
A Compositional Scheme and Framework for Safety
Critical Systems Verification

Manuel I. Capel1 and Luis E. Mendoza-Morales2

1Department of Software Engineering, Informatics & Telecomunications Bldg.,
University of Granada, 18071 Granada, Spain

2Processes and Systems Department, Simón Bolı́var University,
P.O. box 89000, Baruta, Caracas 1080-A, Venezuela

Abstract. Safety–Critical Systems (SCS) must satisfy dependability requirements
such as availability, reliability, and real-time constraints, in order to justify the
reliance of the critical service they deliver. A verification framework namedFor-
mal Compositional Verification Approach(FCVA) is presented here. FCVA estab-
lishes a compositional method to verify safety, fairness and deadlock absence of
SCS. Software components of a given critical system are model–checked to ver-
ify the aforementioned properties. Our objective in this paper is to facilitate the
design of an SCS from a collection of verified simpler components, and hence al-
lowing complete complex SCS software verification. An application on a real–life
project in the field of mobile phone communication is discussed to demonstrate
the applicability of FCVA.

1 Introduction

Safety–Critical Systems(SCS), including energy production, automotive, medical sys-
tems, avionics, modern telecommunications. . ., they are industrial systems where avail-
ability, performance, safety and the otherdependabilityattributes should justify the re-
liance on the critical service they deliver to their customers. The baseline for obtaining
a verifiable design of SCS is to previously develop a specification of the target system
using at least one formal language to perform the subsequent verification of the system.
Based on component abstraction and system modularity, advanced Model–Checking
(MC) techniques [1],[2], have become an active area of research, and are frequently
used to uncover well–hidden bugs in sizeable industrial SCS (see Table 1). How-
ever, SCS automatic verification can be impeded by the state explosion problem that
a model checker tool has to tackle when the system model is huge and complex [3],[4],
[5],[6],[7],[8].

The objective here is to facilitate the description of an SCS as a collection of sim-
pler verified components, then allowing the verification of safety, fairness and deadlock
absence of a complex SCS software.

However, it becomes very difficult to export local verification results using a for-
mal language with conjunctive propositional logic operators, and preserve, at the same
time, the semantic correctness of these demonstrations when they are compound. In

I. Capel M. and E. Mendoza-Morales L..
A Compositional Scheme and Framework for Safety Critical Systems Verification.
DOI: 10.5220/0004097300150026
In Proceedings of the 10th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems and 1st
International Workshop on Web Intelligence (MSVVEIS-2012), pages 15-26
ISBN: 978-989-8565-14-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

our view, the lack ofcompositionalitythat automatic verification techniques exhibit is
mainly due to semantic and syntactical problems, caused by the incorrect integration of
different specification formalisms, i.e.,property specification languages(CTL, ACTL,
etc.) and modelling notations based on states (formal automata, Promela, etc.), which,
depending on the formal combination language, may induce semantic errors in the sys-
tem’s verification. So far, the notational integration and semantical integration has not
been solved.

A unique underlying common semantic domain, within which the different spec-
ification formalisms used in SCS verification are interpreted, may help to obtain the
desired compositionality of verified system components. Therefore, a newFormal Com-
positional Verification Approach(FCVA) is proposed to verify a SCS from individual
components, based on a conceptual framework that transforms the model and proper-
ties of the SCS into a CSP–based formal language. An automatable instance of our
framework FCVA is introduced [9],[10]. FCVA gives a methodological infrastructure
for verification made up of: (1) a formal specification/modelling notation supported
by CSP–based compositional reasoning that enables the preservation of the compo-
nent properties throughout the compositionality to be demonstrated, and (2) conceptual
hooks that facilitate the integration of CSP–based MC toolsinto the verification process.

The paper is organized as follows. In the following section the formal background to
our approach is described. Afterwards, the conceptual framework behind the FCVA is
presented, followed by a complete description of how the FCVA is designed. Thereafter,
we demonstrate the value and practicality of our approach through the application on
a real–life project in the field of mobile phone communications, which has to meet
critical time requirements. Finally, in the last section, our conclusions and future work
are discussed.

