Optimal Multidimensional Signal Processing in Wireless Sensor Networks

Anatoli Torokhti¹ and Stanley Miklavcic²

¹School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA, Australia ²Phenomics and Bioinformatics Research Centre, School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA, Australia

Keywords: Multidimensional Signal Processing.

Abstract:

Wireless sensor networks involve a set of spatially distributed sensors and a fusion center. Three methods for finding models of the sensors and the fusion center are proposed.

1 INTRODUCTION

Wireless sensor networks (WSNs) have recently emerged as a promising technology for a wide range of multimedia applications (Vaseghi, 2007). A related scenario involves a set of spatially distributed sensors making local observations \mathbf{y}_j correlated with a signal of interest \mathbf{x} . Due to some external and instrumental factors, observations are noisy. Each sensor Q_j transmits information about its measurements to a fusion center \mathcal{P} whose primary goal is to recover the original signal within a prescribed accuracy. Fig 1 illustrates the case.

Figure 1: Block diagram of the WSN. Here, N designates a noisy environment, $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_p$ are estimations of $\mathbf{x}_1, \dots, \mathbf{x}_p$.

It is widely recognized that efficient transmission strategies should reduce (compress) the amount of information transmitted by sensors. In this paper, the above-mentioned efficient transmission strategies are studied. We propose a novel approach based on a reduction of the multidimensional signal processing problem in WSNs to the new optimization problem.

We adopt a transform-based approach to determine the optimal transmission strategies in WSNs. More precisely, each sensor applies a suitable linear transform Q_j to its random observation vector \mathbf{y}_j with n_j components so as to reduce its dimensionality to r_j components. The fusion center applies a linear transform \mathcal{P} to reconstruct the random source vector of interest \mathbf{x} with m components. Thus, Q_j and \mathcal{P} are given by matrices $Q_j \in \mathbb{R}^{r_j \times n_j}$ and $P \in \mathbb{R}^{m \times r}$, respectively, where $r_j \leq n_j$, $r = r_1 + \ldots + r_p$ and $r \leq m$.

Let us write (Ω, Σ, μ) for a probability space. For i = 1, ..., p, let $\mathbf{x}_i \in L^2(\Omega, \mathbb{R}^{m_i})$ be a random signal with realizations $x_i = \mathbf{x}_i(\omega) \in \mathbb{R}^{m_i}$. We denote

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_p \end{bmatrix} \quad \text{and} \quad \|\mathbf{x}(\cdot)\|_{\Omega}^2 = \int_{\Omega} \|\mathbf{x}(\omega)\|_2^2 d\mu(\omega)$$
(1)

where $\mathbf{x} \in L^2(\Omega, \mathbb{R}^m)$, $m = m_1 = \ldots + m_p$ and $\|\mathbf{x}(\omega)\|_2$ is the Euclidean norm of $\mathbf{x}(\omega) \in \mathbb{R}^m$. We also denote

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_p \end{bmatrix} \text{ where } \mathbf{y}_i \in L^2(\Omega, \mathbb{R}^{n_i}) \text{ and } n = n_1 + \ldots + n_n.$$

Let us define a sensor model Q_i by the relation

$$[Q_i(\mathbf{y}_i)](\boldsymbol{\omega}) = Q_i[\mathbf{y}_i(\boldsymbol{\omega})] \tag{2}$$

where $Q_i : L^2(\Omega, \mathbb{R}^{n_i}) \to L^2(\Omega, \mathbb{R}^{r_i})$ and Q_i is a matrix, $Q_i \in \mathbb{R}^{r_i \times n_i}$. For

$$r = r_1 + \ldots + r_p, \tag{3}$$

a fusion center model, $\mathcal{P}: L^2(\Omega, \mathbb{R}^r) \to L^2(\Omega, \mathbb{R}^m)$, is defined similarly to (2), by matrix $P \in \mathbb{R}^{m \times r}$.

Problem 1. For j = 1, ..., p, let \mathbf{x}_j and \mathbf{y}_j be reference signals and observed data, respectively. Find

Torokhti A. and Miklavcic S.

DOI: 10.5220/0004056101260129

Copyright © 2012 SCITEPRESS (Science and Technology Publications, Lda.)

