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Abstract: RSA cryptosystem (Rivest et al., 1978) is the most widely deployed public-key cryptosystem for both encryp-
tion and digital signatures. Since its invention, lots of cryptanalytic efforts have been made which helped us to
improve it, especially in the area of key selection. The security of RSA relies on the computational hardness
of factoring large integers and most of the attacks exploit bad choice parameters or flaws in implementations.
Two very important cryptanalytic efforts in this area have been made by Wiener (Wiener, 1990) and de Weger
(Weger, 2002) who developed attacks based on small secret keys (Hinek, 2010).The main idea of Wiener’s
attack is to approximate the fractione

ϕ(N) by e
N for large values ofN and then make use of the continued

fraction algorithm to recover the secret keyd by computing the convergents of the fractione
N . He proved

that the secret keyd can be efficiently recovered ifd < 1
3N

1
4 and e< ϕ(N) and then de Weger extended this

attack fromd < 1
3N

1
4 to d < N

3
4−β, for any 1

4 < β < 1
2 such that|p−q| < Nβ. The aim of this paper is to

investigate for which values of the variablesσ and∆ = |p−q|, RSA which uses public keys of the special
structureE = e+σϕ(N), wheree< ϕ(N), is insecure against cryptanalysis. Adding multiples ofϕ(N) either
to eor tod is called Exponent Blinding and it is widely used especially in case of encryption schemes or digital
signatures implemented in portable devices such as smart cards (Schindler and Itoh, 2011). We show that an
extension of de Weger’s attack from public keyse< ϕ(N) to E > ϕ(N) is possible if the security parameterσ
satisfiesσ≤ N

1
2 .

1 INTRODUCTION

The RSA cryptosystem was invented by Rivest,
Shamir and Adleman in 1978 (Rivest et al., 1978)
and is considered among the most practical and popu-
lar asymmetric key cryptosystem in the cryptographic
community. It is widely used in many applications
such as access control, electronic voting and online
banking (Schneier, 1996).

The security of RSA cryptosystem is based en-
tirely on the structure of the multiplicative group
Z/NZ, whereN is the product of two large primes
p andq, typically of equal bit length. Thus,N is se-
lected in such a way such that the problem of factor-
ing the modulusN is computationally hard. It can
be proved that factoringN is polynomially (in time)
equivalent to the problem of computing the secret key
d if d < N and it is an open problem to prove or dis-
prove the polynomial time equivalence of these prob-
lems to the problem of extractingeth-roots in the ring
ZN (Goldreich, 2008). However, most of the attacks
are based on misuse of the system, bad choice param-
eters or flaws in implementations (Joux, 2009). The

significance of cryptographic key size to the security
of cryptosystem is emphasized by (Lenstra and Ver-
heul, 2000), where they offer guidelines for the deter-
mination of key sizes for symmetric cryptosystems,
RSA and discrete logarithm based cryptosystems over
finite fields and groups of elliptic curves over prime
fields.

RSA algorithm is defined by the following four
algorithms:

1. Modulus-generation: Given the security parame-
ter of sizen, generate two distinct large primes
p,q with q< p< 2q. Then the modulus isN= pq.

2. Key-generation: (e,d)← KeyGen(p,q)

Given p and q, computeϕ(N) = (p− 1)(q−
1).Then picke∈ Z∗ϕ(N) (i.e (e,ϕ(N)) = 1) and let
d be its multiplicative inverse (ed≡ 1 modϕ(N))

3. Encryption: M is encrypted via the power map
x→ xe to giveC≡Me mod(N)

4. Decryption: C is decrypted via the power map
x→ xd: Cd ≡ (Me)d ≡M mod(N)
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RSA is an efficient system for the following rea-
sons (Joux, 2009):

1. ModulusN can be constructed efficiently since we
have the ability to pick large primes at random,
thanks to the efficient primality testing algorithms
(Crandall and Pomerance, 2005).

2. Encryption and Decryption permutations can be
efficiently computed givenN ande (or d). This
can be very efficient by using fast modular expo-
nentiation algorithms.

