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Abstract: Parametric analysis is an essential tool in optimizing the performance of any system; it is, in particular, used 
to fine-tune key parameters in a system design process. In this paper, using a vehicle cruise control system 
as a non-trivial case study, we introduce a new approach for the performance parametric analysis of 
complex systems using SysML models and a parametric constraint solver. System requirements are taken 
into account to verify automatically whether the design solutions satisfy these requirements. This suggests 
that in order to reduce time and resources, it is possible to perform initial performance analysis in a 
modeling tool, just after the system functional and architectural analyses. Of course, once an approximate 
operating point has been determined using this approach, experiments in specialized simulation tools can be 
used to confirm and further refine the parameters of a system.  

1 INTRODUCTION 

SysML (SysML, 2010) is a visual modeling 
language used to support the specification, analysis, 
design, verification and validation of any engineered 
system. Taking advantage of SysML concepts such 
as requirements, blocks, flow ports, parametric 
diagrams and allocations, it is easy to model 
architectural and operational aspects of complex 
systems at various levels of abstraction. 

In this paper, we perform a sensitivity analysis, 
which explores a parameter space, to find ideal 
operational parameters allowing the validation of 
alternative operational scenarios and system 
configurations. The impact of constraints on system 
properties and behaviours is analyzed in order to 
optimize global system performance. We use 
conjointly SysML parametric diagrams and a solver 
in support of analyzing system alternatives 
performances with respect to stakeholder 
requirements, derived system requirements and 
measures of effectiveness.  

To illustrate our approach, we use a particular 
case study: a Cruise Control Engine system. Since 
many design parameters influence the operation of 
such a system, it is difficult to quantify their impact 
on the interactions within the system, and thus its 
performance. The purpose of this study is thus to 
investigate the consequences of varying some of 
these operating parameters on the performance of 

the system and to report the results using more 
quantitative measures. The outcomes will be used to 
improve the understanding of the system operation 
and to optimize its performance by changing some 
operating parameters or improving components. Due 
to the large parameter space, and the complex, 
highly coupled hybrid nature of the different internal 
components of automatic systems, analysis is 
complicated and sometime more specialized 
simulation tools are necessary. The limits of our 
approach are also discussed. 

The structure of the paper is the following. In 
Section 2, we describe briefly the functionalities of a 
cruise control engine, the related SysML 
requirement diagram and the dynamic model used in 
our case study.  Section 3 presents the parametric 
analysis using the IBM Rhapsody SysML IDE, 
SysML parametric models and IBM add-on 
parametric constraint evaluator. Some preliminary 
parametric analysis of dynamic constraints in trade-
off design activities and results of the case study are 
discussed in Section 4. Conclusions are outlined in 
Section 5. 

2 CRUISE CONTROL SYSTEM  

2.1 Functionalities  

Cruise control is a system that automatically controls 
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the speed of a vehicle by maintaining a constant 
speed set by the driver. The implementation of a 
cruise control system may vary but respects in 
general the following principles. First, the cruise 
control system may need to be turned on before use: 
it passes from the disengaged state to the engaged 
state. While engaged, cruise control becomes 
activated when the driver sets the desired speed. A 
driver instruction, such as braking or throttle pedal 
depression, will put the cruise control on suspended 
mode. Of course, we can easily go back to the 
configuration before the suspension by using the 
resume function supported by almost all systems.  
Beside these operations, one can always increment 
or decrement the desired speed when the system is 
activated. 

2.2 Requirements Model  

Requirements analysis is the first step in the system 
design process, where stakeholder requirements are 
translated into system requirements that define what 
the system must do and how well it must perform. 
The result is a requirement diagram in which the 
requirements are classified hierarchically. Complex 
specifications are decomposed and categorized into 
simpler ones, leading to a better interpretation that 
will help with system verification and validation. 

Figure 1 shows the requirement diagram for our 
cruise control system. In the performance 
requirement category, you can see some design 
constraints for cruise control systems taken from 

Control Tutorials for Matlab (Michigan, 1997), with 
some of our own modifications. For example, when 
the motor yields a 1500 Newton force, the car must 
reach a maximum velocity of 30 m/s and be able to 
accelerate up to that speed in less than 5 seconds. 
Beside this, a 10% overshoot on the car speed and a 
2% steady-state error are acceptable for the cruise 
control system.  The above criteria can be used later 
to verify if the design solutions respect these 
requirements. To complete the requirement analysis 
phase, a model for system use cases must be built to 
establish traceability links between requirements and 
use cases provided, in order to ensure the coverage 
of functional and performance requirements by the 
use cases. These issues fall outside the scope of this 
paper.  