¹²⁶ Optimal Multidimensional Signal Processing in Wireless Sensor Networks

In Proceedings of the International Conference on Signal Processing and Multimedia Applications and Wireless Information Networks and Systems (SIGMAP-2012), pages 126-129 ISBN: 978-989-8565-25-9

models of the sensors, Q_1, \ldots, Q_p , and a model of the fusion center, \mathcal{P} , that provide

$$\min_{\mathcal{P}, \mathcal{Q}_1, \dots, \mathcal{Q}_p} \left\| \mathbf{x} - \mathcal{P} \left[\begin{array}{c} \mathcal{Q}_1(\mathbf{y}_1) \\ \vdots \\ \mathcal{Q}_p(\mathbf{y}_p) \end{array} \right] \right\|_{\Omega}^2.$$
(4)

2 MAIN RESULTS

2.1 First Method: WSN Equipped with Orthogonal Data Convertors

Let us extend the original problem (4) to the problem equipped with additional data converters, $\mathcal{G}_1, \ldots, \mathcal{G}_p$, such that they transform observations $\mathbf{y}_1, \ldots, \mathbf{y}_p$ to vectors with the special property given by Definition 1 below. This property allows us to determine solution in a quite simple way.

For **x** and **y** presented by

$$\mathbf{x} = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}]^T$$
 and $\mathbf{y} = [\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}]^T$

with $\mathbf{x}^{(\ell)} \in L^2(\Omega, \mathbb{R})$ and $\mathbf{y}^{(q)} \in L^2(\Omega, \mathbb{R})$ where $\ell = 1, \dots, m$ and $q = 1, \dots, n$, respectively, we write

$$E[\mathbf{x}\mathbf{y}^{T}] = E_{xy} = \left\{ \left\langle \mathbf{x}^{(\ell)}, \mathbf{y}^{(q)} \right\rangle \right\}_{\ell,q=1}^{m,n} \in \mathbb{R}^{m \times r}$$

and $\langle \mathbf{x}^{(\ell)}, \mathbf{y}^{(q)} \rangle = \int_{\Omega} \mathbf{x}^{(\ell)}(\omega) \mathbf{y}^{(q)}(\omega) d\mu(\omega).$

Definition 1. For $i = 1, \ldots, p$, let

$$\mathbf{u}_i = \mathcal{G}_i(\mathbf{y}_i)$$

where $\mathcal{G}_i : L^2(\Omega, \mathbb{R}^{n_i}) \to L^2(\Omega, \mathbb{R}^{n_i})$. The data converters $\mathcal{G}_1, \ldots, \mathcal{G}_p$ are called pairwise orthogonal if

$$E_{u_i u_i} = \mathbb{O} \quad when \ i \neq j, \tag{5}$$

where \mathbb{O} is the zero matrix.

The determination of the pairwise orthogonal data converters $\mathcal{G}_1, \ldots, \mathcal{G}_p$ is given in Lemma 1 below.

Let us now extend problem (4) by including data converters $\mathcal{G}_1, \ldots, \mathcal{G}_p$.

Problem 2. For i = 1, ..., p, find models of the sensors, $Q_1, ..., Q_p$, and a model of the fusion center, \mathcal{P} , that provide

$$\min_{\mathcal{P}, Q_1, \dots, Q_p} \left\| \mathbf{x} - \mathcal{P} \left[\begin{array}{c} Q_1 \mathcal{G}_1(\mathbf{y}_1) \\ \vdots \\ Q_p \mathcal{G}_p(\mathbf{y}_p) \end{array} \right] \right\|_{\Omega}^2.$$
(6)

Let us denote by M^{\dagger} the Moor-Penrose pseudoinverse of a matrix M.

First, we give the models of orthogonal data converters $\mathcal{G}_1, \ldots, \mathcal{G}_p$ that satisfy (5) as follows.

Lemma 1. Let $\mathbf{u}_i = \mathcal{G}_i(\mathbf{y}_i)$ for i = 1, ..., p and let $\mathcal{G}_1, ..., \mathcal{G}_p$ be such that

$$\mathcal{G}_1(\mathbf{y}_1) = \mathbf{y}_1 \quad and \quad \mathcal{G}_i(\mathbf{y}_i) = \mathbf{y}_i - \sum_{k=1}^{i-1} Z_{ik}(\mathbf{u}_k)$$
(7)

for i = 2, ..., p with $Z_{ik} : L^2(\Omega, \mathbb{R}^{m_i}) \to L^2(\Omega, \mathbb{R}^{m_i})$ defined by

$$Z_{ik} = E_{y_i u_k} E_{u_k u_k}^{\dagger} + M_{ik} (I - E_{u_k u_k} E_{u_k u_k}^{\dagger}) \qquad (8)$$

with $M_{ik} \in \mathbb{R}^{n \times n}$ arbitrary. Then the $\mathcal{G}_1, \ldots, \mathcal{G}_p$ are pairwise orthogonal data converters.

