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Abstract: The affluence of impulse noise is one of the challenging problems of the power line communication (PLC) 
as a communication channel. However, current methods for impulse noise reduction are either not effective 
or requiring heavy computing for detecting impulse noise accurately. This paper presents a time-frequency 
filter design method for impulse and Gaussian noise mitigation by a reliable noise detector in the wavelet 
domain with local variance analysis.  The filtering is applied only to the detected noisy samples with others 
unchanged in an effort to reduce the noise level by adapting its operation in accordance with variance 
characteristics. The received corrupted signal from spread spectrum system is decomposed into time-
frequency domain by fast implementation of lifting wavelet transform for real-time filtering of mixed 
Gaussian and impulse noise. Experimental results demonstrate that the proposed method can significantly 
reduce impulse noise and improve bit error rate (BER) without introducing distortion, leading to better 
quality of service. 

1 INTRODUCTION 

Power line communication (PLC) offers many 
advantages over other wire line and wireless 
communication technology that makes it efficient 
and economic to use for many years. The main 
driving force lies in that communication over power 
lines can provide good business opportunities for a 
variety of different areas including electrical power 
engineering, communication networks as well as 
building automation, because the networks are 
almost universal in coverage and are easily accessed 
by wall plugs (Guo, 2005). However, unlike the 
other wired communication mediums such as the 
unshielded twisted pair (UTP) and coaxial cables, 
low voltage (LV) power lines present an extremely 
harsh environment for channel parameters namely, 
noise, impedance mismatch and attenuation are 
found to be highly unpredictable and variables with 
time, frequency and location (Hossain et al., 2008). 
Even though power lines are an attractive solution 
for data transmission, a reliable communication is a 
great challenge due to the nature of the medium 
(Pighi and Raheli, 2007). 

The power line is often considered an 
unpredictable environment due to the time-variant 
characteristics of the noise and the attenuation, 
which limits the performance that can be achieved 
(Biglieri, 2003). The noise level and the attenuation 
depend partly on the set of connected loads, which 
varies in time (Barmada et al., 2006). The noise 
power on the power line is a sum of many different 
disturbances. Noise on the power line, is influenced 
by a large number of different noise sources with 
different characteristics. There are broadband 
disturbances such as universal motors, and 
narrowband disturbances such as radio frequency 
signals. Generally speaking, the dominant channel 
disturbances occurring in power line channels are 
colored background noise, narrowband interference 
and impulse noise (Gotz et al., 2004); (Degardin et 
al., 2002). Background noise is caused by 
assembling of multiple sources of noise with low 
power, and can be modeled as a white noise process 
(Mlynek et al., 2010). Narrowband interference 
(NBI) could originate from frequency/phase 
modulated signals from broadcasting stations. 
Impulse noise can be classified into three classes 
(Tiru and Boruah, 2010): (i) periodic impulse noise 
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asynchronous with the AC mains; (ii) periodic 
impulse noise synchronous with the AC mains; (iii) 
asynchronous impulse noise.  

Besides the background noise and the 
narrowband noise which can be effectively reduced 
by wavelet notch filter (Luo, 2010), impulsive noise 
adversely affects the quality of service (Degardin, 
2002). Impulse noise (IN) is a serious problem for 
reliable communication over power lines (Lampe, 
2011). Its affluence is one of the challenging 
problems of the power line communication (PLC) as 
a communication channel. Impulsive noise is one of 
the most difficult transmission impairments to 
suppress and has not been well characterized and 
understood. It consists of random occurrences of 
energy spikes with random amplitude and spectral 
content, and affects data transmission by causing bit 
or burst errors. As the ability to reject high levels of 
interfering signals is one of the primary benefits of 
spread spectrum communications, spread spectrum 
modulation for resistance to jamming and multipath 
is often used (Zhou et al., 2002). One of the 
advantages using direct sequence spread spectrum 
(DSSS) systems is an inherent immunity to 
interferences, due to the processing gain (Proakis, 
2001), i.e. bandwidth expansion factor. However, 
this immunity is only effective up to certain 
interference power, making it necessary to apply 
additional techniques to suppress the effect of strong 
impulse noise. Impulse noise has already been 
proved as the most influential noise that degrades bit 
error rate properties because impulse components of 
voltage and current waveforms occur in wide 
frequency bands widely due to switching of 
semiconductor devices in home appliances. Among 
all the types of noise, the asynchronous impulse one 
is probably the most difficult to deal with and leads 
to heavy detection and computing time (Guillet et 
al., 2009). Impulse noise is difficult to remove by 
conventional linear filters and wavelet denoising 
method (Kuzume et al., 2000). Noise reduction 
methods using wavelet transform take full advantage 
of the localization both in time and frequency, and 
the wavelet shrinkage technique is used to reduce 
Gaussian noise (Donoho and Johnstone, 1994). 
However, the nonlinear wavelet transform 
thresholding method is not effective for impulse 
noise reduction or requiring heavy computing for 
detecting impulse noise accurately.   One of the 
main properties of the classical filters is that all input 
samples are unconditionally affected by the filtering 
process. In the presence of impulse noise, this 
approach is not optimal in contrast to continuous 
noise distributions, only certain samples of the 