2.3 Dynamic Model 

Almost all cruise control systems follow the closed-
loop control system principle. A sensor monitors the 
car speed and feeds data to a controller that adjusts 
the control as needed to maintain the reference 
speed. When the car goes uphill or downhill, the 
difference in speed is measured, and the throttle 
position changed to increase or decrease engine 
power, speeding or slowing respectively the vehicle. 
Feedback from measuring the car velocity allows the 
controller to dynamically compensate for changes to 
the car speed. 

 

 
Figure 1: Requirement Diagram of a Cruise Control. 
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PID (proportional - integral - derivative) 
controller is widely used in industrial control system 
theory. The typical form of the PID algorithm is the 
following: (ݐ)ݑ = 	݇௣݁(ݐ) + ݇௜ න݁(ݐ)݀ݐ +	݇ௗ ݐ݀݀  (ݐ)݁
where kp, ki and kd are tuning parameters that have to 
be adjusted to optimum values to achieve the desired 
response while maintaining the stability of the 
system. The control signal u computed by the 
controller is used to rectify the throttle position and 
thus the torque delivered by the engine, generating a 
force that accelerates the vehicle. 

To illustrate our case study, we used the dynamic 
model of a cruise control system found in Astrom 
and Murray's book (Astrom and Murray, 2010). 
Their proportional - integral (PI) controller has the 
form: (ݐ)ݑ = 	݇௣݁(ݐ) +	݇௜ න ݁(߬)݀߬௧

଴  ݁ = ௥ݒ −  ݒ	

where vr is the desired speed, v  the current speed 
and u the signal control.  The torque T, controlled by 
the throttle position, delivered by the engine and 
transmitted through the gears and the wheels, 
depends also on engine speed ω:  ܶ(߱) = 	ݑ ௠ܶ ቆ1 − ߚ ൬ ߱߱௠ − 	1൰ଶቇ 

where the maximum torque Tm is obtained at engine 
speed ωm, and typical values are given for Tm, ωm 
and β. The angular velocity is related to the speed 
through the expression:  ߱ =  ݒ௡ߙ
And the driving force generated by the torque T is 
written as:  ܨ =  (߱)ܶ	௡ߙ	

Typical values of αn (n is the gear ratio) for gears 
1 through 5 are 40, 23, 16, 12 and 10. The car's 
motion is given by the following equation:  ݉݀ݐ݀ݒ = ܨ −  ௗܨ

where m is the mass, Fd the disturbance force which 
has three major components : gravity force (Fg),  
rolling friction force (Fr) and aerodynamic drag 
force (Fa). Different parameters such as the slope of 
the road, total mass of the car, gravitational constant, 
density of air, frontal area of the car as well as 
coefficients of various forces are taken into account 
in the model. 

3 PARAMETRIC ANALYSIS  

In this section, we provide information regarding the 
main components of our tools environment. Good 
tool integration is paramount here, since round-trip 
interoperability between SysML parametric models 
and an integrated solver is a key requirement of our 
approach.  

3.1 SysML Parametric Models  

SysML provides mechanisms and constructs 
necessary to successfully describe all the structural 
and behavioural specifications and constraints of a 
model of a system.  In the design phase, it is 
essential to annotate these models with qualitative 
and quantitative requirements, known as non-
functional properties, aiming at verifying and 
validating the temporal behaviour, power estimation 
and other various constraints. 

Block diagrams are the natural approach used by 
SysML for expressing system-level models, 
providing a standardized form of representation for 
both the structure of a system and the equations that 
characterize its dynamic and its functional and 
behavioural constraints. Blocks are extended into 
constraint blocks that can be used in parametric 
diagrams, which enable users to model equations in 
terms of constraints in SysML, establishing a 
network of relations among the properties of a 
system (Peak, et al., 2007). These mathematical 
expressions can represent the physical properties of 
a system (e.g., relevant physics laws) or non-
functional properties (e.g., cost, risk, performance, 
reliability, etc).  