Next, to find a solution of Problem 2, we write $\mathcal{P} = [\mathcal{P}_1 \dots \mathcal{P}_p]$ where, for $j = 1, \dots, p, \mathcal{P}_j$ is defined by matrix $P_j \in \mathbb{R}^{m \times r_j}$. Then

$$\left\| \mathbf{x} - [\mathcal{P}_1 \dots \mathcal{P}_p] \begin{bmatrix} \mathcal{Q}_1 \mathcal{G}_1(\mathbf{y}_1) \\ \vdots \\ \mathcal{Q}_p \mathcal{G}_p(\mathbf{y}_p) \end{bmatrix} \right\|_{\Omega}^2$$
$$= \left\| \mathbf{x} - [\mathcal{F}_1, \dots, \mathcal{F}_p](\mathbf{u}) \right\|_{\Omega}^2,$$
(9) where

 $\mathcal{F}_i = \mathcal{P}_i Q_i$ and $\mathbf{u} = [\mathbf{u}_1^T, \dots, \mathbf{u}_p^T]^T$. (10)

Thus, problem (6) is reduced to the equivalent problem of finding $\mathcal{F}_1, \ldots, \mathcal{F}_p$ that solve

$$\min_{\mathcal{F}_1,\dots,\mathcal{F}_p} \left\| \mathbf{x} - [\mathcal{F}_1,\dots,\mathcal{F}_p](\mathbf{u}) \right\|_{\Omega}^2$$
(11)

subject to

=

rank
$$\mathcal{F}_1 \leq r_1, \ldots, \text{ rank } \mathcal{F}_p \leq r_p.$$
 (12)
To find a solution of problem (11)–(12) we write

 $[\sigma - \sigma]()||^2$

$$\|\mathbf{x} - [\mathcal{F}_1, \dots, \mathcal{F}_p](\mathbf{u})\|_{\Omega}$$

= $\|E_{xx}^{1/2}\|^2 - \|E_{xu}(E_{uu}^{1/2})^{\dagger}\|^2 + \|E_{xu}(E_{uu}^{1/2})^{\dagger} - FE_{uu}^{1/2}\|^2$

Here, the only term that depends on F_1, \ldots, F_p is

$$\begin{aligned} \|E_{xu}(E_{uu}^{1/2})^{\dagger} - [F_1, \dots, F_p]E_{uu}^{1/2}\|^2 \\ &= \|A - [F_1, \dots, F_p]C\|^2 \end{aligned} \tag{13}$$

where $A = E_{xu} (E_{uu}^{1/2})^{\dagger}$ and $C = E_{uu}^{1/2}$. Due to the property (5), matrix E_{uu} is block-diagonal,

$$E_{uu} = \begin{bmatrix} E_{u_1u_1} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & E_{u_2u_2} & \dots & \mathbb{O} \\ \dots & \dots & \dots & \dots \\ \mathbb{O} & \mathbb{O} & \dots & E_{u_pu_p}. \end{bmatrix}$$

Therefore, matrix C is also is block-diagonal,

$$C = \begin{bmatrix} C_{11} & \bigcirc & \dots & \bigcirc \\ \bigcirc & C_{22} & \dots & \bigcirc \\ \dots & \dots & \dots & \dots \\ \bigcirc & \bigcirc & \dots & C_{pp}. \end{bmatrix}$$

If we write $A = [A_1 \dots A_p]$ where, for $j = 1, \dots, p$, $A_j \in \mathbb{R}^{m \times n_j}$, then it follows from (13) that

$$||A - [F_1, \dots, F_p]C||^2 = \sum_{j=1}^p ||A_j - F_jC_{jj}||^2.$$

Thus, problem (11)–(12) is reduced to p individual problems of finding F_j , for j = 1, ..., p, that solves

$$\min_{F_j} \|A_j - F_j C_{jj}\|^2 \quad \text{with rank } F_j \le r_j.$$
(14)

The solution has been given in (Torokhti and Friedland, 2009) as follows.