Table 1.Main characteristics of related work.

Formalism Work Strategy Properties Tool Encapsulation

[4]
Model the environment using additional interface
processes.

Liveness, Mutual exclu-
sion. Limited to loosely
coupled systems.

No Yes

[6] Propose a preorder for use with a subset of CTL*.Safety, simple liveness,
and a notion of fairness.

Ad-hoc No

[3] Incrementally refinement using partial models. Safety and liveness. Ad-hoc No

[11] MC to deal with control issues and deductive
method to handle data-intensive elements.

Safety. SPIN Yes

Automata [5] Incremental assume-guarantee reasoning. Safety. LTSA Yes

[12]
Compose complex software systems from domain–
specific patterns.

Safety. RAVEN Yes

[13] Modular analysis based on the Assump-
tion/Commitment method.

Safety. HyTech No

[7] Propose a modular verification approach. Safety. SMV No

[14] Automatically generating component assumptions
based on the behaviour of the environment.

Do not specify. SPIN Yes

[8] Using the equivalence relation among processes.Deadlock, Starvation,
and Parallelism.

Ad-hoc Yes

Process [15] Presents a simple formulation of AGR using CSP. Safety. FDR Yes

Algebra [16]
Proposes a compositional technique for traces re-
finement checking.

Safety. FDR Yes

[17] Constructing decompositions to efficient AGR. Safety. FDR Yes

2 Formal Background

The essence of safety–critical processes behaviour and thesequence and communica-

16

tion synchronization that it should represent are described by CSP [18] and CSP+T [19]
models in our proposed method.

2.1 Specification of the System Model

CSP+T is a real–time specification language which extendsCommunicating Sequential
Processes(CSP) allowing the description of complex event timings, within a single
sequential process.

A CSP+T process termP is defined as a tuple (αP, P), whereαP = Comm act(P)∪

Interface(P) is called thecommunication alphabetof P . These communications rep-
resent the events that processP receives from itsenvironmentor those that occur in-
ternally. CSP+T is a superset of CSP, the latter being changed by the fact that traces of
events becomepairs denoted ast.a, wheret is the time at which eventa is observed.
wherea, ⋆ ∈ Σ (communication alphabet);A,N ⊆ Σ; v ∈ M (marker variables);
I ∈ I (time intervals);P,Q,X, P̃ ∈ P (process names);t0, ta, t1 ∈ T ; andT ∈ N

(time instants), and the functions(ta.a) which return the occurrence time of symbola.

Table 2.CSP+T Syntax Rules.

SKIP :≡ success (successful termination)
STOP :≡ deadlock
ta.a → P :≡ ta.a thenP (prefix)
t0.⋆ → P̃ :≡ (⋆ ∧ s(⋆) = t0) thenP̃

(process instantiation)
ta.a ⋊⋉ v → P :≡ (ta.a ∧ s(a) = ta) thenP

(marker variable)
P # Q :≡ P (successfully) followed byQ

(sequential composition)
P ⊓ Q :≡ P or Q

(non–deterministic)
P�Q :≡ P choiceQ

(deterministic or external choice)
P\A :≡ P withoutA

(hidding)
P△Q :≡ P interrupted byQ
I(T, t1).a → P :≡ (ta.a ∧ ta ∈ [rel(t1, v),

rel(t1 + T, v)]) thenP
(event–enabling interval)

I(T, t1) → P̃ :≡ t > rel(t1 + T, v) thenP̃ (delay)
P‖Q :≡ P in parallel withQ

(parallel composition)
P |[A]|Q :≡ P in parallel withQ
in alphabetA (alphabetized composition)
P 9 Q :≡ P interleaveQ (interleaving)
I(Ta, ta).a → P |[A]|
I(Tb, tb).b → Q :≡ P‖Q if (a = b)∧

(I(Ta, ta) ∩ I(Tb, tb) 6= ∅)
:≡ P 9 Q if (a 6= b)∧
(I(Ta, ta) ∩ I(Tb, tb) 6= ∅)
:≡ STOP if I(Ta, ta)

∩I(Tb, tb) = ∅
µX@P :≡ the processX such that

X = P (X) (recursion)em
i=1 : N • P (i) :≡ i : N → P (i)

