A Compositional Scheme and Framework for Safety
Critical Systems Verification

Manuel I. Capél and Luis E. Mendoza-Moralés

! Department of Software Engineering, Informatics & Telecomunications Bldg.,
University of Granada, 18071 Granada, Spain
2Processes and Systems Department, Simén Bolivar University,
P.O. box 89000, Baruta, Caracas 1080-A, Venezuela

Abstract. Safety—Critical Systems (SCS) must satisfy dependability requirements
such as availability, reliability, and real-time constraints, in order to justify the
reliance of the critical service they deliver. A verification framework nafred

mal Compositional Verification Approa¢RCVA) is presented here. FCVA estab-
lishes a compositional method to verify safety, fairness and deadlock absence of
SCS. Software components of a given critical system are model-checked to ver-
ify the aforementioned properties. Our objective in this paper is to facilitate the
design of an SCS from a collection of verified simpler components, and hence al-
lowing complete complex SCS software verification. An application on a real-life
project in the field of mobile phone communication is discussed to demonstrate
the applicability of FCVA.

1 Introduction

Safety—Critical System{$CS), including energy production, automotive, medical sys-
tems, avionics, modern telecommunicationsthey are industrial systems where avail-
ability, performance, safety and the otlidependabilityattributes should justify the re-
liance on the critical service they deliver to their customers. The baseline for obtaining
a verifiable design of SCS is to previously develop a specification of the target system
using at least one formal language to perform the subsequent verification of the system.
Based on component abstraction and system modularity, advanced Model-Checking
(MC) techniques [1],[2], have become an active area of research, and are frequently
used to uncover well-hidden bugs in sizeable industrial SCS (see Table 1). How-
ever, SCS automatic verification can be impeded by the state explosion problem that
a model checker tool has to tackle when the system model is huge and complex [3],[4],
[51.[6].[7].[8].

The objective here is to facilitate the description of an SCS as a collection of sim-
pler verified components, then allowing the verification of safety, fairness and deadlock
absence of a complex SCS software.

However, it becomes very difficult to export local verification results using a for-
mal language with conjunctive propositional logic operators, and preserve, at the same
time, the semantic correctness of these demonstrations when they are compound. In

I. Capel M. and E. Mendoza-Morales L..

A Compositional Scheme and Framework for Safety Critical Systems Verification.

DOI: 10.5220/0004097300150026

In Proceedings of the 10th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems and 1st
International Workshop on Web Intelligence (MSVVEIS-2012), pages 15-26

ISBN: 978-989-8565-14-3

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

16

our view, the lack otompositionalitythat automatic verification techniques exhibit is
mainly due to semantic and syntactical problems, causeldeoiyntorrect integration of
different specification formalisms, i.groperty specification languagé€TL, ACTL,
etc.) and modelling notations based on states (formal aatimrPromela, etc.), which,
depending on the formal combination language, may indut@géc errors in the sys-
tem’s verification. So far, the notational integration aechantical integration has not
been solved.

A uniqgue underlying common semantic domain, within which thfferent spec-
ification formalisms used in SCS verification are interpet@ay help to obtain the
desired compositionality of verified system componentgré&fore, a newormal Com-
positional Verification ApproacfFCVA) is proposed to verify a SCS from individual
components, based on a conceptual framework that transfibrenmodel and proper-
ties of the SCS into a CSP-based formal language. An autbieatsstance of our
framework FCVA is introduced [9],[10]. FCVA gives a methdagical infrastructure
for verification made up of: (1) a formal specification/mduhgl notation supported
by CSP—based compositional reasoning that enables therpaéien of the compo-
nent properties throughout the compositionality to be destrated, and (2) conceptual
hooks that facilitate the integration of CSP—based MC tmidsthe verification process.

The paper is organized as follows. In the following sectlmformal background to
our approach is described. Afterwards, the conceptualdvaork behind the FCVA is
presented, followed by a complete description of how the&AG\designed. Thereatfter,
we demonstrate the value and practicality of our approadutih the application on
a real-life project in the field of mobile phone communicatipwhich has to meet
critical time requirements. Finally, in the last sectionr conclusions and future work
are discussed.

Table 1. Main characteristics of related work.