2.1.1 Best Rank-constrained Matrix Approximation

Let $\mathbb{C}^{m \times n}$ be a set of $m \times n$ complex valued matrices, and denote by $\mathcal{R}(m,n,r) \subseteq \mathbb{C}^{m \times n}$ the variety of all $m \times n$ matrices of rank r at most. Fix $A = [a_{ij}]_{i,j=1}^{m,n} \in \mathbb{C}^{m \times n}$. Then $A^* \in \mathbb{C}^{n \times m}$ is the conjugate transpose of A. Let the singular value decomposition (SVD) of Abe given by $A = U_A \Sigma_A V_A^*$, (15)

where $U_A \in \mathbb{C}^{m \times m}$, $V_A \in \mathbb{C}^{n \times n}$ are unitary matrices, $\Sigma_A := \operatorname{diag}(\sigma_1(A), \dots, \sigma_{\min(m,n)}(A)) \in \mathbb{C}^{m \times n}$ is a generalized diagonal matrix, with the singular values $\sigma_1(A) \ge \sigma_2(A) \ge \dots \ge 0$ on the main diagonal.

Let $U_A = [u_1 \ u_2 \ \dots u_m]$ and $V_A = [v_1 \ v_2 \ \dots v_n]$ be the representations of U and V in terms of their m and n columns, respectively. Let

$$P_{A,L} := \sum_{i=1}^{\operatorname{rank} A} u_i u_i^* \in \mathbb{C}^{m \times m} \text{ and } P_{A,R} := \sum_{i=1}^{\operatorname{rank} A} v_i v_i^* \in \mathbb{C}^{n \times n}$$
(16)

be the orthogonal projections on the range of A and A^* , correspondingly. Define a truncated SVD, $\{A\}_r$, of matrix A by

$$\{A\}_r := \sum_{i=1}^r \sigma_i(A) u_i v_i^* = U_{Ar} \Sigma_{Ar} V_{Ar}^* \in \mathbb{C}^{m \times n} \quad (17)$$

for $r = 1, \ldots$, rank A, where

$$U_{Ar} = [u_1 \ u_2 \ \dots u_r], \ \Sigma_{Ar} = \text{diag}(\sigma_1(A), \dots, \sigma_r(A))$$

and $V_{Ar} = [v_1 \ v_2 \ \dots v_r].$ (18)

For $r > \operatorname{rank} A$, we write $\{A\}_r := A \ (\operatorname{or} \{A\}_r = \{A\}_{\operatorname{rank} A})$. For $1 \le r < \operatorname{rank} A$, the matrix $\{A\}_r$ is uniquely defined if and only if $\sigma_r(A) > \sigma_{r+1}(A)$.

Recall that $A^{\dagger} := V_A \Sigma_A^{\dagger} U_A^* \in \mathbb{C}^{n \times m}$ is the Moore-Penrose generalized inverse of A, where $\Sigma_A^{\dagger} :=$ $\operatorname{diag}\left(\frac{1}{\sigma_1(A)}, \dots, \frac{1}{\sigma_{\operatorname{rank} A}(A)}, 0, \dots, 0\right) \in \mathbb{C}^{n \times m}.$ Henceforth $\|\cdot\|$ designates the Frobenius norm.

Theorem 1 below provides a solution to the problem of finding a matrix F that solves

$$\min_{F \in \mathcal{R}(p,q,r)} ||A - BFC||.$$
(19)

Theorem 1. (Friedland and Torokhti, 2007) *Let* $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times p}$ and $C \in \mathbb{C}^{q \times n}$ be given matrices. Let

$$L_B = (I_p - P_{B,R})S$$
 and $L_C = T(I_a - P_{C,L})$ (20)

where $S \in \mathbb{C}^{p \times p}$ and $T \in \mathbb{C}^{q \times q}$ are any matrices, and I_p is the $p \times p$ identity matrix. Then the matrix

$$F = (I_p + L_B)B^{\dagger} \left\{ P_{B,L}AP_{C,R} \right\}_r C^{\dagger} (I_q + L_C)$$
(21)

is a minimizing matrix for the minimal problem (19). Any minimizing F has the above form.

2.1.2 Determination of Models of Sensors and Fusion Center that Satisfy (6)

It follows from (19), (21), that a solution of the problem in (14) is a particular case of Theorem 1.