Simulation and system parametric analysis then 
can be realized to check that a system definition 
meets a certain system requirement, which can be 
modelled explicitly using the SysML “verify” 
dependency stereotype. Furthermore, some non-
functional requirements can be written as constraints 
so they can be automatically verified by an 
integrated solver.  Instead of using specific 
simulation tools such as Simulink or Modelica, we 
decided to exploit a lightweight solver already 
integrated in a SysML supported toolset to carry out 
parametric analyses. 

3.2 IBM Rhapsody Toolset  

IBM Rational Rhapsody(Hoffmann, 2010) is a 
collaborative, model-based systems engineering 
development platform providing simulation for early 
requirement, architecture and behavioural validation. 
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We decided to use it in our research because it 
provides tools to dynamically analyze and execute 
SysML parametric diagrams to assist in trade study 
analysis. The integrated Parametric Constraint 
Evaluator is a Rhapsody add-on that allows the 
evaluation of parametric diagrams via a Computer 
Algebra System (CAS) that solves the corresponding 
mathematical expressions. Matlab Toolbox and 
Maxima are two CAS supported by IBM Rhapsody; 
given its ready availability, we chose the open-
source Maxima for this work. Maxima manipulates 
symbolic and numerical expressions, and includes 
many operations such as differentiation, integration, 
Taylor series expansion, Laplace transform, ordinary 
differential equation solving, systems of linear 
equations manipulation, etc.  It yields high precision 
numeric results, using exact fractions and variable 
precision floating point numbers. Thanks to 
Maxima, PCE is able to compute the values that 
satisfy mathematical constraints or to solve 
constraints to minimize or maximize a value of an 
attribute for linear algebraic equations. Besides this, 
it can also produce graphs showing how values 
behave over time or over a range of values of other 
parameters. These possibilities allow a system 
engineer to analyze the behaviours of the system, to 
validate the constraints and to perform trade studies. 
However, some solver limitations that are discussed 
later led us to an interesting debate about the choice 
of lightweight simulation tools such as parametric 
diagrams with respect to dedicated tools such as 
Simulink or Modelica. 

4 SENSIBILITY ANALYSIS  

Instead of using specialized simulation tools, we 
have tried to use the SysML parametric diagram 
coupled with a solver to carry out 2 different 
simulations: an open loop cruise control as in 
(Michigan, 1997) and a closed loop with the 
dynamic model in Section 2.3. Throughout our 
experiments, the limits of the solver integrated in 
Rhapsody were encountered and are discussed here. 

4.1 Open Loop Cruise Control  

For an open loop experiment with linear differential 
equations, our solver with Maxima succeeded at 
producing desired results as with Matlab from the 
parametric diagram in Figure 2.  

 
Figure 2: Parametric Diagram of an Open Loop Cruise 
Control. 

We used here the same physical setup and system 
equations as in (Michigan, 1997): friction opposing 
the motion of the car is proportional to the car speed. 
With an initial condition, a graph is generated from 
the constraint view referencing the corresponding 
parametric diagram, which is shown in Figure 3. 
From the plot, we see that the car needs more than 
100 seconds to reach the steady-state speed of 
30m/s, which does not satisfy the performance 
requirement about rise time (less than 5 seconds). 

 
Figure 3: Speed vs. Time in Open Loop Cruise Control 
(generated by PCE/Maxima). 

4.2 Closed Loop with Dynamic Model  

Our second implementation is the dynamic model of 
the cruise control system described in Section 2.3. 
The corresponding SysML parametric diagram is 
provided in Figure 4. Each parametric constraint 
represents an equation dealing with the comparator, 
the controller, the torque related to the throttle 
position, the generated force, the car motion and the 
different disturbance forces. Constants are given in 
the value properties. Almost all physical units are 
available in the Systems Engineering (SE) profile of 
Rhapsody.  