Formalism Work Strategy Properties Tool Encapsulation|

Model the environment using additional interfag%eness’ Mutual exclu-

[4] 16n. Limited to loosely No Yes
processes. coupled systems.
[6] Propose a preorder for use with a subset of Cngge;yho?imp(l)? f;'i\:ﬁgggsAd-hoc No
[3] Incrementally refinement using partial models. Safety amhess. "Ad-hoc No
MC to deal with control issues and deducti
- > fety.
(11] method to handle data-intensive elements. & ety SPIN Yes
Automata [5] Incremental assume-guarantee reasoning. Safety. LTSA Yes

Compose complex software systems from domaé%ﬁety

(12] S e[;:iflic patterr;s.. based he A RAVEN Yes
odular analysis based on the Assumg:.

(13] tion/Commitment method. . n@%\fety. HyTech No

[7]1 Propose a modular verification approach. Safety. SMV No

[14] Automatically generating component assumpti%nm speciy. SPIN Yes

based on the behaviour of the environment. dlock S .
[8] Using the equivalence relation among processe[g.ea ock, ~ Starvationyy e Yes
and Parallelism

Process [15] Presents a simple formulation of AGR using CSP. Safety. FDR Yes

Proposes a compositional technique for tracesJe:
Algebra [16] finement checking. SSraefety. FDR Yes
[17] Constructing decompositions to efficient AGR. Safety. FDR Yes

2 Formal Background

The essence of safety—critical processes behaviour argkbtheence and communica-

17

tion synchronization that it should represent are desdrilyeCSP [18] and CSP+T [19]
models in our proposed method.

2.1 Specification of the System Model

CSP+T is a real-time specification language which ext€memunicating Sequential
Processe4CSP) allowing the description of complex event timingsthivi a single
sequential process.

A CSP+T process terfR is defined as a tuplexp, P), wherea P = Comm_act(P)U
Inter face(P) is called thecommunication alphabetf P. These communications rep-
resent the events that procd3geceives from itenvironmenbor those that occur in-
ternally. CSP+T is a superset of CSP, the latter being clthbgéhe fact that traces of
events becompairs denoted as.a, wheret is the time at which event is observed.
wherea,x € X (communication alphabetyd, N' C X} v € M (marker variables);
I € Z (time intervals);P, Q, X, P € P (process namesjy, tq,t1 € 7, andT € N
(time instants), and the functioiit,.a) which return the occurrence time of symbol

Table 2. CSP+T Syntax Rules.

(parallel composition)

SKIP = success (successful termination) | P|[A]|Q := P in parallel with@
STOP = deadlock in alphabet4 (alphabetized composition)
ta.a — P = ta.athenP (prefix) = PllQ := P interleaveq (interleaving)
t0.x — P = (x A s(x) = t0) thenP. I(Ta,ta).a — P|[A]]
(process instantiation) I(Ty,t).0 = Q = P||Qif (a=0b)A
ta.a X v — P = (ts.a A s(a) = t,) thenP (I(Ta,ta) NI(Ty, ty) # 0)
(marker variable) =P || Qif (a #b)A
PsQ := P (successfully) followed by) (I(Ta,ta) NI(Ty, ty) # 0)
(sequential composition) = STOPIf I(Tq, ta)
PnQ = PorQ NI(Ty, tp,) =0
(non—deterministic) nXapP := the processX such that
POQ := P choiceQ X = P(X) (recursion)
(deterministic or external choice) |[]72, : N e P(4) =1i: N — P(3)
P\A := P without A (external choice indexed)
(hidding) N eP(i) := P((7—)action)
PAQ := P interrupted byQ (internal choice indexed)
I(T,t1).a - P := (te.a Aty € [rel(ti,v), [IIY, : N e P(i) =i: N — |||, P(4)
rel(t1 + T, v)]) thenP (indexed interleaving)
_ (event-enabling interval) [l [A] : N o P(i) =i N = ||I2, P(i)
I(T,t1) - P :=1t>rel(ty + T, v) thenP (delay) (partial interleaving)
P|lQ := P in parallel with@ iz, : NeA(i)o P(i) :=i: N — [|lL, A(i) o P(4)
(parallel combination)

The event enabling interva(T', t,) = {t € T|rel(ts,v) < t < rel(te + T,v)}
indicates the time span where any event is accepté(,v) = z + v — tg, to corre-
sponds to the precedingstantiation evengx), occurred at some absolute tirig and
z is the value held in thenarker variablev at that time. The time interval expression
can be simplified td(7',t,) = [ta,ts + T if the instantiation event, after which the
eventa can occur, corresponds to the origip & 0) of the rt-clock.