(external choice indexed)dm
i=1 : N • P (i) :≡ P ((τ−)action)

(internal choice indexed)gm
i=1 : N • P (i) :≡ i : N →

gm
i=1 P (i)

(indexed interleaving)f
m
i=1[A] : N • P (i) :≡ i : N →

f
m
i=1 P (i)

(partial interleaving)f
m
i=1 : N • A(i) ◦ P (i) :≡ i : N →

f
m
i=1 A(i) ◦ P (i)

(parallel combination)

The event enabling intervalI(T, ta) = {t ∈ T |rel(ta, v) ≤ t ≤ rel(ta + T, v)}
indicates the time span where any event is accepted.rel(x, v) = x + v − t0, t0 corre-
sponds to the precedinginstantiation event(⋆), occurred at some absolute timet0, and
x is the value held in themarker variablev at that time. The time interval expression
can be simplified toI(T, ta) = [ta, ta + T] if the instantiation event, after which the
eventa can occur, corresponds to the origin (t0 = 0) of the rt-clock.

2.2 Abstract Specification of the Properties

Property specification languages are used to obtain a formalspecification of the ex-
pected SCS behaviour according to the user requirements. CCTL [20] is a temporal

17

{ϕ,¬ψ}

S1

{ψ}

S2

[a+1,b]

{}

S0
[a,b-1]

[a+1,b-1] [a+2,b]

Fig. 1.CCTL formula.

interval logic that extendsComputation Tree Logic(CTL) with quantitative bounded
temporal operators, i.e., temporal operators interpretedover time intervals. CCTL is
used to deal with sequences of states, where a state gives a temporal interpretation of a
set ofatomic propositions(AP) at a certain time interval and time instants are isomor-
phic to the set of non–negative integers.

CCTL includes CTL with the operatorsuntil (U) and the operatornext(X) and other
derived operators in LTL, such asrelease(R), weak until(W), cancel(C) andsince
(S). All of them have proved to be useful to facilitate the definition of the properties
included in reactive systems classes —such as the SCS one— requirements specifica-
tion. All “LTL-like” temporal operators are preceded by a run quantifier (A universal,
E existential) which determines whether the temporal operator must be interpreted over
one run (existential quantification) or over every run (universal quantification). These
temporal operators start in the current configuration. For instance, letφ be the CCTL
formula 1 which states thatψ must become true within the interval[a, b] and, that
the formulaϕ must be valid at all previous time steps. The CCTL specification of the
formulaφ in Figure 1 is therefore:

φ = ϕU[a,b]ψ . (1)

2.3 Transformation Rules

The formalisation of UML–RT given by MEDISTAM–RT [21] is of interest here be-
cause it allows us to obtain and verify a SCS model from UML diagrams. MEDISTAM–
RT (acronym ofMethod for System Design based on Analytic Transformation of Real–
Time Models) can be described as a series of system views represented by UML for Real
Time (UML–RT) with classdiagrams,composite structurediagrams, and UMLtimed
state machines(UML–TSM). The expressiveness of UML state–machines (UML–SM)
is augmented by including new modelling constructs adoptedfrom CSP+T syntax, such
that TSMs make now possible to model timing issues and time dependencies among
tasks. Table 3 shows a graphical example of the transformation rules application for
obtaining CSP+T process terms from UML–TSMs. We will only present one of the
proposed rules, mainly to demonstrate the applicability ofFCVA and to show that our
approach can be integrated to MC tools like FDR2. A complete description of the sys-
tem of transformation rules can be found in [21].

The application of the transformation rules’ pattern:

event/communication/execution step)
premises

conclusion
(conditions) (2)

18

Table 3.Example of a map rule from UML–TSM to CSP+T terms.

UML–TSM Description
The stateS1 precedes the stateS2 and these states are reached when
eventse1 ande2 occur, respectively. But to reach the stateS2, the event
e2 (restricted event) must occur within the time interval[T1, T1+T]
(event–enabling interval), whereT1 is themaker variableof the event
e1 (marker event). If the restricted evente2 does not occur within the
time interval[T1, T1+T] (i.e., the event–enabling interval completely
runs), then reaches a pseudostateTimeout. T1, T ∈ N

∗ (i.e., natural
numbers without zero).