Some simplifications have been made due to 
software limitations: not all the possibilities of 
Maxima are fully implemented. As PCE does not  
 

Car Motion
1 «ConstraintProperty»

Constraints
m*der(v)+b*v=f
v(0)=0

f:Real

b:Real
m:Kilogram

v:MeterPerSecond

Mass:Kilogram=1000
«Attribute»

Speed:MeterPerSecond
«Attribute»

Force:Newton=1500
«Attribute»

Friction Coef:NewtonSecondperMeter=50
«Attribute»
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Figure 4: Parametric Diagram of the Dynamic Model. 

support the integral operation or the Laplace 
transform, we had to give up the integral part of the 
controller; only proportional gain is taken into 
account in the controller. That gives us the following 
nonlinear differential equation for the system: ݉ௗ௩ௗ௧ = ௥ݒ)௡݇௣ߙ	 − (ݒ ௠ܶ ൬1 − ߚ ቀఈ೙௩ఠ೘ −1ቁଶ൰	– ௥ܥ݃݉	 − ଶݒܣௗܥߩ0.5	 − 	݉݃ sin  (1)														ߠ
 

where the last three terms represent respectively the 
three disturbance forces : rolling friction, 
aerodynamic drag and gravity force. Every variable 
of the equation, except speed (v) and time (t), is 
either constant or of known values.  

A constraint view referencing the above 
parametric diagram can be generated, as shown in 

Figure 5. Normally, through the fixing of some 
values in the spreadsheet, such as the value for the 
proportional gain, the road slope, the car mass, the 
desired speed…, we can ask Rhapsody to evaluate 
the system in order to detect inconsistent constraints 
or to display graphs that show interesting 
relationships, for instance between time and speed. 

Unfortunately, since Maxima only gives us the 
exact analytical solution for the nonlinear 
differential equation (1), which is not exploitable, 
PCE cannot be used here. So, we decided to fall 
back to using Scilab, an open-source solver using 
numerical solutions, which allowed us to plot graphs 
that represent the relationship between speed and 
time from Equation (1), when varying some system 

Engine Speed
1 «ConstraintProperty»

Constraints
w=alpha*v

alpha

w:RadianPerSecond

v:RealCurrent  Speed:MeterPerSecond
«Attribute»

Torque
1 «ConstraintProperty»

Constraints
T=u*Tm*(1-B*(w/wm-1)*(w/wm-1))

u:Real

T:NewtonMeter

B:Real

w:RadianPerSecond

wm:RadianPerSecond Tm:NewtonMeter

MaxTorque:NewtonMeter=190
«Attribute»

Max Engine Speed:RadianPerSecond=420
«Attribute»

Beta:Real=0.4
«Attribute»

Grav ity Force
1 «ConstraintProperty»

Constraints
Fg=m*g*sin(t...

Fg:Newton

teta:Radian

g:MeterP

m:Kilogram

Grav ity :MeterP
«Attribute»

Mass:Kilogram
«Attribute»

Road Slope:Radian
«Attribute»

Rolling Friction Force
1 «ConstraintProperty»

Constraints
Fr=m*g*C1

Fr:Newton

m:Kilogram

g:MeterPerSe

C1:Real
Rolling Friction:Real=0.01

«Attribute»

Aerodynamic Drag Force
1 «ConstraintProperty»

Constraints
Fa=0.5*Rho*Cd*A*v*v

Fa:Newton

v:MeterPerSecond

Rho:KilogramPerCubicMeter

Cd:Real

A:MeterSquareCar Frontal Area:Meter
«Attribute»

Aero drag Coef :Real=0.32
«Attribute»

Air Density :KilogramPerCubicMeter=1.3
«Attribute»

Disturbance Force
1 «ConstraintProperty»

Constraints
Fd=Fr+Fg+Fa

Fd:Newton

Fa:NewtonFr:NewtonFg:Newton

Car Motion
1 «ConstraintProperty»

Constraints
m*der(v)=F-Fd
v(0)=0

Fd:Newton

F:Newton

v:MeterPerSecond

m:Kilogram

Force
1 «ConstraintProperty»

Constraints
F=alpha*T

alphaF:Newton
T:NewtonMeter w:RadianPerSecond

Comp
1 «ConstraintProperty»

Constraints
error=vr-v

error:Real

v:MeterPerSecond

vr:MeterPerSecond

Desired Speed:MeterPerSecond
«Attribute»

Controller
1 «ConstraintProperty»

Constraints
u=Kp*error

u:Real

Kp:Real

error:Real

Proportional Gain:Real
«Attribute»

Gear Rat io: int=10
«Attribute»
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parameters. Some experimental results are given in 
Figure 6, 7 and 8. 

In Figure 6, we see that with kp = 1, the car 
almost reaches the desired speed which is 30 m/s in 
less than 5 seconds, so the performance 
requirements about steady-state error and rise time 
are verified.  