2.2 Abstract Specification of the Properties

Property specification languages are used to obtain a faspeification of the ex-
pected SCS behaviour according to the user requiremenfEL (ZD] is a temporal

18

[a+1,b-1]

Fig. 1. CCTL formula.

interval logic that extend€omputation Tree Logi¢CTL) with quantitative bounded
temporal operators, i.e., temporal operators interpretext time intervals. CCTL is
used to deal with sequences of states, where a state givepartd interpretation of a
set ofatomic propositiongAP) at a certain time interval and time instants are isomor-
phic to the set of non—negative integers.

CCTL includes CTL with the operatowsitil (U) and the operatarext(X) and other
derived operators in LTL, such aslease(R), weak until(W), cancel(C) andsince
(S). All of them have proved to be useful to facilitate the defam of the properties
included in reactive systems classes —such as the SCS orguraments specifica-
tion. All-“LTL-like” temporal operators are preceded by anrquantifier £ universal,
E existential) which determines whether the temporal operatst be interpreted over
one run (existential quantification) or over every run (ensal quantification). These
temporal operators start in the current configuration. Rstaince, let) be the CCTL
formula 1 which states that must become true within the intervhl, b] and, that
the formulay must be valid at all previous time steps. The CCTL specificatf the
formulag in Figure 1 is therefore:

¢ =Vt 1)

2.3 Transformation Rules

The formalisation of UML-RT given by MEDISTAM—-RT [21] is ohterest here be-
cause it allows us to obtain and verify a SCS model from UMIgdaans. MEDISTAM—
RT (acronym ofMethod for System Design based on Analytic Transformatiéteal—
Time Modelycan be described as a series of system views representddbjddReal
Time (UML-RT) with classdiagramscomposite structurdiagrams, and UMltimed
state machine@JML-TSM). The expressiveness of UML state—machines (USM}
is augmented by including new modelling constructs adofsted CSP+T syntax, such
that TSMs make now possible to model timing issues and tinpenidencies among
tasks. Table 3 shows a graphical example of the transfoomatiles application for
obtaining CSP+T process terms from UML-TSMs. We will onlggent one of the
proposed rules, mainly to demonstrate the applicabilitf ©¥A and to show that our
approach can be integrated to MC tools like FDR2. A completedption of the sys-
tem of transformation rules can be found in [21].
The application of the transformation rules’ pattern:

S) remises L.
event /communication/execution step) P (conditions))

conclusion

19

Table 3.Example of a map rule from UML-TSM to CSP+T terms.

UML-TSM Description
The stateST precedes the staf§2 and these stafes are reached when
eventse; andes occur, respectively. But to reach the stat, the event
e (restricted evertmust occur within the time interv@™1, 71 + T
(event—enabling intervalwhereT is themaker variableof the even|
e1 (marker event If the restricted evento does not occur within the
time interval[T'1, T1+T] (i.e., the event—enabling interval completely
runs), then reaches a pseudosfliteeout Ty, T € N* (i.e., natura}
numbers without zero).
CSP+T Structural Operational Semantics
Si=eqmt; —»S2 (S1,52 € states;
t1=s(e1); S2 \ s(e1)

e, [I(T.t)]

Timeout

1. ey occurrence)

2. ey occurrence) 22=1L 1) 29— 53 <5(@2) € [ti,t1 + T; >

s(e2); 53 52,83 € states
OR

I(T, t1) timeout)

S2=1(T,t1)=>Timeout—sSKIP (s(T) < t1 + T; S2 € states;
s(m); Timeout—>SKIP Timeout € pseudostates

; i Ti toskip (s(r) =t + T
W e SRCXERRLIEN step)% (Timeout € pseudostates

can be understood as a transformation between two syrahtgiens that occur as a
consequence of @@mmunicatiobetween concurrent processes oeaacution stepr
event occurrenc@ a sequential process. Thus, each rule definepthmisesof the
UML-RT element to be transformed and tbenditionsthat must be satisfied before
transforming the referred element into the syntactical €Sprocess term indicated in
the conclusiorof the rule.

3 Compositional Verification of SCS

Compositional verification of properties for a given temgddogic has recently been
studied intensively by several authors [12],[22], in orbesolve a fundamental problem
of practical application of MC techniques to the verificatf software systems.