original signal are corrupted and others remain 
unchanged. Clipping is a popular technique for 
impulsive noise reduction (Al-Mawali and Hussain, 
2009; Kim et al., 2011). At the receiver the 
occurrence of an impulse is determined with a set 
threshold and is corrected by replacing it by clipping 
operation on the amplitude of the input signal 
samples. The problem, however, is that the 
definition of impulse length and the detection of an 
impulse altogether is threshold dependent. And the 
clipping method with nulling strategy may introduce 
distortion or cause detrimental effects to the signal. 

Due to the high unpredictability of the impulsive 
noise, a good knowledge and characterization of 
such noises is essential for their mitigation 
(Khngosstar et al., 2011). To effectively detect and 
suppress impulse noise with less signal distortion, 
this paper explores the impulse noise characteristics 
and presents a time-frequency filter design method 
for impulse and Gaussian noise mitigation by 
reliable noise detection in the wavelet domain. 

2 TIME-FREQUENCY ANALYSIS 
OF NOISE 

Impulse noise consists of energy spikes with random 
amplitudes and spectra. Because of its non-
stationary unpredictable nature, impulse noise does 
not lend itself easily to a statistical description. A 
mathematical model of noise in closed form for 
power line communication can be expressed as a 
probability density function (PDF) (Katayama et al., 
2006): 
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where )(tn  denotes the noise, )(2 tσ  is the 
instantaneous variance of the noise. In particular, the 
PDF of impulse noise can be expressed as a sum of 
Gaussian functions with different variances. The 
noise waveform generated with this model shows 
good agreement with that of actually measured noise 
(Katayama et al., 2006). It is obvious that the noise 
power is time function as well as frequency. 
Wavelets introduce new classes of basis functions 
for time-frequency signal analysis and have 
properties particularly suited to the transient 
(impulse like) components (Barmada et al., 2011). 
The basic premise of wavelet transformations is that 
for any given signal it is possible to decompose this 
signal into many functions through translations and 
dilations of a single function called a mother 
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wavelet. Wavelet decomposition can be used to 
detect and remove impulsive noises with transient 
nature. To effectively suppress impulse noise, we 
use two features of spread spectrum communication 
to discriminate signal from impulse noise: one is the 
smooth envelope of spread signal’s spectrum (An 
example of smooth spectrum of spread spectrum 
signal  without added noise is shown in Figure 1) 
and the other is the nature of transient noise (An 
example of spread spectrum signal  with mixed 
Gaussian and impulse noise in the time doamin is 
shown in Figure 2 and Figure 3 shows the details of 
the impulse noise). 

 
Figure 1: An example of smooth spectrum of spread 
spectrum signal without added noise. 

 
Figure 2: An example of spread spectrum signal with 
mixed Gaussian and impulse noise in the time doamin. 

 
Figure 3: Details of the impulse noise. 

Wavelet analysis is effectively a mathematical 
microscope, which allows the user to zoom on 
features of interest at different scales and locations. 
However, the need for improvement of wavelets 
comes from a shortcoming that is inherent because 
of its construction. Second generation wavelets 
(Sweldens, 1998), open a new direction to construct 

wavelets, and are more general in the sense that all 
the classical wavelets can be generated by the lifting 
scheme. The lifting scheme makes optimal use of 
similarities between the high and low pass filters so 
as to achieve a faster implementation of WT. 