CSP+T Structural Operational Semantics

1. e1 occurrence)S1=e1⋊⋉t1→S2

t1=s(e1); S2

(
S1, S2 ∈ states;
s(e1)

)

2. e2 occurrence)S2=I(T,t1).e2→S3

s(e2); S3

(
s(e2) ∈ [t1, t1 + T];
S2, S3 ∈ states

)

OR

I(T, t1) timeout)S2=I(T,t1)→Timeout→SKIP

s(τ); Timeout→SKIP

(
s(τ) < t1 + T ;S2 ∈ states;
Timeout ∈ pseudostates

)

Timeout execution step)Timeout→SKIP
s(τ); SKIP

(
s(τ) = t1 + T ;
Timeout ∈ pseudostates

)

can be understood as a transformation between two syntactical terms that occur as a
consequence of acommunicationbetween concurrent processes or anexecution stepor
event occurrencein a sequential process. Thus, each rule defines thepremisesof the
UML–RT element to be transformed and theconditionsthat must be satisfied before
transforming the referred element into the syntactical CSP+T process term indicated in
theconclusionof the rule.

3 Compositional Verification of SCS

Compositional verification of properties for a given temporal logic has recently been
studied intensively by several authors [12],[22], in orderto solve a fundamental problem
of practical application of MC techniques to the verification of software systems.

A compositional scheme can be applied to the verification of temporal formulae
that express the certainty of a future event or system action(safety), or to verify that
the system is not undergoing a deadlock situation or to affirmthat every needed state of
the system must be eventually entered in an infinite computation (fairness) (see Table
4). In contrast,Temporal Logic(TL) formulas that express the possibility of entering in
a state in the future (reachability) are not preserved by compositionality, nor properties
expressing that something is unavoidable in the future provided that some other thing
occurs (liveness) .

3.1 Compositional Verification of a Concurrent System

FCVA is aimed at performing compositional verification of behavioral properties of
SCS. In a formal way, the system modelC is assumed to be structured into several
verified software components working in parallel, i.e.,C =

f
i:1..n Ci, where eachCi

satisfies thepropertyφi, i.e.,Ci � φi, which represents the specification of the ex-
pected behaviour of the component. Regarding the proposed decomposition strategy,

19

Table 4.Verification–compositionality(VC) of different properties.

Name TL–denotation Fulfils VC?
Safety AG Yes
Liveness AG(req → AFsat)) No
Reachability EFφ No
Deadlock freenessAGEXtrue Yes
Fairness AGAFφ Yes

we assume thatC can be decomposed until a set of components, whose behaviourcan
be specified using a TSM, is found. In addition to the local propertiesφi, eachCi must
also satisfy the invariant expressionψi that represents the behaviour of other system
components with respect toCi. Since, according to [23], to verify the propertyφi of
componentCi we need to assume the other components’ behaviour (i.e.,ψi).

Theorem 1: System Compositional Verification.Let the systemC be structured into
several components working in parallel,C =

f
i:1..n

Ci. For a set ofTSM(Ci) de-
scribing the behaviour of componentsCi, propertiesφi, invariantsψi, and deadlockδ,
with

⋂
i:1..n

Σi = ∅,
⋂

i:1..n
Ωi = ∅, and

⋂
i:1..n

L(TBA(Ci)) = ∅, the following
condition holds:

TSM(C) � (φ ∧ ψ ∧ ¬δ) ⇔
n

i:1..n

TSM(Ci) �

∧

i:1..n

(φi ∧ ψi) ∧ ¬δ, (3)

whereTBA(C) = ‖i:1..n TBA(Ci).

Interpretation of SCV Theorem. If the properties used to specify the system com-
ponents are circumscribed to the class of composable properties for verification (see
Table 4), then propertyφ and the invariantψ that are satisfied by the systemC can be
obtained by conjunction of local propertiesφi (i.e.,

∧
i:1..n φi ⇒ φ) and invariantsψi

(i.e.,
∧

i:1..n ψi ⇒ ψ), respectively. The special symbol¬δ is used to denotedeadlock
absence, i.e., a state without any outgoing transition cannot be reached on any system
execution.