A compositional scheme can be applied to the verificatioreofgoral formulae
that express the certainty of a future event or system a¢siafety), or to verify that
the system is not undergoing a deadlock situation or to affiahevery needed state of
the system must be eventually entered in an infinite comiputéfairness) (see Table
4). In contrastTemporal LogidTL) formulas that express the possibility of entering in
a state in the future (reachability) are not preserved bypmsitionality, nor properties
expressing that something is unavoidable in the futureigealithat some other thing
occurs (liveness) .

3.1 Compositional Verification of a Concurrent System

FCVA is aimed at performing compositional verification ofhlagioral properties of
SCS. In a formal way, the system modelis assumed to be structured into several
verified software components working in parallel, i€.= ||,., ,, Ci, where eaclC;
satisfies theproperty ¢;, i.e., C; F ¢;, which represents the specification of the ex-
pected behaviour of the component. Regarding the proposechtposition strategy,

20

Table 4. Verification—compositionalit¢/C) of different properties.

Name TL—denotation Fulfils VC?
Safety AG Yes
Liveness AG(req — AFsat)) No
Reachability EF¢ No
Deadlock freenesAGEXtrue Yes
Fairness AGAF¢ Yes

we assume thaf can be decomposed until a set of components, whose behaaour
be specified using a TSM, is found. In addition to the locapeirtiesy;, eachC; must
also satisfy the invariant expressign that represents the behaviour of other system
components with respect 1G;. Since, according to [23], to verify the propekty of
component’; we need to assume the other components’ behaviouri).,

Theorem 1. System Compositional VerificationLet the systenC be structured into
several components working in parall€l, = ||, , , C;. For a set of'SM(C5;) de-
scribing the behaviour of componertts, propertiesp;, invariantsy;, and deadlock,
with (), .. Zi = 0,N;1 . 2 = 0,and,, ,, L(TBA(C:)) = 0, the following
condition holds:

TSM(C) E (A A=6) & || TSM(C) = N\ (¢ Avi) A =6, (3)

:1.n i:l..n

whereT' BA(C) = ||i:1..n. TBA(C:).

Interpretation of SCV Theorem. If the properties used to specify the system com-
ponents are circumscribed to the class of composable giepéor verification (see
Table 4), then property and the invariant) that are satisfied by the systefhcan be
obtained by conjunction of local properties (i.e., \,., ,, »: = ¢) and invariants);
(i.e., Ay, ¥i = 1), respectively. The special symbeb is used to denotdeadlock
absence, i.e., a state without any outgoing transition alp@ reached on any system
execution.

3.2 Formal Compositional Verification Approach

Based on previous concepts and ideas, we propose a possitaatiation of the con-
ceptual scheme called FCVA. The rationale of FCVA is thatthleavioural correctness
of SCS software components can be individually verifiedsoidtion, based on Theo-
rem 1 and the well-defined communications behaviour spddifi¢)/ ML/MEDISTAM—
RT capsulecomponent [21]. Methodologically, our approach estaklstihat both the
formal description of the system’s behaviour and the sptitin of its properties must
be directed by the system’s user requirements. And thusAF&@¥isists of the follow-
ing integrated processes according to MC technique andutioenata theory:

System Interpretation. Firstly, the complete description of the system’s behaviou
modelled by the CSP+T process teffifC) is interpretedinto a set of CSP+T
process term®&'(C;) by using MEDISTAM-RT [21].

21

Properties Specification. Then, requirements and temporal constraints that the sys-
tem must fulfill arespecifiedin CCTL, which is based on the interval structure
and time—annotated automata [20]. Afterwards, these ptiepeare expressed by
CSP+T process terniB(¢;), T'(¢;), T(—4), following the algorithm described in
[9]. In this way, we translate the properties to the same s¢éimdomain of the
system model in order to perform the verification process.

Verification. Finally, we proceed to verify the system behaviour compbbgrcom-
ponent.

Thus, we take advantage of formal specification/modellioigtions supported by
CSP-based compositional reasoning that enables the yatiearof the component
properties throughout the compositionality.

Updating

Fig. 2. Graphical model of a DDBM communication protocol (in [24]).

4 Application

The application of FCVA presented here relates to monigptire state of mobile de-
vices within the cells that constitute a mobile phone comigation network.