Classical implementation of WT uses two band 
filter bank (FB) with recursion on its low pass (LP). 
Equivalent polyphase representation is depicted by 
polyphase matrix ~( )P z , which is assembled from 
even and odd filter components. Output of the FB is: 
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where HP denotes high pass and 
eveny  is the even 

part of the signal, and 
oddy  is the odd part.

             ~( )
~ ( ) ~ ( )
~ ( ) ~ ( )

P z
h z h z
g z g z

e o

e o

=
⎡

⎣
⎢

⎤

⎦
⎥
 

(3)

For any filter pair ( , )h g  with det[ ( )]P z = 1 , always 
exist factorisation of P z( )  (Daubechies and 
Sweldens, 1998):
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Equation (7) allows ladder realization of ~( )P z  by 
reversible lifting steps followed with normalization 
by factor K as shown in Figure 4. 

 
Figure 4: Ladder structure of lifting steps. 

Signal is partitioned into even and odd 
components that are then mutually predicted by ti  
(to zero signal in HP part) and updated by si  (to 
retain in LP part signal moments).  After 
normalization the algorithm is recursively applied to 
LP part. 

In this study, 9/7 filter pair for fast computation 
is used by factoring wavelet transform into lifting 
steps. This filter pair is smooth and relatively short. 
The analysis low pass filter has 9 coefficients, while 
the synthesis high pass filter has 7 coefficients. This 
is particularly suited to time-frequency analysis of 
spread spectrum signal with strong noise applied to 
power line. The lifting wavelet transform can be 
implemented using the following lifting coefficients: 

586134342.1)1(
1 −=α ; 40529801185.0)1(

1 −=β ; 
(5)8829110762.0)2(

1 =α ; 4425068522.0)2(
1 =β ; 

81.14960439=K . 
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The lifting wavelet transform and the inverse 
transform by lifting coefficients in floating-point 
format is at the core of time-frequency analysis and 
consumes the bulk of the processing time. This is 
because performing signal decomposition requires 
many multiplication operations, which increase the 
computational complexity. To speed up the 
computation, lifting coefficients can be quantized to 
32-bit word-length, allowing fixed-point arithmetic 
to be implemented so that all multiplications can be 
replaced by bit shifts and additions to reduce 
computational load. 

3 NOISE DETECTION AND 
FILTERING 

Consider a baseband digital DSSS (direct sequence 
spread spectrum) communications system, the 
received signal )(ty can be modelled as 

)()()()( tntntsty imw ++=  (6)
 

where 
)2cos()()()( tftctAdts cπ=  

and )(tnw
 is background noise, )(tnim

 is impulse noise, 

)(ts  is binary phase shift keying (BPSK) direct 
sequence spread spectrum signal, )(td  is a binary 
sequence of data symbols taking on values 1± , )(tc is 
the spreading sequence (PN code) taking on values 

1± , cf is the carrier frequency of the transmitted 
signal. 

The time-frequency localization provided by 
wavelet promises a possibility for better 
discrimination between the noise and the real data. 
In the case of direct observations of the object y , the 
wavelet transform of the data results in coefficients 

}{ λd  of the form using inner product 

λλ σzyd +>Ψ=< ,  (7)
 

where 
λd  represents wavelet coefficients, Ψ  is 

wavelet function, y  denotes object, }{ λz represents a 
noise process. Specifically, by taking the wavelet 
transform of the data, we obtain a representation 
which contains the main structure of the signal in a 
relatively few large coefficients, and the noise in the 
remaining small coefficients. This is because in most 
cases, noise can generally be represented as a 
normally distributed (Gaussian), zero-mean random 
process. Thus, it is required to calculate a threshold 
value to identify the insignificant coefficients, which 
may be considered as noise (noise coefficients). This 

thresholding is adaptively subband dependent and is 
based on local variance analysis. The formula for the 
threshold on a given subband j is 

X

j σ
σλ )

) 2

= (8)

where 2σ) is the estimated noise variance, and  2
Xσ)  is 

the estimated signal variance on the subband 
considered. The noise variance is estimated as the 
median absolute deviation of the coefficients on 
level 1 (highest frequency subband): 

6745.0
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The estimate of the signal standard deviation is 
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2
Wσ)  is an estimate of the variance of the observations, 

with n being the number of the wavelet coefficients 
on the subband under consideration.  