3. Computations of the decryption exponents is
achieved easily using Euclid’s algorithm

Most of the existing attacks on the RSA cryptosys-
tem are factorization algorithms. Since factoring an
RSA modulus of the formN = pq is assumed to be a
hard computational problem, the aim of a cryptanalyst
is to identify practically interesting cases where the
underlying factorization problem is solvable in poly-
nomial time. A plethora of attacks recover weak keys
from the information revealed by the public exponent
e (Hinek, 2010). Wiener (Wiener, 1990) was the first
to prove that the RSA modulusN can be factored
for every public exponente< ϕ(N) with small secret

keysd satisfyingd < 1
3N

1
4 . de Weger (Weger, 2002)

extended this bound fromd < 1
3N

1
4 to d < N

3
4−β, for

any 1
4 < β < 1

2 such that|p− q| < Nβ. However,
all existing attacks related to small secret keys that
are found in the literature consider only cases where
e< ϕ(N).

Our Contribution: In this paper we examine the
security of RSA which uses large public keys of the
form E = e+σϕ(N), wheree< ϕ(N), σ ≤ N

1
2 and

∆ = |p− q| < Nβ for any β ∈ [1
4,

1
2]. These keys of

special structure are proposed by Wiener as counter-
measures against his own attack. Today, this method
of generating public keyse is employed by the indus-
try and is called exponent blinding. Exponent blind-
ing is considered as a countermeasure against Dif-
ferential Power Analysis (DPA) (Schindler and Itoh,
2011). However, cryptanalysis of RSA which uses
public keys of this structure is less widely studied.

We perform a security analysis of how successful
the attack is on RSA cryptosystem for different values
of the variableσ and different values of the prime dif-
ference|p−q|. We implement our attack which is an
extension of de Weger’s attack using Victor Shoup’s
Number Theory Library (NTL) (Shoup, 2009). Our
implementations suggest that the size ofσ is one of
the main factors that determines the security and the
efficiency of the system and we prove that our attack
is successful ifσ≤ N

1
2 .

2 BACKGROUND
MATHEMATICS

In this section we briefly discuss theContinued Frac-
tion algorithm which is another variant of the Eu-
clidean Division algorithm. We also state Legen-
dre’s rational approximation theorem which is what
inspired Wiener to develop his attack.

Continued Fraction:
Thecontinued fraction expansionof a rational num-
berα is (Hardy and Wright, 2008) :

α =
pn

qn
= a0+

1

a1+
1

a2+
1

...+
1
an

(1)

wherea0 ∈ Z andai ∈ N for i ≥ 0.
The numbersa0,a1,a2, ...,an are called thepartial

quotients. In short, we denote the continued fraction
expansion of a rational numberα as[a0,a1, ...,an] and

for i ≥ 0 the rationals
pi

qi
= [a0,a1, ...,ai ] are called

the convergentsof the continued fraction expansion
of α. If α ∈ Q then the continued fraction expansion
is finite and the continued fraction algorithm finds the
convergent in timeO((log( 1

α ))
2).

The convergents of the continued fraction expan-
sion can be computed recursively as stated by the fol-
lowing lemma.

Lemma 1. The convergents
pn

qn
can be computed us-

ing the following recursive relations:

1. p0 = a0, q0 = 1 (2)
2. p1 = a0a1+1, q1 = a1 (3)
3. pn = anpn−1+ pn−2,

qn = anqn−1+qn−2 for n≥ 2 (4)

Proof: Proof can be found in standard number
theory textbooks (Hardy and Wright, 2008). �

We end this introductory part by stating the fa-
mous Legendre’s Approximation Theorem. This the-
orem is very important in cryptanalysis since it allows
us to find a good rational approximation of any irra-
tional number in polynomial time. Polynomial-time
algorithms make implementations of theoretical at-
tacks against cryptosystems feasible in practice.

