarity between the newly related
concepts and the best matched concepts.

 ReplaceBestMatchedconcepts: if the sim-
ilarity calculation shows better concepts we
reorder and replace the selected three concepts
with better ones. The number three is arbitrary
chosen and can be changed in the configura-
tion files.

 GetConcept and GetAtrifact: once we
have a good concept, we retrieve its artifacts.

 StoreArtifactSimilarity: calculates the
similarity among the documents from the re-
lated concepts and the question vector. The
method returns the resulting documents with
associated similarities.

Enhancing�the�Results�of�Recommender�Systems�using�Implicit�Ontology�Relations

9

Figure 7: Searching sequence diagram.

The pseudo-code of the searching steps is shown in
Figure 8.

Figure 8: Recommendation algorithm.

3.4 Example

The following is a simplified example of the rec-
ommendation process performed by our system.
Figure 9 shows the questioner categorization of its
library while Figure 10 illustrates that of the re-
sponder after adding few implicit ontological rela-
tionships.

During the indexing process, concepts and doc-
ument are parsed to build the document matrix. As-
suming the following six books: “Design Patterns
Java Workbook”, “Effective Java Programming
Language Guide”, “Micro JAVA Game Develop-
ment”, “Java Collections”, “Client-Side Java Script

Reference”, and “Java 2 Network Security” under
the concept “Java”, the resulting document matrix is
illustrated in Table 1 and the concept vector for “Ja-
va” is illustrated in Table 2.

Figure 9: Questioner library categorization.

Figure 10: Responder-specific implicit ontology relations.

Table 1: Sample document matrix.

Table 2: Sample concept vector for term “Java”.

Searching for the document “Swing Basic Com-
ponents” under the concept “java”, the system to-
kenizes the question into terms, i.e., “Swing”,
“Basic”, and “Components” and assigns a frequency
for those terms (in this case all have the frequency 1
due to the absence of duplication). The system com-
pares the associated concept vector with each con-
cept vector of the responder. This process is done

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

10

with an intersection between the questioner vector
and the responder vector. The questioner selected
concept vector (calculated above as the average of
the document vectors belonging to that concept) is
shown in Table 2. Using the cosine similarity meas-
ure, the projected vector is compared to each of the
responder concept vectors. The best three matched
concept vectors are shown in Figure 11.

Figure 11: Best three matched concepts.

“Java”, “J2EE”, and “J2ME” are the three most re-
lated concepts considering the cosine similarity of
the concept vectors. This list is updated taking into
consideration the related concept list from the im-
plicit ontological relations generated during the in-
dexing phase. Assuming that “Programming books”
is related to “Java”, “other” to “J2EE”, and “J2EE”
to “J2ME”, the concept called “other” represents one
of the user classifications and indicates that match-
ing concepts does not necessarily depend on the
name of the classification and that all of them are
included in the cosine similarity calculation. In this
particular example, searching for a book about
Swing, the system searches in all siblings of java,
J2EE and J2ME concepts and replace related con-
cepts. According to the cosine similarly, the system
replaces “J2ME” with the concept “other” since it
has a relative term frequency of 150 for the term

Figure 12: Best three matched concepts after replacement.

“swing” as compared to 40 for the same term in the
concept “J2ME” as illustrated in Figure 12.

4 ASSESSMENT

4.1 Datasets

We use two different datasets. The first dataset is the
same one used in evaluating the original KARe sys-
tem. We insist on using the same dataset to quantify
the increase in quality versus the increase in compu-
tation cost during indexing and searching. A sum-
mary of the dataset is found in Table 3 (Dataset I).
Taxonomy A collects papers and classifies them
according to user specific point of view. Taxonomy
B is taken from the ACM Classification System. In
our assessment, we simulate the questions and an-
swers using the title and the body of the scientific
papers. We test whether the algorithm is able to re-
trieve a paper giving its title or keywords from its
abstract.

We also use a second dataset to ensure the gen-
erality of our solution. The second dataset is shown
in Table 3 (Dataset II). The second dataset is a real
library of programming books found at a medium
sized software company. It is classified from two
points of views and is used as questioner and re-
sponder exposed libraries. This dataset consists of
125 programming books as a questioner source and
206 as a responder target; thus slightly smaller than
dataset I but has the advantage of having much high-
er terms frequencies, since every book contains hun-
dreds of pages unlike the papers in dataset I with
maximum of 20 pages per paper.

