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Abstract: We discuss here how students organize their knowledge (in physics) by connecting closely related concepts.
Attention is paid on the relational structure of the ordering of concepts so that the introduction of new concepts
is justified on the basis of concepts which have already been learned. Consequently, there is then direction of
progress in introducing new concepts - there is "flux of information” so that what was learned before is the
basis for learning new conceptual knowledge. Such ordered and directed process of introducing the concepts
can be conveniently described and analysed in the framework of directed ordered graphs. We propose here a
model of knowledge organization for such concept maps. The model is based on the assumption that students
use simple procedures connecting new concepts mostly to concepts introduced few steps before. On basis of
the model results we suggest that the most important properties of concept maps can be understood on a basis
of such simple rules for organising knowledge.

1 INTRODUCTION cal sample discussed here consists of concept maps
made by physics teacher students for purposes of or-
Scientific knowledge is quite often described as webs ganising content knowledge for teaching. The linking
or networks, where concepts are linked to other con- of concepts is done by paying attention on how con-
cepts and principles; concepts are thus conceived ascepts are used in quantitative experiments and con-
parts of the whole system of knowledge. In such a struction of models. As we have shown previously
picture of knowledge, it is evident that the existing (Koponen and Nousiainen, 2012), such students con-
structure and relations within it also affect how the cept maps representing their knowledge of (or about)
new concepts can be introduced (as parts of the net-physics concepts can be analysed conveniently and re-
works) and how the conceptual knowledge can be rep- liably within the theoretical framework based on di-
resented and transferred forward (Thagard, 1992; No-rected ordered graphs (Karrer and Newman, 2009;
vak, 2002; O'Donnell et al., 2002). Consequently, Goni et al., 2010). Here we develop a phenomeno-
knowledge processing and acquisition have been re-logical model for knowledge ordering based on di-
cently discussed within the framework of network rected ordered graphs (DOGs). We show that the typ-
theory (Costa, 2006; Batista and Costa, 2010; Goni ical structural features of students’ concept maps can
et al., 2010). Such an approach seems to be wellbe modelled by assuming that concepts are mostly re-
adapted also in describing knowledge processing in lated to nearby concepts one or two concepts away,
learning, in particular how students organize their with few links between concepts about 10-15 steps
conceptual knowledge and, on the other hand, howaway. When concepts are introduced in this way in
conceptual knowledge can be approached in learningordered succession, substantial number of triangular
and teaching (Koponen and Pehkonen, 2010; Kopo- patterns (as found in the real networks) are quite nat-
nen and Nousiainen, 2012). urally generated. Comparison of the model results
In teaching and learning the network of concepts with the real student concept maps shows that the
is often represented by using concept maps (McClure model reproduces the salient properties of connected-
et al., 1999; Novak, 2002; O’Donnell et al., 2002; ness and ordering found on students’ concept maps.
Koponen and Pehkonen, 2010). Here we focus on Consequently, the results suggest that students indeed
the question, can we possibly understand the local use simple but effective strategies in ordering and pro-
and global structure of concept maps by making as- cessing their knowledge.
sumptions about the rules or strategies students may
have used in construction of the maps. The empiri-
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2 CONCEPT NETWORKS in their teaching. In well-planned teaching there
should naturally be a regular flux of information (for

The relational structure of concepts can be thought evenly paced learning of new knowledge), but no

as network-like node-link-node representations of the unnecessary abrupt changes in that flux (otherwise

relations between concepts. For different types of rep- the demand to assimilate new knowledge would vary

resentations there are different ways of establishing much); moreover, uncontrollable reductions in the

the relations and different rules in regard to linking flow should be hindered to prevent the impression that

the concepts, but the skeletal structure of the conceptlearned knowledge would not be needed in further

network is always a network of nodes (i.e. concepts) learning (Koponen and Nousiainen, 2012).

connected by links. The concept networks studied

here are done by physics teacher students for purposes

of representing how they think concepts can beintro- 3 THE METHOD OF ANALYSIS

duced in teaching, so that each step is justified either

on basis of experiments or model, which are both cen- 1,4 properties of ordering and information flux in

tral procedures cpnnected to the construction and usey,o concept maps are explored by using the quantities
of knowledge. Itis then_natural to assume that these pased on theory of directed ordered networks (DOGs)
procedures of the experiments and modelling play an (Karrer and Newman, 2009; Goni et al., 2010). Be-
important role in conferring the structure of the con- . ,se we are interested in the connectedness and in-
cept networks. In the operationalizing experiment ¢, mation fluxes in the maps, we use the follow-

the concept is operationalized i.e. made measurable,q g antities (detailed mathematical definitions are
through the pre-existing concepts. The new conceptgiven in Table 1):