We present a simple case study, but conceptually releviaistréal-life scenario
where five BTS%(A to E) exchange messages between them SmdMsg(s)acknowl-
edgement messaghckMsg(s)and receive confirmatiofRcvConf(s)

The DDBM model shown in Figure 2 represents the functionihg emall dis-
tributed database system, which is needed to keep cortsisigommunication in-
formation locally stored in the base stations. Each sitedaing a copy of the entire
database and this copy is handled by a replicated local deta imanageDOBM =
lli:1..» di). When a managel; makes an update to its own copy, it must send a message
(denoted asndMsg(9)to all the other managers to ensure consistency between the
copies of the data basé,: SndMsg(s) = {(s,r)|s,r € DDBM A s # r}.

To understand the model of this DDBM communication protpa@ need to think
of it as a set of finite state automata with symmetries. Theraaton on Figure 2 rep-
resents: symmetric replicated automata that describe the statgssgs)of then man-
agersd; and the state of the messages (rectangles) transmitteat by gduring DDBM
protocol functioning. The transitions that each automatoist undergo are represented

3 Base Transceiver Stations

22

Table 5. Properties for components that implements the DDBM comuoaitiun protocol.

Property Specification

Formula

drUAC = AG[q) (Sndl(s) — A[SndMsgL(s)Upat1,6—11 (A
AlAsi1. n_1 AckMsgR(sz) Ulat1,b] ConfR(s)])])

| TBA semantically equivalent

AckMsgR(sz) A

x:l.n—1

(a) Remote updat

request by [a,b-1] = =% [a+3,6-1]

Act_Control .
(RUAC)

Formula
GRUMM = AGp(Up(s) — A[Snd2(s) Upi1,p—2
A[ConfR(s) Uaq2,b—1] (Ack2(s) A A[Ack2(s) Ujas,5) Ready(s)])]
(b) Remote updat¢TBA semantically equivalent
request by
Message
_Manager

(RUMM)

(ConfR(s) A

Formula

¢rvac = AGp(SndMsgR(s) — A[Rcvl(s) Upat1,p—2) (ConfL(s) A
AlConfL(s)Upayap—1] (AckMsgL(s) AN AlAckMsgL(s) Ujays,5) RevConfL(s)])])])
TBA semantically equivalent

(c) Local update b
Act
_Control(LUAC)

[a+4,b]

Formula
dLuMM = AGpgp(Rev2(s) = A[lLocUp(s) Upi1,p—13 (Upd(s) A
AlUpd(s) Uja42,5) Con fL(s)])])
(d) Local respons¢TBA semantically equivalent
by Message
_Manager
(LUMM)

[a+4,b]

by rhomboids named, ‘Update and Send Messages’, ‘Receivessade’, ‘Send an
Acknowledgement’ and ‘Receive All Confirmations’.

4.1 Properties Specification

The complete set of CCTL formulas that formally define theperties fulfilled by the
DDBM model’'s behaviour are detailed in [9] and derived frosets requirements. Ta-
ble 5 shows the interpretation of the propestyexpressing thguarantee of processing
one message at a timaccording to the DDBM ‘Active’ and ‘Passive’ states, respe
tively. When ad; manager enters the ‘Active’ state (i.eequest a remote upddtehe
Act_Control component must engage in a sequence of events that corosspfth
the fulfillment of properties (a)-(d) set in Table 5. Therefadhe properties that express
the expected behaviour dfct_Control and Message_Manager components can be
expressed as conjunctions of simpler properti€ss: controt = druac A drvac and
DMessage-Manager = GrRUMM A UMM, FE€Spectively. Since the DDBM protocol model
is conformed byn replicas of the same component (i.8DBM = ||;.1... d;), the in-

23

varianty; that each componerf must satisfy is the conjunction of the properties of
the n replicas, but without itself, i.es; =|;.1.. ¢;|j # i, we need not include the
invariantsy; as part of the verification process. Our method, at this staggds only to
address verification of local properties From the practical viewpoint, if we included
invariantsy; in the verification process, we would be double—checking#tisfaction

of property¢; in each automaton, which is neither efficient nor necessary.

4.2 Software Specification

We can use an RT-software design method like MEDISTAM [21jjoh introduces

temporal annotations to UML-TSM to formally describe thetpcol. Time labels on

the state machines are necessary to assure the fulfilmerse>dfmam time constraints
that the real-time DDBM protocol requires. By using thederival and time instants
specifications, we can guarantee that none offthanagers will enter in a blocking
state and hence new updating occurrences will be disregarde

4.3 System Components Verification and Discussion
Once we have obtained the automata,

= T(d;), T(AC),T(M M), which represent system componem@&BM- manager
Act.Control, andMessageManager respectively.