Indeed if, in (19)–(21), we write A_j , F_j , C_{jj} and r_j instead of A, F, C and r, respectively, and set $n = n_j$, p = m, $q = n_j$ and B = I then (14) coincides with (19). Its solution follows from (21) in the form

$$F_{j} = \left\{ A_{j} P_{C_{jj},R} \right\}_{r_{j}} C_{jj}^{\dagger} (I_{n_{j}} + L_{C_{jj}}), \qquad (22)$$

where similarly to L_C in (20), $L_{C_{jj}} = T_j(I_{n_j} - P_{C_{jj},L})$ with T_j to be any $n_j \times n_j$ matrix. The solution of problem (11)–(12) is given by (22) as well.

Since (11)–(12) is equivalent to (6), it remains to show that models of sensors, Q_1, \ldots, Q_p , and a model of the fusion center, \mathcal{P} , that satisfy (6), follow from (22). To this end, we recall that by (10),

$$\mathcal{F}_j = \mathcal{P}_j Q_j$$

where \mathcal{F}_j , \mathcal{P}_j and Q_j are defined by matrices $F_j \in \mathbb{R}^{m \times n_j}$, $P_j \in \mathbb{R}^{m \times r_j}$ and $Q_j \in \mathbb{R}^{r_j \times n_j}$, respectively, where $F_j = P_j Q_j$. The matrices P_j and Q_j are determined as follows. Let us write the SVD of F_j in (22) as

$$F_j = U_{F_j} \Sigma_{F_j} V_{F_j}^T \tag{23}$$

where matrices

$$U_{F_j} = [u_{j1}, \dots, u_{jm}] \in \mathbb{R}^{m \times m},$$

$$\Sigma_{F_j} = \operatorname{diag}(\sigma_1(F_j), \dots, \sigma_{\min(m,n_j)}(F_j)) \in \mathbb{R}^{m \times n_j}$$

and $V_{F_i} = [v_{j1}, \dots, v_{jn}] \in \mathbb{R}^{n_j \times n_j}$

are similar to matrices U_A , Σ_A and V_A for the SVD of matrix A in (15), respectively. In particular, σ_{j1} , ..., $\sigma_{j\min(m,n_j)}$ are the associated singular values. Let

$$U_{F_i r_j} = [u_{j1}, \dots, u_{jr_j}] \in \mathbb{R}^{m \times r_j}, \tag{24}$$

$$\Sigma_{F_j r_j} = \operatorname{diag}(\sigma_1(F_j), \dots, \sigma_{r_j}(F_j)) \in \mathbb{R}^{r_j \times r_j}$$
(25)

and
$$V_{F_jr_j} = [v_{j1}, \dots, v_{jr_j}] \in \mathbb{R}^{n \times r_j}$$
. (26)

Then F_j in (22) can be written in form $F_j = P_j Q_j$ where, for j = 1, ..., p,

$$P_j = U_{F_j r_j} \Sigma_{F_j r_j}, \quad Q_j = V_{F_j r_j}^T, \tag{27}$$

or

$$P_j = U_{F_j r_j} \in \mathbb{R}^{m \times r_j}, \quad Q_j = \Sigma_{F_j r_j} V_{F_j r_j}^T.$$
(28)

Thus, we have proved the following.

Theorem 2. The models of the sensors and the fusion center that satisfy (6) are given by matrices Q_1, \ldots, Q_p and $P = [P_1, \ldots, P_p]$, respectively, determined by (27) or (28).

2.2 Second Method: Direct Solution of WSN Problem (4)

Here, we consider a way to determine models of the sensors, Q_1, \ldots, Q_p , and the fusion center, \mathcal{P} , for the case when the orthogonal data converters, $\mathcal{G}_1, \ldots, \mathcal{G}_p$ (see (6), Definition 1 and Lemma 1), are not used, i.e. when Q_1, \ldots, Q_p and \mathcal{P} should satisfy (4).