Theorem 2. [Legendre's Theorem in Diophantine
Approximations]. Let α ∈Q.
If |α− p

q |< 1
2q2 for some p,q∈ Z, then p

q is a conver-
gent arises from the continued fraction expansion of
α.
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Proof: Proof can be found in standard number
theory textbooks (Hardy and Wright, 2008). �

3 CRYPTANALYSIS OF RSA

A very basic question that we deal up with in the rest
of this paper is:

Question: When does e provide enough informa-
tion to factor N?

At first sight, it is not obvious at all that the public
key exponente may leak out any useful information
which allows an attacker to break the cryptosystem
by solving the underlying integer factoring problem
in polynomial time. Since modular exponentiation is
slow, it is very tempting for the crypto-designers to
use public exponentse of a very special structure to
balance decryption efficiency and security. There is
inherent danger if the public key exponente is chosen
such that the corresponding secret keyd is small. For
example, every tuple(N= pq,e)with e= kq for some
k∈ Z such that 1< k < p provides no security at all,
sinceGCD(N,e) = q.

In the rest of this section we make an introduc-
tion to the state of art regarding the existing attacks
on RSA cryptosystem using the notion of weak keys
(May, 2003). Let us first formalize the notion of weak
keys in the following way.

Definition: Let C be a class of RSA public keys
(N,e). The size of the classC is defined by

sizeC(N) := |{e∈ Z∗ϕ(N)|(N,e) ∈C}|. C is called
weak if:

1. sizeC(N) = O(Nγ) for someγ > 0
2. There exists a probabilistic algorithmA that on

every input(N,e) ∈C outputs the factorization ofN
in polynomial time in logN.

The elements of a weak class are called weak
keys.

We postpone details on Wiener’s and de Weger’s
attacks until the next section, and summarize other
types of attacks here. First, Fermat (McKee, 1999)
shows that when the distance between the two primes
∆ = |p−q|< cN1/4 for some constantc, thenN can
be factored efficiently. One may factorN by testing
all cases for:
x = ⌈2N1/2⌉,x = ⌈2N1/2⌉+ 1, ..., until x2− 4N is a
square.
A solution can be found efficiently whenever
∆ < cN1/4 since the number of trials is approximately
x−2N1/2 = p+q−2N1/2 < ∆2

4N1/2 .

Thus if |p−q|< cN1/4 holds, the number of trials

is at most
c2

4
for some constantc.

Dujella (Dujell and Ibrahimpasic, 2008) proposed
a new variant of Wiener’s attack, which combines the
results on Diophantine approximations of the form
|α− p

q | < c
q2 , and meet in the middle variant for test-

ing the candidates of the formrqm+1+sqm for the se-
cret key. This new variant improves the range of weak
keys by a factor of 230 and improves the complexity
of the attack by a constant.

Notable improvements are made by Boneh and
Durfee (Boneh and Durfee, 2000) who heuristically
but practically used the LLL algorithm for finding
short vectors in lattices to show that RSA is insecure

wheneverd < N
1− 1√

2 . However, they conjecture that
RSA is insecure ifd < N1/2 apart from an espilon.

Lastly, Alexander May (May, 2003) proved that
RSA modulusN can be successfully factored not only
whend is small but even when it has small decompo-
sition. He proved thatN can be factored in polyno-

mial time wheneverd < −w
z modϕ(N) with w≤ N1/4

3

and|z|= O(N−3/4ew).

In this paper we study the weaknesses of RSA
when public keys of the formE= e+σϕ(N) are used,
for e< ϕ(N) and σ an input parameter. We apply
the continued fraction algorithm on RSA cryptosys-
tem which uses these special keys to recover the secret
key. Adding multiples ofϕ(N) either toe or to d is
called Exponent Blinding and it is widely used espe-
cially in case of encryption schemes or digital signa-
tures implemented in portable devices such as smart
cards (Schindler and Itoh, 2011).

3.1 A Detailed Analysis of Wiener’s
Attack

Wiener was the first who observed that information
encoded in the public exponente can reveal the fac-
tors of the modulusN. He showed that every pub-
lic key which corresponds to a secret key such that
d < 1

3N
1
4 yields the factorization ofN in polynomial

time in the bit-size ofN.
Below we state and prove his attack.