Table 3: Summary of datasets.

Dataset I II
Taxonomy A B A B

Number of documents 250 315 125 206
Number of concepts 28 15 32 24
Average doc/concept 9 21 4 9

4.2 Input and Output Settings

To start the experiment execution, we give the sys-
tem the following as input:

 the title of a document, and
 the concept associated with the paper.

The outputs are:
 the list of matched concepts,
 the list of documents classified under the re-

sulting concepts, and

Enhancing�the�Results�of�Recommender�Systems�using�Implicit�Ontology�Relations

11

 the cosine similarity measure attached with
each concept.

To distinguish between the false/true posi-
tive/negative alarms, we search for a specific paper
or book where we previously know that it already
exists in the target peer shared data pool.

4.3 Performance Measures

In our assessment, we use the following standard
performance indices:
 Number of document hits: the average number

of hits returned by the responder.
 Recall: is the fraction of the documents that

are relevant to the query that are successfully
retrieved.

 Precision: the fraction of retrieved documents
relevant to the search.

 F1-Measure: is a measure of test accuracy. It
considers both the precision and the recall.
The F1-Measure can be interpreted as a
weighted average of the precision and recall,
where an F1-Measure reaches its best value at
1 and worst score at 0.

In addition to scalability measures such as:

 Indexing time vs. the number of documents,
and

 Searching time vs. the number of documents.

4.4 Results of Dataset I

In this set of experiments, we perform 75 queries. A
summary of the results is shown in Table 4. Under
the original implementation, the number of docu-
ments found is 42. Using our ontology-based solu-
tion, the number increases to 59. The average recall
is also increased from 0.573 to 0.786. Figure 13
shows the detailed plotting of the recall versus the
number of queries. The precision is also enhanced
from 0.153 to 0.238. Figure 14 shows the detailed
plotting of the concept precision versus the number
of queries. Consequently, the derived F1-Measure is
enhanced from 0.24 to 0.365.

Table 4: Summary of the result of dataset I.

3 concepts
(taxonomy)

3 concepts
(ontology)

Document recall 0.573 0.786
Concept precision 0.153 0.238

F1-Measure 0.24 0.365

Considering the scalability measures, our proposed
solution incurs a higher cost of computation - as
expected - due to the increase in the result quality.

Figure 13: Recall vs. number of queries for dataset I.

Figure 14: Precision vs. number of queries for dataset I.

The good news is that both indexing time, illustrated
in Figure 15, and searching time, illustrated in Fig-
ure 16, increase with the same rate as the original
KARe implementation. The relative increase in pro-
cessing compared to KARe does not increase above
10% which is a fair price to pay for the improvement
in quality especially that the absolute values for both
indexing and searching times are very acceptable.

Figure 15: Indexing time for dataset I.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

12

Figure 16: Searching time for dataset I.

4.5 Results of Dataset II

In this second set of experiments, we perform 20
queries. The summary of the results is shown in Ta-
ble 5. The number of documents found using our
proposed solution doubles from 6 to 12 when com-
pared to the KARe implementation. The recall
measure also doubles from 0.3 to 0.6. The precision
increases from 0.12 to 0.2; and boosting the F1-
Measure from 0.17 to 0.3. It is worth mentioned that
the relative improvement for this dataset is very sim-
ilar to the results of the first set of experiments.

Table 5: Summary of the result of dataset II.

 3 concepts
(taxonomy)

3 concepts
(ontology)

Document recall 0.3 0. 6
Concept precision 0.12 0.2
F1-Measure 0.17 0.3

In Figure 17 and Figure 18, the recall and preci-

sion are respectively plotted versus the number of
queries.

Figure 17: Recall vs. number of queries for dataset II.

Figure 18: Precision vs. number of queries for dataset II.

The scalability measures reveal a slight increase in
the computation time here too. Again, the relative
increase in both the indexing time, illustrated in Fig-
ure 19, and the searching time, illustrated in Figure
20, are around 10% for all values of the document
counts. An interesting observation, however, is made
when comparing the absolute indexing times of ex-
periment I, illustrated in Figure 15, with that of exper-
iment II, illustrated in Figure 17. The large increase in
indexing time is attributed to the large document size
of dataset II (books) as compared to the document
size of dataset I (papers). This difference is not pre-
sent in the searching time due to the scalable nature of
the B+-Trees of Lucene regarding retrieval.