3.2 Formal Compositional Verification Approach

Based on previous concepts and ideas, we propose a possible instantiation of the con-
ceptual scheme called FCVA. The rationale of FCVA is that thebehavioural correctness
of SCS software components can be individually verified, in isolation, based on Theo-
rem 1 and the well–defined communications behaviour specified by UML/MEDISTAM–
RT capsulecomponent [21]. Methodologically, our approach establishes that both the
formal description of the system’s behaviour and the specification of its properties must
be directed by the system’s user requirements. And thus, FCVA consists of the follow-
ing integrated processes according to MC technique and the automata theory:

System Interpretation. Firstly, the complete description of the system’s behaviour,
modelled by the CSP+T process termT (C) is interpreted into a set of CSP+T
process termsT (Ci) by using MEDISTAM–RT [21].

20

Properties Specification.Then, requirements and temporal constraints that the sys-
tem must fulfill arespecifiedin CCTL, which is based on the interval structure
and time–annotated automata [20]. Afterwards, these properties are expressed by
CSP+T process termsT (φi), T (ψi), T (¬δ), following the algorithm described in
[9]. In this way, we translate the properties to the same semantic domain of the
system model in order to perform the verification process.

Verification. Finally, we proceed to verify the system behaviour component by com-
ponent.

Thus, we take advantage of formal specification/modelling notations supported by
CSP–based compositional reasoning that enables the preservation of the component
properties throughout the compositionality.

Fig. 2. Graphical model of a DDBM communication protocol (in [24]).

4 Application

The application of FCVA presented here relates to monitoring the state of mobile de-
vices within the cells that constitute a mobile phone communication network.

We present a simple case study, but conceptually relevant. It is real–life scenario
where five BTSs3 (A to E) exchange messages between them, i.e.,SndMsg(s); acknowl-
edgement message,AckMsg(s); and receive confirmation,RcvConf(s).

The DDBM model shown in Figure 2 represents the functioning of a small dis-
tributed database system, which is needed to keep consistent the communication in-
formation locally stored in the base stations. Each site contains a copy of the entire
database and this copy is handled by a replicated local data base manager (DDBM =
‖i:1..n di). When a managerdi makes an update to its own copy, it must send a message
(denoted asSndMsg(s)) to all the other managers to ensure consistency between then

copies of the data base,di: SndMsg(s) = {(s, r)|s, r ∈ DDBM ∧ s 6= r}.
To understand the model of this DDBM communication protocol, we need to think

of it as a set of finite state automata with symmetries. The automaton on Figure 2 rep-
resentsn symmetric replicated automata that describe the states (ellipses)of then man-
agersdi and the state of the messages (rectangles) transmitted by eachdi during DDBM
protocol functioning. The transitions that each automatonmust undergo are represented

3 Base Transceiver Stations

21

Table 5.Properties for components that implements the DDBM communication protocol.

Property Specification

(a) Remote update
request by

Act Control
(RUAC)

Formula:
φRUAC := AG[a,b](Snd1(s) → A[SndMsgL(s) U[a+1,b−1] (

∧
x:1..n−1 AckMsgR(sx) ∧

A[
∧

x:1..n−1 AckMsgR(sx) U[a+1,b] ConfR(s)])])
TBA semantically equivalent:

{}

S0

[a+1,b-2]
{Snd1(s)}

[a,b-1]
{¬Snd1(s)}

S3

{SndMsgL(s)} {AckMsgR(s)}

Snd

[a+1,b]

[a,b-3]

[a+2,b-1]

SndMsgL AckMsgR
{ConfR(s)}

[a+3,b]

[a+4,b]

ConfR

AckMsgRn-2

[a+3,b-1]

(b) Remote update
request by
Message
Manager
(RUMM)

Formula:
φRUMM := AG[a,b](Up(s) → A[Snd2(s) U[a+1,b−2] (ConfR(s) ∧
A[ConfR(s) U[a+2,b−1] (Ack2(s) ∧ A[Ack2(s) U[a+3,b] Ready(s)])])])
TBA semantically equivalent:

{¬Up(s)}
[a,b-1]

[a+1,b]{}

S0

[a+1,b-3]
{Up(s)} {Ready(s)}{Snd2(s)} {ConfR2(s)} {Ack(s)}

Up

[a,b-4]

[a+2,b-2] [a+3,b-1] [a+4,b]

[a+5,b]

Snd AckConfR Ready

(c) Local update by
Act

Control(LUAC)

Formula:
φLUAC := AG[a,b](SndMsgR(s) → A[Rcv1(s) U[a+1,b−2] (ConfL(s) ∧
A[ConfL(s) U[a+2,b−1] (AckMsgL(s) ∧ A[AckMsgL(s) U[a+3,b] RcvConfL(s)])])])
TBA semantically equivalent:

{}

{SndMsgR(s)}

S1

{¬SndMsgR(s)}
[a,b-1]

[a,b-3]
{Rcv1(s)}

S1
SndMsgR

[a+1,b]

[a+1,b-2] [a+2,b-1]

Rcv

{ConfL1(s)}

S1

{AckMsgL(s)}

S4

[a+3,b]

[a+4,b]

ConfL AckMsgL

(d) Local response
byMessage
Manager
(LUMM)

Formula:
φLUMM := AG[a,b](Rcv2(s) → A[LocUp(s) U[a+1,b−1] (Upd(s) ∧
A[Upd(s) U[a+2,b] ConfL(s)])])
TBA semantically equivalent:

{}

{Rcv2(s)}
[a,b-3]

{LocUp(s)} {Upd(s)} {ConfL2(s)}

Rcv

[a+1,b-2] [a+2,b-1] [a+3,b]

[a+4,b]

LocUp Upd ConfL

[a,b-1]
{¬Rcv2(s)} [a+1,b]

by rhomboids named, ‘Update and Send Messages’, ‘Receive a Message’, ‘Send an
Acknowledgement’ and ‘Receive All Confirmations’.

4.1 Properties Specification

The complete set of CCTL formulas that formally define the properties fulfilled by the
DDBM model’s behaviour are detailed in [9] and derived from user’s requirements. Ta-
ble 5 shows the interpretation of the propertyφ, expressing theguarantee of processing
one message at a time, according to the DDBM ‘Active’ and ‘Passive’ states, respec-
tively. When adi manager enters the ‘Active’ state (i.e.,request a remote update), the
Act Control component must engage in a sequence of events that corresponds with
the fulfillment of properties (a)-(d) set in Table 5. Therefore, the properties that express
the expected behaviour ofAct Control andMessage Manager components can be
expressed as conjunctions of simpler properties,φAct Control = φRUAC ∧ φLUAC and
φMessage Manager = φRUMM ∧ φLUMM , respectively. Since the DDBM protocol model
is conformed byn replicas of the same component (i.e.,DDBM = ‖i:1..n di), the in-

22

variantψi that each componentdi must satisfy is the conjunction of the properties of
the n replicas, but without itself, i.e.,ψi =‖j:1..n φj |j 6= i, we need not include the
invariantsψi as part of the verification process. Our method, at this stage, needs only to
address verification of local propertiesφi. From the practical viewpoint, if we included
invariantsψi in the verification process, we would be double–checking thesatisfaction
of propertyφi in each automaton, which is neither efficient nor necessary.

4.2 Software Specification

We can use an RT-software design method like MEDISTAM [21], which introduces
temporal annotations to UML–TSM to formally describe the protocol. Time labels on
the state machines are necessary to assure the fulfilment of maximum time constraints
that the real–time DDBM protocol requires. By using these interval and time instants
specifications, we can guarantee that none of thedi managers will enter in a blocking
state and hence new updating occurrences will be disregarded.

4.3 System Components Verification and Discussion

Once we have obtained the automata,

– T (di), T (AC),T (MM), which represent system components,DDBM manager,
Act Control, andMessageManager, respectively.