Theorem 3. [Wiener]. Suppose p,q are primes with
q< p< 2q. Let N= pq and let d≥ 1, e< ϕ(N) such

that ed≡ 1 modϕ(N). If d < 1
3N

1
4 , then d can be

recovered in polynomial time inlogN.

Proof: Sinceed≡ 1 modϕ(N), there is ak such
thated= 1+ kϕ(N) (5). Rewrite this as

∣

∣

∣

∣

e
ϕ(N)

− k
d

∣

∣

∣

∣

=
1

dϕ(N)
(6)
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WhenN is large,ϕ(N) ≃ N, which implies
e
N
≃

k
d

. Sincep,q are of the same bit-size,N−ϕ(N) <

3
√

N. Therefore,
∣

∣

∣

∣

e
N
− k

d

∣

∣

∣

∣

<
3k

d
√

N
<

1

dN
1
4

<
1

2d2 (7)

Then according to Legendre’s Approximation Theo-

rem,
k
d

equals to a convergent of the continued frac-

tion expansion of
e
N

. Since the number of steps in

the continued fraction expansion of
e
N

is at most a

constant times logN, then using Attack Algorithm in
section 3.3 with input(e,N)

d = di f orsomei∈ {1,2, ..., logN}� (8)

Wiener’s attack does not highlight any flaws in the
design of the RSA cryptosystem but only shows that
an attack can be implemented in polynomial time if
the public-key and secret-key satisfy some bounds.
His attack claims that RSA becomes vulnerable if the
users use insecure keys. However, he proposed also
some countermeasures against his attack which we
mention below.
Countermeasures Against Wiener’s Attack:
1. If e> N3/2 then the continued fraction algorithm is
not guaranteed to work for any size of the secret key
d. Lemma 4proves this result.
2. IncreasingGCD(p−1,q−1), since the size of se-
cret keyd that can be found is inversely proportional
to this value. However, this may lead to other prob-
lems.
3. Use unbalanced primes so thatp+ q becomes
larger, decreasing in this way the range of weak keys.

Lemma 4. Wiener’s attack based on continued frac-
tion is completely ineffective when e> N

3
2 .

Proof: Consider the approximation
e
N
≃ k

d
. So, if

e> N
3
2 , thenk≃ d

√
N. Substitutingk into the proof

of Theorem 3, we have 3<
1

2d2 . This contradicts the

assumption thatd≥ 1. �

3.2 Extension of de Weger’s Attack on
RSA with Large Public Keys

In this section we investigate the ranges ofσ and
the prime difference∆ = |p− q| in which RSA is
insecure even when large public keys of the form
E = e+σϕ(N) are used.

We implement our attack using Victor Shoup’s
Number Theory Library (NTL) (Shoup, 2009) and

present results for different bit-values of the modulus
N and for different values of∆ = |p−q| < Nβ. Our
implementations suggest that the size ofσ is one of
the main factors that determines the security and effi-
ciency of the system. Below we state and prove some
Lemmaswhich help us to formalize our attack.

Lemma 5. Suppose N is the product of two distinct
primes p and q. If N andϕ(N) are known, then p,q
can be trivially found.

Proof: By definition,

ϕ(N) = (p−1)(q−1) = N+1− (p+q) (9)

Thus, for some constantc as LHS is known,

p+q= N−ϕ(N)+1= c (10)

Substitutingq by
N
p

we get a quadratic equation in-

volving only p. Solving the equation we obtainp,q
simultaneously.�

Lemma 6. If N = pq and∆ = |p−q|, then

0< p+q−2
√

N <
∆2

4
√

N
(11)

Proof: Note∆ = |p−q|. So,

∆2 = |p−q|2 = p2+q2−2N (12)

= (p+q)2−4N (13)

= (p+q−2
√

N)(p+q+2
√

N)
(14)

�

Lemma 7. [de Weger's Attack]. Suppose p,q are two
primes such that q< p< 2q. Consider the RSA cryp-
tosystem with N= pq, d≥ 1 and e< ϕ(N) such that
ed≡ 1 modϕ(N). If δ < 3

4−β, with β ∈ [1
4,

1
2] and if

d < Nδ, then d can be found efficiently.