Figure 19: Indexing time for dataset II.

Figure 20: Searching time for dataset II.

Enhancing�the�Results�of�Recommender�Systems�using�Implicit�Ontology�Relations

13

5 CONCLUSIONS

Our main contribution in this work is integrating
ontological concepts into the recommendation pro-
cess. We extend the information retrieval part of
multi-agent recommender system KARe by allowing
the definition of simple ontological relations.
The simple and implicit ontological relations, such
as sibling, parent/child and related-to relations,are
presented as data properties in the OWL file. Saving
those concepts during the indexing process and us-
ing them in the searching process gives additional
information to support the search and retrieval of
better concepts. Instead of increasing the results with
more concepts, we focus on keeping the same num-
ber of concepts constant while improving their rele-
vance which prevents the precision value from de-
creasing.

We assess the performance of our proposed sys-
tem on two datasets to measure the recall, precision
and F1-Measure. The results show good improve-
ment in recall and precision. We also measure the
indexing and searching time to see the effect of add-
ing related concepts. The results show that adding
ontology relations have a slight increase of 10%
indexing and searching times.

REFERENCES

ACM, 1998. The ACM computing classification system,
http://www.acm.org/about/class/ccs98-html.

Balabanovic, M., and Shoham, Y., 1997. Content-based,
collaborative recommendation. In Communication of
ACM 40(3), 66–72.

Bridge, D., Göker, M., McGinty, L., Smyth, B., 2006.
Case-based recommender systems. In The Knowledge
Engineering review, 20(3), 315–320.

Burke, R., 2007. Hybrid web recommender systems. In
The Adaptive Web, pp. 377–408. Springer, Ber-
lin/Heidelberg.

Deng, S. and Peng, H., 2006. Document Classification
Based on Support Vector Machine Using A Concept
Vector Model. In the IEEE/WIC/ACM International
Conference on Web Intelligence.

Fuehrer, E. C., Ashkanasy, N. M., 1998. The Virtual or-
ganization: defining a Weberian ideal type from the in-
ter-organizational perspective. Paper presented at the
Annual Meeting of the Academy of Management,
SanDiego, USA.

Gomez Ludermir, P., Guizzardi-Silva Souza, R., and Sona,
D., 2005. Finding the right answer: an information re-
trieval approach supporting knowledge sharing. In
Proceedings of AAMAS 2005 Workshop. Agent Medi-
ated Knowledge Management, The Netherlands.

Gomez Ludermir, P., 2005. Supporting Knowledge Man-
agement using a Nomadic Service for Artifact Recom-

mendation. Thesis for a Master of Science degree in
Telematics, from the University of Twente Enschede,
The Netherlands.

Guizzardi-Silva Souza, R., Gomes Ludermir, P., and Sona,
D., 2007. A Recommender Agent to Support
Knowledge Sharing in Virtual Enterprises. In Pro-
togeros, N. (Ed.). Agent and Web Service Technolo-
gies in Virtual Enterprises, Idea Group Publishing.

Hatcher, E., Gospodnetic, O. 2004. Lucene in Action.
Manning Publications.

Manning, C., 2008. Introduction to Information Retrieval.
Cambridge University Press, Cambridge.

OWL, 2009. OWL2 Web Ontology Language. Document
Overview. In W3C Recommendation,
http://www.w3.org/TR/owl2-overview/.

Ricci, F., Rokach, L., and Shapira, B., 2011. Recommend-
er Systems Handbook, Springer Science+Business
Media.

Schafer, J. B., Frankowski, D., Herlocker, J., Sen, S.,
2007. Collaborative filtering recommender systems. In
The Adaptive Web, pp. 291–324. Springer, Berlin /
Heidelberg.

Tudorache, T., Noy, N. F., Tu, S. W., Musen, M.A., 2008.
Supporting collaborative ontology development in
Protégé. In Seventh International Semantic Web Con-
ference, Karlsruhe, Germany, Springer.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

14