For Gaussian noise filtering, we define 
jaT j λ= (11)

 

where a ( 10 ≤≤ a ) is a parameter that can be used to 
moderate the shresholding to optimize the trade-off 
between hard and soft thrsholding of wavelet 
shrinkage technique for Gaussian noise reduction as 
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and a is set at subband j adaptively to  2σ)  as  
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The wavelet coefficients at each level (subband) are 
treated separately, so the threshold 

jλ  depends only 
on the values of the coefficients at level j. Adaptivity 
in this technique is based on local variance analysis. 
By utilizing the parameter a with local variance 
analysis, this method improves the soft wavelet 
shrinkage technique to optimally reconstruct a signal 
from samples contaminated by Gaussian noise. In 
this method, small wavelet coefficients are set to zero 
since they are likely to contain little signal energy, 
and larger wavelet coefficients are scaled down since 
they are likely to contain greater signal energy. In 
such a way, noisy wavelet coefficients are eliminated 
by comparison to the predetermined threshold. 

When studying the effects of impulsive noise on 
PLC, both background noise and impulsive noise are 
considered. To reduce impulse noise with less signal 
distortion, it is required to detect impulse events and 
identify correctly their temporal boundaries in a 
stream of noise signal samples that also contains 

Time-frequency�Filtering�of�Gaussian�and�Impulse�Noise�for�Spread�Spectrum�Power�Line�Communication

15



 

 

nonimpulsive background noise. As impulse noise 
can be expressed as a sum of Gaussian functions 
with different variances, it can be detected by 
measure the changing variance through a sliding 
window with subsequent overlapping sections of the 
signal. In each window with N samples (wavelet 
coefficients) on the subband, the variance is 
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N
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iW W

N 1

2

2

2 1σ)
 

(14)
 

If the variance of the windowed wavelet coefficients 
is higher than a threshold, the window is marked as 
containing an impulse thus the location of impulse 
noise is detected. The threshold value is determined 
by calculating the median of variances of windowed 
samples on each subband. The threshold can be set 
at median value multiplied by 1.2 to determine the 
presence of impulse noise in a window as 

2.1*)( 2
Wv Median σλ )=  (15)

 

Then from equation (6), we obtain the estimated 
signal )(ks) by using a filter )(kh  as 

)()()( kykhks =)  (16)
 

because ))(()( yy mkymky −+= , where 
ym  is the mean 

of )(ky , we have 
)))(()(()( yy mkymkhks −+=)  (17)

 

If the filtering would not take effects to the mean 
ym  

and we would consider always reducing noise 
variance, the filter )(kh  can be designed: 
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where 2

yσ)  is the variance of the observations, 2σ) is 
the noise variance. Thus the impulse noise filtering 
operation can be performed in the time-frequency 
domain by the filter on each subband j:  
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where 
js) is the estimated signal at level j, W is the 

received signal, and 
Wm  is the mean of W. The 

filtering is applied only to the noisy windowed 
samples which accounts for the impulse clustering. 
The filtering is iterated until the variance of the 
filtered samples is equal to or lower than 

vλ , such 
that the impulse noise with short term fluctuations is 
smoothed out. The signal-adaptive filter can always 
reduce the variance namely the noise level of the 
detected noisy samples by adapting its operation in 
accordance with local variance characteristics. By 
applying “no filtering” to preserve true signals and 

filtering to remove impulse noise with a robust 
estimator, impulse is detected and mitigated. The 
algorithm is straightforward, low in complexity, 
achieves high filtering performance and requires no 
previous training. 

 
Figure 5: An example of time-frequency decomposition 
using the original signal shown in Figure 2. 