Proof: Proof can be found in (Weger, 2002).�

The following Lemmaclaims an extension of de
Weger’s attack on RSA cryptosystem which makes
use of large public keysE of the forme+σϕ(N). We
construct and implement our attack based on this re-
sult.

Lemma 8. Suppose p and q are two primes such that
q< p< 2q. Consider the RSA cryptosystem with N=
pq, d≥ 1 and E= e+σϕ(N) (e< ϕ(N)) such that
Ed≡ 1 modϕ(N). If δ < 3

4−β, with β ∈ [1
4,

1
2] and if

d <
Nδ
√

1+σ
, then d can be recovered in polynomial

time in logN.

Proof: From Ed≡ 1 modϕ(N), there exists an
integerK such that

Ed= 1+Kϕ(N) (15)

Since
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E = e+σϕ(N)< (1+σ)ϕ(N) and
1

N−2
√

N+1
<

1
ϕ(N)

, it implies

∣

∣

∣

∣

E

N−2
√

N+1
− K

d

∣

∣

∣

∣

<E

∣

∣

∣

∣

1

N−2
√

N+1
− 1

ϕ(N)

∣

∣

∣

∣

+

∣

∣

∣

∣

E
ϕ(N)

− K
d

∣

∣

∣

∣

(16)

< (1+σ)ϕ(N)
|(N−2

√
N+1)−ϕ(N)|

(N−2
√

N+1)ϕ(N)
+

1
dϕ(N)

<
1+σ
ϕ(N)

(p+q−2
√

N)+
1

dϕ(N)

<
1+σ
ϕ(N)

(

∆2

4
√

N
+

1
d

)

. (17)

ForN > 64,d <
√

N <
N
8

. Thus we haveϕ(N)> 3
4N

andN > 8d. Embedding the conditions∆ < Nβ and
d < Nδ on the inequality above yields,
∣

∣

∣

∣

E

N−2
√

N+1
− K

d

∣

∣

∣

∣

<
1+σ

3
N2β− 3

2 +
4(1+σ)
3N1+δ

(18)

<
(1+σ)

3
N2β− 3

2 +
1+σ
6N2δ (19)

If 2β− 3
2 =−2δ we get,

∣

∣

∣

∣

E

N−2
√

N+1
− K

d

∣

∣

∣

∣

<
1+σ
2N2δ (20)

Therefore, ifd <
Nδ
√

1+σ
then,

∣

∣

∣

∣

E

N−2
√

N+1
− K

d

∣

∣

∣

∣

<
1

2d2 (21)

By Legendre’s Approximation Theorem, we can find

the fraction
K
d

using the convergents of the continued

fraction expansion of
E

N−2
√

N+1
. Feeding

(E,N−2
√

N+ 1) as input, the Attack Algorithm in
Section 3.3 will output the secret keyd in polynomial
time in logN.�

In the following Lemmawe prove a theoretical
bound forσ which is a threshold for our attack to
work in polynomial time.

Lemma 9. [Bound for σ]. The extended de Weger’s

attack can find d if d<
Nδ
√

1+σ
for anyσ≤ N

1
2 .

Proof: We proved that for any public key of the
form E = e+σϕ(N), then the secret keyd is recov-

erable if d <
Nδ
√

1+σ
. According to de Weger, the

attack is considered as non trivial ifd < Nδ where
1
4 < δ < 1

2. Suppose thatσ = Nα for some constant

α, thend <
Nδ

N
α
2

. For a non-trivial attack we need

to have1
4 < δ− α

2 < 1
2. Thus, 2δ−1< α < 2δ− 1

2.
Since1

4 < δ < 1
2, we have thatα≤ 2·max[1

4,
1
2]− 1

2 =

2.1
2 − 1

2 = 1
2. Clearly, the attack will succeed when

α≤ 1
2.�

3.3 Implementation of Attack and
Results

We implemented our suggested attack using Victor
Shoup’s Number Theory Library and run the algo-
rithm on a 1.67 GHz Intel Centrino Duo with Unix
OS. The pseudocode of our implementation is pre-
sented as follows.