– As well as the ones corresponding to the properties,T (φRUAC), T (φRUMM),
T (φLUAC), T (φLUMM) (Table 5).

We can proceed to the verification of the DDBM system, component by component.
According to our approach, we must verify that the behaviourof the above compo-

nents fulfills the properties specified in section 4.1. Then,under the semantic domain of
CSP–based process calculus, we can automatically check with the help of FDR2 [25]
tool that the followingrelations of refinementare satisfied:

T (φLUAC) ⊑T T (AC) , T (φRUAC) ⊑T T (AC) (4)

T (φLUAC) ⊑F T (AC) , T (φRUAC) ⊑F T (AC) (5)

T (φLUMM) ⊑T T (MM) , T (φRUMM) ⊑T T (MM) (6)

T (φLUMM) ⊑F T (MM) , T (φRUMM) ⊑F T (MM) (7)

We say that there is arefinement relation between two formal automataT (Φ ⊑T

T (Component) if every trace of execution ofT (Component) is included in the set
of traces and failures that defines the behaviour of the automatonT (Φ) [26], i.e., the
automatonT (Component) “formally implements” the specification described by au-
tomatonT (Φ).

Compositional Verification. According to the conditions ofSystem Compositional
Verification Theorem1(3.1), and based on the detailed design ofAct Control and
Message Manager components shown in Figure 3, we must determine now whether
the individual verification of these components is “composable”.

We must verify that the following 2 conditions of Theorem 1 are always fulfilled:

23

Fig. 3.DBM Composite Structure Communications.

1. The input signals (ΣAct Control andΣMessage Manager) and the output signals
(ΩAct Control andΩMessage Manager) of both components are disjoint. In Figure
3 it can be seen how the encapsulation of the automata that only communicate
through dedicated input/output ports ?m and !m makes this condition always true.

2. The labelling sets of both componentsL(Act Control) andL(Message Manager)

are disjointed. This can also be easily verified since transition and state labels of
each automaton are only visible inside the capsule.

The main interest of Theorem 1 is to address the difficult problem of proving that
the satisfaction of a complex property of the system can be determined by the individual
verification of simpler properties of its components and therules used to combine them.
In our case, the proposed adaptation of [23] Theorem has as its most important conse-
quence the fact that compositional verification of an SCS becomes reduced to proof the
reliability of a communication protocol between deterministic CSP+T processes with
interfaces and communication alphabets previously defined.

Finally, from (1) and (2), we can conclude thatAct Control andMessage Manager

system components are therefore “composable”,

Act Control‖Message Manager |= φAct Control ∧ φMessage Manager (8)

and because of that we can affirm the compositional property of the entire system,

di = Act Control‖Message Manager and φdi
= φAct Control ∧ φMessage Manager ,

(9)
And hence, the entire system’s model represented by each replicated DB managerdi
satisfies the propertyφdi

that represents every manager’s behaviour,

di |= φdi
. (10)

5 Conclusions

In this paper we have presented FCVA for compositional software verification from
independently verified individual components. MC was used to prove the correctness of

24

individual components and a CSP–based process calculus inspired formal language was
integrated in order to foster the composition of SCS, aided by concurrent composition
operators.

We have shown the value and practicality of our approach by means of the appli-
cation to a real–life project in the field of mobile communications, which has to meet
time critical requirements. The CSP+T specification of the system components at the
design phase can be verified against the CCTL specification ofthe individual system
component properties

References

1. A. M. Ben Amram, S. Genaim, and A. N. Masud. On the termination of integer loops. In In:
Viktor Kumcak and Andy Rybalchenko editors,Verification, Model–Checking and Abstract
Interpretation, Lecture Notes in Computer Science (to appear), Springer–Verlag, D, 2012.

2. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model–checking.
Advances in Computers, 58:117–148, 2003.

3. T. Bultan, J. Fischer, , and R. Gerber. Compositional verification by model checking for
counter–examples. In ISSTA ’96: Proc. of the 1996 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 224–238, New York, USA, 1996. ACM Press.

4. E. Clarke, D. Long, and K. McMillan. Compositional model checking. In Proc. of the Fourth
Annual Symposium on Logic in Computer Science, pages 353–362, Piscataway, USA, June
1989. IEEE Press.

5. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pǎsǎreanu.Learning assumptions for compo-
sitional verification. LNCS, 2619(0):331–346, 2003.

6. O. Grumberg and D. E. Long. Model checking and modular verification. ACM TOPLAS,
16(3):843–871, 1994.

7. B. Lukoschus. Compositional Verification of Industrial Control Systems: Methods and Case
Studies. PhD thesis, Universitaet zu Kiel, Technischen Fakultaet der Christian-Albrechts,
July 2005.

8. W. Wong and M. Young. Compositionality reachability analysis using process algebra. In
Proc. of the Symposium on Testing, Analysis, and Verification: TAV4, pages 49–59, New
York, USA, 1991. ACM Press.

9. Luis E. Mendoza Morales and Manuel I. Capel. Automatic compositional verification of
business processes. Enterprise Information Systems, LNBIP, 24:479–490, 2009.

10. Luis Eduardo Mendoza, Manuel I. Capel, and Marı́a A. Pérez. Conceptual framework
for business processes compositional verification. Information & Software Technology,
54(2):149–161, 2012.

11. Y. Kesten, A. Klein, A. Pnueli, and G. Raanan. A perfecto verification: Combining model
checking with deductive analysis to verify real–life software. LNCS, 1708:173–194, 1999.

12. H. Giese, M. Tichy, S. Burmester, and S. Flake. Towards the compositional verification
of real–time UML designs. In ESEC/FSE–11: Proc. 9th European Software Engineering
Conference held jointly with 11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 38–47, New York, USA, 2003. ACM Press.

13. G. Frehse, O. Stursberg, S. Engell, R. Huuck, and B. Lukoschus. Modular analysis of discrete
controllers for distributed hybrid systems. In The XV IFAC World Congress, pages 21–26,
Barcelona, Spain, 2002. IFAC.

14. C. de la Riva and J. Tuya. Automatic generation of assumptions for modular verification of
software specifications. Journal of Systems and Software, 79(9):1324–1340, 2006.

25

15. N. Moffat and M. Goldsmith. Assumption—commitment support for CSP model checking.
Journal of Automated Reasoning, 41(3-4):365–398, 2008.

16. H. Wehrheim and D. Wonisch. Compositional CSP traces refinement checking. Electronic
Notes in Theoretical Computer Science, 250(2):135–151, 2009.

17. B. Metzler, H. Wehrheim, and D. Wonisch. Decomposition for compositional verification.
In Proceedings of the 10th International Conference on Formal Methods and Software Engi-
neering, ICFEM ’08, pages 105–125, Heidelberg, Germany, 2008. Springer-Verlag.

18. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice–Hall International Ltd., Hertfordshire UK, 1985.

19. J. Zic. Time–constrained buffer specifications in CSP+Tand Timed CSP. ACM TOPLAS,
16(6):1661–1674, 1994.

20. J. Ruf and T. Kropf. Symbolic model checking for a discrete clocked temporal logic with in-
tervals. In Proc. of the IFIP WG 10.5 International Conference on Correct Hardware Design
and Verification Methods, pages 146–163, 1997.

21. Kawtar Benghazi Akhlaki, Manuel I. Capel-Tuñón, JuanAntonio Holgado Terriza, and Luis
E. Mendoza Morales. A methodological approach to the formalspecification of real-time
systems by transformation of uml-rt design models. Scienceof Computer Programming,
65(1):41–56, 2007.

22. A. Rabinovich. On compositionality and its limitations. ACM TOCL, 8(1):1–26, 2007.
23. M. Abadi and L. Lamport. Conjoining specifications. ACM TOPLAS, 17(3):507–535, 1995.
24. K. Jansen. Coloured Petri Nets. Springer-Verlag Inc., New York, USA, 1997.
25. FormalSystemsEuropeLtd. Failures–Divergence Refinement – FDR2 User Manual. Formal

Systems Europe Ltd., Oxford, 2005.
26. S. A. Schneider. Concurrent and Real–Time Systems – The CSP Approach. John Wiley &

Sons, Ltd., 2000.

26