4 EXPERIMENTAL RESULTS 
AND DISCUSSIONS 

Background and impulse noise are among principal 
impairments in PLC channels. Spread spectrum 
power line noise detection and suppression is 
performed by fast time-frequency wavelet 
decomposition and variance analysis. To evaluate the 
noise suppression versus bit error rate (BER), a 
spread spectrum system was set up for power line 
communication. The system spreading code is a 
maximal sequence 511 chips PN code clocked at a 1 
MHz chip rate. The data spreading signal is mixed 
with a carrier frequency (centred on 5 MHz) by 
binary phase shift keying (BPSK) to generate the 
transmitted spread spectrum signal. Spreading signal 
is transmitted by power line channel with mixed 
additive white Gaussian noise (AWGN) with mean 
zero and impulse noise. Impulse noise is generated 
for power line channel with different variance, length 
(decay rate) and spike (amplitude and spectral 
content). Different impulse noise (periodic or 
nonperiodic, asynchronous or synchronous with the 
AC mains) is applied to the channel. BPSK 
interfering signal from the output of the channel then 
enters the receiver. At the receiver, modulated signal 
is demodulated by mixing with 4 MHz to 
downconvert to IF (intermediate frequency) 
frequency at 1 MHz. The final detection output is 
obtained through FFT (fast Fourier transform) based 
correlation. Noise detection and suppression is 
performed in the wavelet domain on each subband of 
decomposed data (8 PN codes with 8 bit symbols for 
one frame, an example of time-frequency 
decomposition for 5 subbands is shown in Figure 5 
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using the original signal shown in Figure 2) and the 
final results are measured by conducting bit error 
rates (BER) performance comparison against signal 
to noise ratio (SNR) at one noise level set. The noise 
impulses are characterised with high energy levels 
and the SNR of symbols affected by impulse noise is 
typically very low. In the process of noise detection 
and suppression, Gaussian noise is first detected and 
removed by the proposed improved soft thresholding 
technique. Impulse noise detection is done by local 
variance analysis through a sliding window of 16 
samples with subsequent overlapping sections of 8 
samples. Figure 6 shows the resultant variances by 
the sliding window using corrupted signal shown in 
Figure 2 and the corresponding time-frequency 
decomposition shown in Figure 5. The designed 
time-frequency filter only applies to the windowed 
samples marked as impulse, and the corresponding 
wavelet coefficients are then smoothed out. Figure 7 
shows the filtering results by mixed Gaussian and 
impulse noise suppression in the wavelet domain. 
Finally inverse wavelet transform is performed to 
transform the signal back to the time domain for 
symbol detection.  The corresponding bit error rates 
(BER) are calculated by summing 10000 runs of the 
demodulated signals (10000 blocks of data) when 
transmitted over a noisy power line channel 
producing impulse noise (with different variances) in 
accordance with different Gaussian noise level. The 
measurement results are summarized and shown in 
Figure 8 by illustrating BER measured versus SNR in 
dB. A comparison is performed by measuring BER 
of spread spectrum signal with mixed Gaussian and 
impulse noise, signal after soft thresholding for 
Gaussian noise reduction, signal after improved soft 
thresholding for Gaussian noise reduction, and signal 
after mixed Gaussian and impulse noise detection 
and suppression respectively. It can be seen that the 
proposed method of mixed noise suppression 
significantly reduces impulse noise thus improves 
BER for better data communication over power lines. 

 
Figure 6: Variance estimation through sliding window in 
the time-frequency domain. 

Experimental results show that the proposed 
method is able to significantly reduce impulse noise 
without degrading the quality of the signal or 
introducing distortion. It is noted that the filtering of 
both Gaussian and impulse noise is highly 
computationally efficient by fast implementation of 
lifting wavelet transform. 

 
Figure 7: Mixed Gaussian and impulse noise suppression 
in the wavelet domain. 

 
Figure 8: Comparison of BER measured versus SNR. 

5 CONCLUSIONS 

The proposed method of mixed Gaussian and 
impulse noise detection and mitigation by local 
variance analysis in the wavelet domain, applies 
iterative, selective and adaptive filtering on the 
corrupted spread spectrum signal over power lines. 
The filtering is applied only to the detected noisy 
samples with others unchanged in an effort to reduce 
the noise level by adapting its operation in 
accordance with variance characteristics. 
Experimental results demonstrate that this method 
removes impulse and Gaussian noise, also 
simultaneously preserves signal features and 
improves bit error rate (BER) for better quality of 
service provided by spread spectrum power line 
communication. The developed lifting wavelet 
transform results in a fast implementation of the 
time-frequency filtering operation, and makes it 
highly computationally efficient and suitable for 
real-time applications. 
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