Attack Algorithm: E = e+σϕ(N),d <
Nδ
√

1+σ

Input: (E,N−2
√

N+1) andi = 0
Output: the prime factorsp andq.

Step 1: Computeai
Step 2: Compute:

Ki = ai pi−1+ pi−2 (22)
di = aiqi−1+qi−2 (23)

Step 3: If di = 2u+1,u∈ Z+: Proceed to Step 4.
Else: Increasei by 1 and Go To Step 1.

Step 4: Computeϕ(N) =
Edi −1

Ki
. (24)

Step 5: Computeb= N−ϕ(N)+1= (p+q). (25)
Step 6: If b= 2u: Proceed to Step 7.

Else: Increasei by 1 and Go To Step 1.
Step 7: Computer = b2−4N. (26)
Step 8: If r < 0: Increasei by 1 and Go To Step 1.

Else If r > 0: Compute:

p=
b
2
+

√
r

2
(27)

q=
b
2
−
√

r
2

(28)

Step 9: If N = p·q, wherep> q> 1:
Outputp andq thenEXIT
Else: Increasei by 1 and Go To Step 1.

At the first stage, we ran the algorithm for differ-
ent values ofN, β, σ on RSA cryptosystem which
uses public keys of the formE = e+ σϕ(N) where
the corresponding secret key satisfies the boundd <

Nδ
√

1+σ
. During our experiments, we generated

10,000 pairs(p,q) of primes and then applied the ex-
tended de Weger’s attack on the corresponding RSA
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cryptosystem. We consider a pair(p,q) as successful
if de Weger’s attack succeeds in recovering the secret
keyd and we set the probability of success for a given
cryptosystem of modulusN of n-bits as the ratio of the
number of successful pairs(p,q) divided by 10,000.

It can be seen fromTable1, that if σ ≤ N
1
2 and the

corresponding secret keyd satisfiesd <
Nδ
√

1+σ
for

anyδ < 3
4 −β such that|p−q|= Nβ, then the prob-

ability of success of our attack is 1. We tested mod-
ulusN = 768,1024 bits, forσ = N

1
8 ,N

1
4 ,N

3
8 ,N

1
2 and

β = 6
16,

7
16. In all cases we computed successfully the

secret keyd. Additionally, we tested the algorithm on
RSA cryptosystem where the secret keyd lies in the

interval
Nδ
√

1+σ
< d < Nδ in order to examine how

efficient is de Weger’s attack beyond this bound.Ta-
ble2 shows that the probability of success is still large
enough in this range. For example, given modulusN

of 768 bits whereσ= 256,|p−q|<N
6
16 andd<N

6
16

we succeed in recoveringd in 3,395 pairs(p,q). This
shows that even if the secret key is beyond our proved
bound, de Weger’s attack is still successful with con-
siderable probability.

Table 1:E = e+σϕ(N) with e< ϕ(N).

(100% success)

N σ ∆ d <
Nδ
√

1+σ
Factoring

(bits) Time(s)

768 N
1
8 N

6
16 N

5
16 1.89

768 N
1
4 N

6
16 N

4
16 1.45

768 N
3
8 N

6
16 N

3
16 1.16

768 N
1
2 N

6
16 N

2
16 0.61

1024 N
1
8 N

7
16 N

4
16 3.17

1024 N
1
4 N

7
16 N

3
16 2.26

1024 N
3
8 N

7
16 N

2
16 1.41

1024 N
1
2 N

7
16 N

1
16 0.68

Table 2:E = e+σϕ(N) with e< ϕ(N).