 
Figure 5: Constraint View of the Dynamic Model. 

 
Figure 6: Speed vs. Time with Different Proportional 
Gains (generated by Scilab). 

 
Figure 7: Speed vs. Time with Different Masses 
(generated by Scilab). 

 
Figure 8: Speed vs. Time with Different Road Slopes 
(generated by Scilab). 

With kp = 0.1, the system also arrives at the desired 
target speed, but with a much longer rise time. In 
Figure 7, by varying the total mass of the car and 
keeping the value 1 for kp, we get different traces in 
which only the trace for m = 1000 kg verifies the 
condition of rise time less than 5 seconds. For the 
other values of mass, further parameters must be 
adjusted to achieve satisfying results. In Figure 8, by 
varying the road slope while keeping the same value 
for kp and m (1 and 1000kg respectively), we get 
different outcomes. Since the vehicle has to provide 
much more effort to go uphill (θ = 2° and 5°), with 
the same value of kp, it cannot reach the desired 
speed of 30 m/s. 

The above results show that more experiments 
must be run in order to find out optimum values for 
the system parameters. All possible combinations of 
the different value ranges for mass, road slope, 
desired speed, etc must be taken into account. And, 
of course, the integral and derivative gains are 
necessary if we want to have more precision with 
our cruise control system. 

5 CONCLUSIONS 

Due to the large parameter space and the highly 
coupled hybrid nature of the different internal 
components of automatic systems, their analysis is 
usually complex and time consuming. In the case of 
performance analysis, rather than performing 
complete parametric analyses of complex systems in 
the field, our paper suggests that initial parametric 
performance analyses can be performed, in the lab, 
using SysML parametric diagrams as main tool, 
while at the same time leveraging conventional 
modeling and simulation tools including 
spreadsheets, math solvers, finite element analysis, 
discrete event solvers and optimization tools. This 
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approach allows for greater repeatability and 
requires less time and resources. Of course, once an 
approximate operating point has been determined 
using this approach, field experiments with more 
specialized tools (Simulink, OpenModelica, ...) can 
be used to confirm and further refine the parameters 
of a system. 

Some works have been done by an OMG group 
for the integration of SysML and Modelica to profit 
the strength of two complementary modeling 
languages: the descriptive power from SysML and 
the analytic and computational power from 
Modelica (Johnson and Jobe and Paredis and 
Burkhart, 2007), (Paredis, et al., 2010). In fact, 
Modelica is well suited for representing differential 
algebraic equations to model the flow of energy, 
materials, signals ... in complex system. 
Transformation specification has been proposed to 
provide a bi-directional mapping between the two 
languages. However, the requirement models of 
SysML are not considered in this mapping. In our 
approach, we can integrate requirement information 
directly into parametric diagrams to validate the 
design. By rewriting requirement constraints in a 
formal language such as OCL or a temporal logic 
language, we can put them in the parametric 
diagrams and then formal methods can be used to 
verify if there are errors in system design.  

The preliminary results presented in this paper 
are quite encouraging. With a lightweight system, 
we achieved results similar to those provided using 
specialized tools and the perspective to be able to 
combine directly in the same tool structural and 
behavioural specifications with requirement 
constraints to validate the design process is 
promising.   

Nevertheless, this solution presents some 
limitations: although parametric diagrams are non-
causal, they do not separate effort and flow 
variables, which is a fundamental issue when 
modeling physical systems. For example, Modelica 
(using flow) and VHDL-AMS (using 
across/through) contain such constructs. Beside this, 
although the Rhapsody tool is well suited for 
implementing the first steps of complex system 
development process, i.e., requirement analysis, 
system functional analysis and design synthesis, the 
architecture mismatch in its Parametric Constraint 
Evaluator integrated with Maxima should be 
corrected to represent more complicated 
mathematical relations. For instance, a solver 
providing numerical solutions for nonlinear 

differential equations and supporting Laplace or Z 
transforms (Wescott, 2012) would be highly 
appreciated.  

The next step of our work is to make a complete 
survey of different SysML parametric solving tools 
such as ParaSolver for Artisan Studio, ParaMagic 
for MagicDraw, etc. in order to compare how far 
these tools are able to support complex system 
models. Actually, the tutorial examples given by 
these tools are rather not very complicated.  
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