or law is constructed sequentially, starting from the al- AT
ready existing ones, which provide the basis foran ex- 1- The degreé; of the node, which is the number

periment’s design and interpretation. In its mostide-  ©f the incoming and outgoing links, and kout,
alized form the new concept (or lawg)is formed on respectively. The average degree is denoteD by
the basis of two pre-existing conceptandB so that 2. The clustering coefficien®;, which is the ratio
the operationalization creat€on the basis of the re- of triangles to all the triply connected neighbours
lations A — C andB — C, but which also requires around a given concept;

that A andB can be related a& — B. There is then

a triangular mutual dependenge—+» B — C +— A.The
modelling procedures, which in the simplest cases are
often deductive procedures, produce very similar pat-
terns (Koponen and Pehkonen, 2010; Koponen and 4. Flux around the nodes (Flux-AY, which gives
Nousiainen, 2012). Itis interesting to note cognitively ~ the total number of links bypassing the given node
oriented studies of knowledge formation suggest that ~ k from all levelsj < k.

procedures of knowledge construction and processing|n the present case, flux@sandW directly describe

may be simple ones, reducible to basic patterns, eventhe “information” flowing from the previously in-

in those cases where the resulting structures are comtroduced nodes to ones introduced later (Karrer and

plex. In that,triangular patterns have been recognizedNewman, 2009). The most important aspect of the

as an essential feature not only in the case of func- concept maps made by teacher students is their or-

tional knowledge but also in information acquisition dering and appreciably large clustering w@hx 0.2.

as well as information processing (Kemp et al., 2007; Both features follow from the procedures that are used

Kemp and Tenenbaum, 2008; Duong et al., 2009).  to connect concepts. It is of interest to develop a sim-
The procedures of constructing experiments and ple model, which captures these features. In addition

models — connecting concepts to previously intro- to these features the model should also reproduce the

duced concepts — then provide the context or the “af- steady node-by-node information flos¥sand®.

filiations” of concepts. Concept maps where these

procedures are used to connect concepts represent

then not only the relatedness of concepts, but they

also represent how concepts are introduced in teach-4 THE MODEL

ing so that knowledge learned earlier is the basis upon

which new knowledge is built. This means that, in a

sense, these networks also represent the "flux of in-

formation” which students have planned to take place

3. Flux into the nodes (Flux-®p;, which gives the
total number of links terminating at the given node
k from all levelsj < k;

The cases studied and modelled here consist of 8 stu-
dent maps, all of which are rather rich in their struc-
ture. The number of the concepts was limited to n=34
most central concepts (in electromagnetism). Details
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Table 1: Definitions of the quantities characterizing the
topology of the concept networks. In the definiticmg is
the element of the adjacency matexandN is the number

of nodes. The quantities are defined for a given nodée
average number of linkg per node is denoted Hy.

Quantity Definition

K" 3 jaj

kPt 3

ki PRL AR

G Y i~y / Y &y Figure 2: The "master map” (Gm) and one students’ map
; ; : Gl)i ing-embedded f .

o, (zlj;llk(j)m*zlj;llkljn) /D (G1) in spring-embedded form

1] i uin lows: 1) New concepts are introduced on basis of
Wi (Zj:1 Kout — Y j—1K] )/D old ones so that relatively few (from two to four) of
them are used as basis of introducing the new ones;
2) The procedures provide the context or the “affili-
ation” for making the connections. 3) Concepts are
recognized on basis of the phenomenological mean-
ing. This gives rise to the modularity.

On the basis of above notions 1-3 we suggest a
model, where nodes, 2,...i —1,i,i +1,...n are.in-
troduced sequentially so that each nagel is con-
nected in directed way to some of the preceding nodes
1,2,...i. The directionality is defined from ances-
tor nodes to new nodes. The probability distribu-
tion function (PDF) thai 4+ 1 connects to the given
ancestori’ which is j steps away from it i.e. to
nodei’ =i+1— j is assumed to follow a gamma-
distribution

ia—1

Fig”,ofi 1 An ex"i‘mpl'e of students’ Corflf:hept maps. (Gs) for \yhere parameters andA control the form of the dis-
n = 34 concepts in electromagnetism. The map shows con-, ., .. D : C

cepts (boxes), laws and principles (boxes with thick bor- trl'bu“g?' Thetnormalllztﬁt'ol_rz' ((:1,,);) IS Obté(\jme? I”;’h
ders). Links are either operationalising experiments (E) o Cl0SedIorminterms otthe Lerch transcendental Fhi-

modelling procedures. The nodes are numbered in the orderfunctionx i (z) = @(z K, i)
in which they are introduced through experiments. _ (- _
Z(@N)=¢rai(e™)—e M Vo q1ii(e™) ()