— As well as the ones corresponding to the propertl@ryac), T(drurinm),
T(¢rvac) T(érumar) (Table 5).

We can proceed to the verification of the DDBM system, compbhg component.

According to our approach, we must verify that the behavaduhe above compo-
nents fulfills the properties specified in section 4.1. Thewler the semantic domain of
CSP-based process calculus, we can automatically chelekiveithelp of FDR2 [25]
tool that the followingrelations of refinemerdre satisfied:

T(¢rvac) Er T(AC) , T(pruac) Er T(AC) (4)
T(¢rvac) Er T(AC) , T(¢ruac) Cr T(AC) (5)
T(érumm) Ex T(MM) , T(¢rurvnm) Er T(MM) (6)
T(¢rvmm) EF T(MM) , T(prumar) EF T(MM) (7)

We say that there is eefinement relation between two formal autom@t@ Cr
T (Component) if every trace of execution df (Component) is included in the set
of traces and failures that defines the behaviour of the aatimmi'($) [26], i.e., the
automatoril’(Component) “formally implements” the specification described by au-
tomaton?’(P).

Compositional Verification. According to the conditions ofystem Compositional
Verification Theoreni(3.1), and based on the detailed designdet_Control and
Message_M anager components shown in Figure 3, we must determine now whether
the individual verification of these components is “comusa

We must verify that the following 2 conditions of Theorem & afways fulfilled:

24

o

3

s

Dispatched

(confimed] YConfirmed Un(dated)
— L

[

Fig. 3. DBM Composite Structure Communications.

1. The input signals X act.contror aNd Xnressage.rManager) @nd the output signals
(24ct.Control ANA 20 1essage_Manager) OF DOth components are disjoint. In Figure
3 it can be seen how the encapsulation of the automata thgtconimunicate
through dedicated input/output ports ?m and !m makes thidition always true.

2. The labelling sets of both componeni{sict_Control) andL(Message_Manager)
are disjointed. This can also be easily verified since tteomsand state labels of
each automaton are only visible inside the capsule.

The main interest of Theorem 1 is to address the difficult |emobof proving that
the satisfaction of a complex property of the system can berehéned by the individual
verification of simpler properties of its components andrthies used to combine them.
In our case, the proposed adaptation of [23] Theorem has a®i$t important conse-
guence the fact that compositional verification of an SC®bess reduced to proof the
reliability of a communication protocol between deterraiit CSP+T processes with
interfaces and communication alphabets previously defined

Finally, from (1) and (2), we can conclude that:_control and Message-Manager
system components are therefore “composable”,

Act_ConthHMessage_McmageT ': ¢Act_Cont'rol A ¢Message-1\/[anage'r (8)
and because of that we can affirm the compositional propéthecentire system,
d; = Act_ControlHMessage_Manager and ¢d7, = @ Act_Control N ¢I\/Iessage_1\/1anager:
€)

And hence, the entire system’s model represented by eatibatep DB manageti;
satisfies the property,, that represents every manager’s behaviour,

di b= ¢, (10)

5 Conclusions

In this paper we have presented FCVA for compositional sarféwerification from
independently verified individual components. MC was usqarove the correctness of

25

individual components and a CSP-based process calcupissd$ormal language was
integrated in order to foster the composition of SCS, aideddmcurrent composition
operators.

We have shown the value and practicality of our approach bynmef the appli-
cation to a real-life project in the field of mobile commurtioas, which has to meet
time critical requirements. The CSP+T specification of th&tesn components at the
design phase can be verified against the CCTL specificatidheoindividual system
component properties

References

1. A. M. Ben Amram, S. Genaim, and A. N. Masud. On the termamaif integer loops. In In:
Viktor Kumcak and Andy Rybalchenko editoiggrification, Model-Checking and Abstract
Interpretation Lecture Notes in Computer Science (to appear), Springetay, D, 2012.

2. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. ZhBounded model—checking.
Advances in Computers, 58:117-148, 2003.

3. T. Bultan, J. Fischer, , and R. Gerber. Compositionalfication by model checking for
counter—examples. In ISSTA '96: Proc. of the 1996 ACM SIGS@fternational Sympo-
sium on Software Testing and Analysis, pages 224238, New, YISA, 1996. ACM Press.