N σ ∆ d < Nδ Success Time
(bits) (%) (s)

768 N
1
8 N

6
16 N

5
16 33.95 89.55

768 N
1
4 N

6
16 N

4
16 27.18 91.32

768 N
3
8 N

6
16 N

3
16 21.26 95.91

Figure 1 illustrates howσ affects the success rate
on a non-reduced weak keys range. As a non-reduced

weak keys range we consider the interval
Nδ
√

1+σ
<

33.95

27.18

21.26

-

6

256 512 1024
σ

S
-

u -30

-c

-

-

20
c

e

s

s

(%)

-

-

10

Figure 1: Figure 1: Success vs.σ (β = 6
16).

d < Nδ. As we see from the graph on a prime differ-

ence|p−q|= N
6
16 for σ = 256,512,1024 the average

computational time (in seconds) taken to break RSA
with probabilities 0.34, 0.27 and 0.21 respectively is
89.55s, 91.55s and 95.91s respectively. This does not
suggest any strong relation between the average time
taken to break RSA with a given probability of suc-
cess and the valueσ and this will be our future work
to further examine.

We illustrate the efficiency of our attack with the
following example:

Example 1: E = e+σϕ(N), with σ = N
1
8 .

Given the public key pair(E,N) as follows:
E = 4473293731721379708326616600641371492220
8452301194447518854414024881363792182304
2580303555067640409493419404332664472448
0714478038456529674771687629881162322755
4678961978028136424180400714868424766444
8354895772013522056396609272682724216109
0330452630661776127401059497980897807338
6196848366948293603278560822708221179375
210872458929751443368235039

N = 1361103142776844843270777920580365159157
6601006345508838411887727879556293248064
2249596860481164422051701139230898415566
4424931166293389440803680740555437487284
6167304010906805090338353028590696012084
4307585718231100135485265240804855620064
1203400770888586653001891061900176260174
76494758964256865710689175321.

Invoke Attack Algorithm with (E,N) as input.
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These are the first 160partial quotientsof
E
N

:
[

328652075741682697961546789483959181844, 1, 27, 1,
1, 1, 1, 3, 1, 96, 9, 3, 1, 2, 1, 1, 2, 1, 4, 3, 1, 1, 4, 2, 1, 1, 1,
3, 1, 4, 3, 3, 1, 5, 5, 35, 93, 1, 2, 1, 50, 1, 6, 1, 18, 1, 4, 3, 1,
1, 8, 1, 2, 1, 1, 15, 1, 1, 17, 1, 10, 1, 8, 9, 2, 2, 3, 5, 1, 2, 1,
4, 1, 7, 5, 6, 1, 4, 2, 1, 8, 1, 2, 3, 1, 167, 2, 1, 2, 1, 1, 4, 83,
1, 39, 1, 4, 4, 1, 2, 3, 4, 1, 1, 3, 4, 1, 4, 3, 2, 2, 3, 1, 1, 1, 9,
10, 1, 1, 5, 1, 1, 1, 1, 11, 1, 2, 5, 3, 1, 5, 2, 1, 2, 6, 6, 1, 3, 1,
2, 2, 3, 1, 1, 10, 1, 14, 1, 1, 1, 3, 2, 1, 8, 6, 2, 1, 2, 32, 1, ...

]

.

The correct match forK,d are found to be:
K = 3070987483608851575982136048729894369853

4219871516636651327662263788394181486258
215892561331634184862899678187125943

d = 9344190133832039329908147240511603850575
5034440689899579037402947439951867059

This reveals the prime factors:
p = 1166663251661268725389428824859985517545

9908219624903472802403412154892075707775
6374879316119253701312036058191983768080
80007811078043670884807797534409911

q = 1166663251661268725336788995672885969781
2927977819680784988846996724342996653178
7411501168071305034508471832382745635149
76500711474673711625513687790363311.

The valuesδ andβ are also calculated,

δ≈ 0.249796<
1
4

andβ≈ 0.437217<
7
16

.

This shows that the range of weak keys has been
slightly reduced.

The next example illustrates an instance where the
secret keyd can be found beyond the expected bound.