of the maps are not of interest here and are discussedn practice, the detailed functional form of the dis-
in detail elsewhere (Koponen and Nousiainen, 2012). tribution is not crucial, given it is peaked. Gamma-
An example of the original concept maps made by distribution is chosen because it is flexible and the cu-

students is shown in Fig.1 mulative distribution function (CDF) for PDF in Eqg.
For purposes of comparison and reference, we (1) can be givenin form
have also constructed a "master map”, where all j .
i . i - Zi(a,\)
well-motivated and well-justified connections that are F(,j) = Z fijy == 3)
1 Zj(a,N)

found in the student maps are collated into one map. i'=
For purposes of analysis it is convenient to use for The nodes are connected on basis of CDF in Eq. (3)
all maps the so called "spring-embedding” (Kolaczyk, by using event based Monte-Carlo method. First, the
2009), which brings about the most important nodes number of connection attempts is selected, then for
as clusters of links. Examples of spring-embedded each attempt a random numbet [0, 1] is generated
maps (one student map and the master map) areand the new node is connected to ancestor node at
shown in Fig. 2. a distancej*, obtained fromr = F(i, j*) by inver-
Basic assumptions we have made about how thesion. In practice, values ¢f* corresponding differ-
learners process and represent knowledge are as folentr are tabulated in advance for eaigtso that the
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Table 2: Simulation parameters for models m-G1, m-G2
and m-G3. Subscripts A an B refer to values for modules A
and B separately, subscript AB to values between modules
A and B.

Op Aa O A OaB  ApB
m-G1 2 2/3 2 2/3 2 1/3
m-G2 5/2 2/5 5/2 2/5 7 1/3
m-G3 2 2/5 2 2/5 5 1/3

repeated inversion af = F (i, j*) during the simula-
tion is avoided. When connection attempt is repeated
N times same attempts to connect already connecte
nodes may occur, in which case no multiple connec-
tions are allowed.

In the simulation model we have two modules A
and B (corresponding two modules in maps, for two

topical areas) and within the both modules we use the
same above explained method to connect the nodes

but the values of the parametersA, andN can be
different for modules A and B. Connection between

the nodes in different modules is also made on same
basis. The parameters for models are given.in Table 2.
The networks based on these simulations are visually

very similar to students’ networks. Examples to be
compared with student networks are shown in Fig. 3.

Figure 3: The model graphs m-G1 and m-G2 in spring-
embedded form.

The analysis of the networks is carried out on basis
of their adjacency matricess where the variables;
indicate the connections between nodasd | so that
if nodes are connected, thefy = 1 and if there is
no connection, theg;; = 0. All quantities of interest
can now be calculated from the mat&xas they are
defined in Table 1.

5 RESULTS

The student maps have relatively high clustering and

poses of passage of information (Kolaczyk, 2009).
Large values of clustering indicate that there are ap-
preciable connections also between concepts con-
nected to a given concept, i.e. an abundance of the
nearest neighbour connections. High connectivity (on
average 3-4 links per node) means that the informa-
tion fluxes are also rather large. The fluxes are given
as a total flux per expected number of links (total flux
divided by average valuB® of links per node, see
Table 1 for definition. The results reveal that typi-
cally, per one link connected to a given node, there
are from three to four links coming from the lower

qevels. This means that each node is rather well sup-

ported by the many previous nodes - the meaning con-
tent of the concept (node) is supported or backed up
by knowledge contained on the network existing be-
fore the introduction of the new node. In general, just
these properties must be reproduced by model which
attempts to capture the essential features of the maps.

Running the simulation for different choices of pa-
rameters shows that there is a range of parameters,
where it is, possible to obtain networks very similar
to the empirical ones. It should be noted that it is
not of interest (or even possible) to try to optimize
parameters so that for a given empirical network ex-
actly similar network is found in simulations. Instead,
Simulations are used to explore the ensemble of pos-
sible networks and how the measurable properties of
the networks are distributed within these ensembles
and how the values of degrd® clusteringC, and
fluxes @ and W compare with the empirical obser-
vations, as is shown by results in Figs. 4 (empirical
results) and 5 (model results). The average values of
the clustering and fluxes are given in Table 3 for some
of the students’ maps and model maps. For compari-
son, some other values of students’ maps are given in
Table 4. From the results it seen that the model repro-
duces the most important qualitative features of the
maps and, in addition, quantitative agreement is sat-
isfactory taken into account the variation of measured
values within the student maps (see Table 4).