4. E.Clarke, D. Long, and K. McMillan. Compositional modikcking. In Proc. of the Fourth
Annual Symposium on Logic in Computer Science, pages 353-Bigcataway, USA, June
1989. IEEE Press.

5. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareamarning assumptions for compo-
sitional verification. LNCS, 2619(0):331-346, 2003.

6. O. Grumberg and D. E. Long. Model checking and modularfication. ACM TOPLAS,
16(3):843-871, 1994.

7. B. Lukoschus. Compositional Verification of Industriai@rol Systems: Methods and Case
Studies. PhD thesis, Universitaet zu Kiel, TechnischeruFa&t der Christian-Albrechts,
July 2005.

8. W. Wong and M. Young. Compositionality reachability aysis using process algebra. In
Proc. of the Symposium on Testing, Analysis, and VerificatiBAvV4, pages 49-59, New
York, USA, 1991. ACM Press.

9. Luis E. Mendoza Morales and Manuel |. Capel. Automatic positional verification of
business processes. Enterprise Information Systems, RNBI:479—-490, 2009.

10. Luis Eduardo Mendoza, Manuel I. Capel, and Maria A.ePérConceptual framework
for business processes compositional verification. In&diom & Software Technology,
54(2):149-161, 2012.

11. Y. Kesten, A. Klein, A. Pnueli, and G. Raanan. A perfeatafication: Combining model
checking with deductive analysis to verify real-life softe. LNCS, 1708:173-194, 1999.

12. H. Giese, M. Tichy, S. Burmester, and S. Flake. Towardscttimpositional verification
of real-time UML designs. In ESEC/FSE-11: Proc. 9th Euraop8eftware Engineering
Conference held jointly with 11th ACM SIGSOFT InternatibS8gmposium on Foundations
of Software Engineering, pages 38—-47, New York, USA, 2003MAPress.

13. G.Frehse, O. Stursberg, S. Engell, R. Huuck, and B. lalkgs Modular analysis of discrete
controllers for distributed hybrid systems. In The XV IFACW Congress, pages 21-26,
Barcelona, Spain, 2002. IFAC.

14. C. de la Riva and J. Tuya. Automatic generation of assoempfor modular verification of
software specifications. Journal of Systems and Softw&(®)2324-1340, 2006.

26

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.

26.

N. Moffat and M. Goldsmith. Assumption—commitment sagdor CSP model checking.
Journal of Automated Reasoning, 41(3-4):365-398, 2008.

H. Wehrheim and D. Wonisch. Compositional CSP traceserfent checking. Electronic
Notes in Theoretical Computer Science, 250(2):135-152920

B. Metzler, H. Wehrheim, and D. Wonisch. Decompositiondompositional verification.
In Proceedings of the 10th International Conference on BbkMethods and Software Engi-
neering, ICFEM '08, pages 105-125, Heidelberg, Germar828pringer-Verlag.

C. A. R. Hoare. Communicating Sequential Processe®rnational Series in Computer
Science. Prentice—Hall International Ltd., HertfordehiiK, 1985.

J. Zic. Time—constrained buffer specifications in CSRad@ Timed CSP. ACM TOPLAS,
16(6):1661-1674, 1994.

J. Rufand T. Kropf. Symbolic model checking for a diserdbcked temporal logic with in-
tervals. In Proc. of the IFIP WG 10.5 International Confeenn Correct Hardware Design
and Verification Methods, pages 146-163, 1997.

Kawtar Benghazi Akhlaki, Manuel I. Capel-Tufion, Jéamonio Holgado Terriza, and Luis
E. Mendoza Morales. A methodological approach to the forspekification of real-time
systems by transformation of uml-rt design models. Sciefc€omputer Programming,
65(1):41-56, 2007.

A. Rabinovich. On compositionality and its limitatioSCM TOCL, 8(1):1-26, 2007.

M. Abadi and L. Lamport. Conjoining specifications. ACMFPLAS, 17(3):507-535, 1995.
K. Jansen. Coloured Petri Nets. Springer-Verlag InewNork, USA, 1997.
FormalSystemsEuropelLtd. Failures—Divergence ReénéemFDR2 User Manual. Formal
Systems Europe Ltd., Oxford, 2005.

S. A. Schneider. Concurrent and Real-Time Systems — BifeApproach. John Wiley &
Sons, Ltd., 2000.