In this case, similar to (9) and (10), we have

$$\left\| \mathbf{x} - [\mathcal{P}_1 \ \dots \ \mathcal{P}_p] \left[\begin{array}{c} Q_1(\mathbf{y}_1) \\ \vdots \\ Q_p(\mathbf{y}_p) \end{array} \right] \right\|_{\Omega}^2$$
$$= \|E_{xx}^{1/2}\|^2 - \|E_{xy}(E_{yy}^{1/2})^{\dagger}\|^2$$
$$+ \|E_{xy}(E_{yy}^{1/2})^{\dagger} - FE_{yy}^{1/2}\|^2,$$

where, as before, for j = 1, ..., p, $F_j = P_j Q_j$. Here, the only term that depends on $F_1, ..., F_p$ is

$$||E_{xy}(E_{yy}^{1/2})^{\dagger} - [F_1, \dots, F_p]E_{uu}^{1/2}||^2 = ||A - [F_1, \dots, F_p]C||^2$$

where $A = E_{xy}(E_{yy}^{1/2})^{\dagger}$ and $C = E_{yy}^{1/2}$. Thus, problem (4) is reduced to finding F_j , for j = 1, ..., p, that solve

$$\min_{F_1,\dots,F_p} \|A - [F_1,\dots,F_p]C\|^2$$
(29)

subject to

$$\operatorname{rank} F_1 \le r_1, \quad \dots, \quad \operatorname{rank} F_p \le r_p. \tag{30}$$

A difference from (13) is that in (29), matrix *C* is not block-diagonal. In this general case, a solution to problem (29)–(30), F_1, \ldots, F_p , follows from the extension of Theorem 1. This result will be provided at the conference. Then, for $j = 1, \ldots, p$, each matrix F_j that satisfies (29)–(30) is presented in the form (27) or (28).

Thus, in this case, the models of the sensors and the fusion center that satisfy (4) are given by matrices Q_1, \ldots, Q_p and $P = [P_1, \ldots, P_p]$, respectively, determined by(27) or (28) provided that F_1, \ldots, F_p solve (29)–(30).

2.3 Third Method: Approximate Solution of WSN Problem (4)

Here, we consider a method which represents a compromise between the first and second methods. In (29), matrices $A = [A_1, \ldots, A_p]$ and *C* can be represented in the form

$$A = \widetilde{A}_1 + \ldots + \widetilde{A}_p \quad \text{and} \quad C = [C_1^T, \ldots, C_p^T]^T, \quad (31)$$

respectively, where $\widetilde{A}_1 = [A_1, \mathbb{O}, \dots, \mathbb{O}], \dots, \widetilde{A}_p = [\mathbb{O}, \dots, \mathbb{O}, A_p]$ and, for $j = 1, \dots, p, C_j \in \mathbb{R}^{n_j \times n}$ is a block of *C*. Then

$$||A - [F_1, \dots, F_p]C||^2 \le \sum_{j=1}^p ||\widetilde{A}_j - \sum_{j=1}^p F_jC_j||^2.$$
 (32)

The latter motivates finding models of the sensors, Q_1, \ldots, Q_p , and the fusion center, $P = [P_1, \ldots, P_p]$, in the form $F_1 = P_1Q_1, \ldots, F_p = P_pQ_p$, where F_1, \ldots, F_p are determined from *p* individual problems of finding F_j , for $j = 1, \ldots, p$, that solves

$$\min_{F_j} \|\widetilde{A}_j - F_j C_j\|^2 \quad \text{with rank } F_j \le r_j.$$
(33)

A direct comparison with (14) shows that the problem in (33) is different from that in (14). This is because, for j = 1, ..., p, matrices A_j , C_{jj} and \widetilde{A}_j , C_j are different. Nevertheless, formally, the problems in (14) and (33) are similar. Therefore, the solution of (33)) is given in the form (22) where the notation should be changed in accordance with that in (31)–(33).

As a result, the following theorem is true.

Theorem 3. The models of the sensors and the fusion center of the WSN that approximate the optimal models are given by matrices Q_1, \ldots, Q_p and $P = [P_1, \ldots, P_p]$ determined by (27) or (28), where A_j and C_{jj} must be replaced with \widetilde{A}_j and C_j , respectively.

REFERENCES

- Friedland, S. and Torokhti, A. (2007). Generalized rankconstrained matrix approximations. *SIAM J. Matrix Anal. Appl.*, 29:656659.
- Torokhti, A. and Friedland, S. (2009). Towards theory of generic principal component analysis. *J. Multivariate Analysis*, 100:661669.
- Vaseghi, S. V. (2007). Multimedia signal processing: theory and applications in speech, music and communications. John Wiley and Sons.