6 CONCLUSIONS

The relational structure of concepts in the concept
networks made by physics teacher students have re-
vealed that properties of such networks are domi-
nated by triangular knowledge organisation patterns
so that the structure has thus relatively high clustering
of nodes but yet performs well in passing the informa-

connectedness (Koponen and Nousiainen, 2012). Ontion i.e. information fluxes provided the connections

average the clustering attains values around 0.10-

0.25, which is common to networks designed for pur-
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Figure 4: Node-by-node (nodes 1-34) values of deddee  Figure 5: Node-by-node (nodes 1-34) values of de@ee
clusteringC, and fluxesd andW. The first column shows  clusteringC, and fluxesP and¥. The first column shows
the values for master map Gm and the second column for the values for model graph m-G1 and the second column for
the student map G1. the graph m-G2.

Table 3: Average degreB, clusteringC and information ~ Table 4: Average degre®, clusteringC and information
fluxes W and @ for master map Gm and student maps G1 fluxes¥ and® for six student maps G3-G8.
and G2 and for models maps m-G1 - m-G3.

G3 G4 G5 G6 G7 G8

285 3.06 318 318 372 4.07
024 015 025 016 021 0.17
184 276 297 312 319 270
134 226 247 265 262 221

Gm G1 G2 m-G1 m-G2 m-G3

418 347 424 371 4.47 3.58
0.18 0.25 048 0.19 0.33 0.24
282 3.00 331 273 3.20 3.09
232 251 281 3.06 2.81 3.01

€600
€600

In order to confirm these expectation, a simple
students’ systematic use of simple procedures (herephenomenological model simulating the process of
guantitative experiments and modelling) which they making the connections was introduced. In the model,
use to add new concepts on the existing concept net-there are two assumed modules of concepts. Within
work. the module closely located nodes have higher prob-
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ability to connect, but there is appreciably smaller Goni, J., Corominas-Murtra, B., Solé, R. V. and Rodriguez

probability for connection between the modules (on Caso,C. (2010). Exploring the Randomness of Di-
the average 15-20 % of connections between mod- B%CQETSACYC“C Networks. Physical Review E82,

ules). These simple rules seem enough to generate

networks with very similar properties as those found KaTer, B. and Newman, M. E. J. (2009). Random Graph

Models for Directed Acyclic NetworksPhysical Re-

empirically. _ view E 80, 046110.
The conclusion we can draw from the results with Kemp, C., Perfors, A. and Tenenbaum, J. B. (2007). Learn-
some confidence is that learners handle the knowl- ing Overhypotheses with Hierarchical Bayesian Mod-

edge so that they process the relational aspectinrather  els. Developmental Scienc#0, 307-321.

small pieces, finding the connections on basis of “af- Kemp, C. and Tenenbaum, J. B. (2008). The Discovery of
filiation” of concepts in the procedures (experiments Structural Form. PNAS, 105, 10687-10692.

and models), where they are used. In the context stud-Kolaczyk, E. D. (2009). Statistical Analysis of Network
ied here - making plans for teaching - this is natu- Data. New York: Springer.

ral and desired aspect. In more general (and Spec_Koponen, I. T. and Pehkonen M. (2010). Coherent Knowl-

. . edge Structures of Physics Represented as Concept
ulative level) the results support the assumption that Networks in Teacher EducationScience & Educa-

processing of knowledge is based on simple affili- tion, 19, 259-282.

ation schemes. In certain context of description or y,qonen, I. T. and Nousiainen M. (2012). Pre-service
prediction few known concepts are used, and new physics teachers understanding of the relational struc-
concept (knowledge) or new generalization is intro- ture of physics concepts.International Journal of
duced on basis of the already known concepts (knowl- Science and Mathematics Educatidn print, DOI
edge). The fact that in each context (affiliation) only 10.1007/s10763-012-9337-0.

few known concepts is used tells probably something McClure, J. R., Sonak, B, and Suen, H. K. (1999) Concept

| i Map-Assesment-of Classroom- Learning: Reliability,
about the: 1) human capability to process and handle Validity, and Logistical Practicality. Journal of Re-

k_nowledge, 2) human capability to infer dependen-_ search in Science Teachingp, 475-492.

C'es'_ In Sho_rt’ there_ seems to be preference for Cert‘_':“nNovak, J. (2002). Meaningful Learning: The Essential Fac-
parsimony in handling the knowledge. Of course, this tor for Conceptual Change in Limited or Inappropriate
finding is not very unexpected, but nicely confirmed Propositional Hierarchies Leading to Empowerment
here through structural analysis of knowledge rep- of Learners.Science Educatiqrg6, 548-571.
resentations. These notions encourage thinking thatO'Donnell, A. M., Dansereau, D. F. and Hall, R. H. (2002)
the methods developed here provide a fruitful start- Knowledge Maps as Scaffolds for Cognitive Process-

ing. Educational Psychology Reviei, 71-86.

ard, P. (1992).Conceptual Revolutions Princeton
NJ:Princeton University Press.

ing point for monitoring learning outcomes and can
give insight to the ways knowledge is processed and 129
represented.
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