Example 2: E = e+σϕ(N), with σ = 1024 Given
the public key pair(E,N) as follows:

E = 8012376714025878357440941612240451226789
0791942096897899946588168355428594094184
5061181447285536558728607532595384614286
3319668080055405832203067073913077206415
1981240378734125396032476391897771717839
8820453182176280588447463505434327708387
9171785105345860294406474630477546282382
2809174314987563975138481387989

N = 7818698191737701140183794353099300460937
4874139988345505285292453980805767409916
8941897484632146251708594501064287176001
1783827092047583047572306308365275614833
5571512000452112721211954037224024252600
6261468265126625396332752868126228267183
5447353400369974141018700284783931591799
8566887250342874340484010853.
Invoke Attack Algorithm with (E,N) as input.

These are the first 170partial quotientsof
E
N

:
[

1024, 1, 3, 2, 1, 2, 3, 5, 1, 4, 1, 6, 1, 19, 1, 2, 1, 2, 2, 2, 5,
2, 16, 27, 1, 3, 11, 2, 1, 5, 3, 2, 1, 7, 2, 2, 1, 3, 1, 2, 3, 2, 2,
13, 213, 1, 21, 1, 3, 3, 10, 1, 9, 8, 4, 2, 1, 14, 2, 1, 33, 1, 1,
1, 7, 1, 42, 6, 1, 1, 326, 2, 3, 13, 6, 4, 4, 8, 1, 2, 5, 1, 2, 2, 2,
1, 1, 5, 4, 1, 3, 1, 2, 1, 14, 7, 57, 1, 1, 10, 2, 2, 3, 2, 58, 13,
2, 25, 2, 1, 8, 3, 1, 4, 4, 1, 1, 7, 1, 1, 5, 1, 4, 50, 21, 7, 28, 2,
4, 1, 2, 2, 1, 1, 1, 4, 3, 2, 11, 5, 4, 19, 1, 2, 1, 3, 10, 1, 14, 1,
1, 18, 6, 1, 14, 9, 1, 6, 1, 1, 2, 3, 1, 3, 1, 2, 7, 16, 2, 1, ...

]

.

The correct match forK,d are found to be:
K = 313502095308421820319312187072648398207

503241292725274374998886089540461751327
79281610521901824857

d = 305923991492197993569398452307744493597
067975876384134442848163832956575217972
52658495003050969.

This reveals the prime factors:
p = 884234029640213583459288805558955205223

615402467727593575790821189784625657565
240795770464454149022686841858476837415
4372317409696092611240744813864770711

q = 884234029640213583417486079216384023929
224609757928703058502403539769379524876
433776448394874081644022996403747254411
2092849602164528666613060910519239523.

The valuesδ andβ are also calculated,

δ≈ 0.306878<
5
16

andβ≈ 0.437234<
7
16

.

This shows that the range of weak keys can be found
5 bits beyond the proven value.

Example 3: Consider a pragmatic scenario of the
mutual authentication between the smart card and ter-
minal. To authenticate the smart card, suppose the
terminal sends a (64-bit) random numberRnd as a
challenge to the smart card. Assume that the public
key pair(E,N) of the smart card is given in Example
2. Sinced is known, the intercepted ciphertextC can
be decrypted, as follows:
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C = 587878124923628818562063988991062557629
420525196403840811773132423056530735864
595489959488513887238499494051570666061
443398292495656079071972576897454426333
313853984288978837131015772154724877693
591022834287600142050417161635905493871
900047686153527877220419014355023229435
81742444951964039791008036945856572

Rnd≡Cd ≡ 14366806732082741851 mod(N).

4 CONCLUSIONS

Despite the fact that there exist efficient attacks on
the scheme, RSA remains as the primary choice for
security algorithm in many areas of technology today.
RSA keys are used on the web for protecting webmail,
online banking, and other sensitive online services. A
recent security analysis was performed on RSA keys
found on the web in order to test the validity of the as-
sumption that different random choices are made each
time keys are generated, revealed that the vast major-
ity of public keys work as intended. However, it was
discovered that two out of every one thousand RSA
moduli that were collected offer no security leading
to the conclusion that the validity of the assumption
is questionable (Lenstra et al., 2011).

In this paper we investigated for which values of
the variablesσ and∆ = |p−q|, RSA which uses pub-
lic keys of the special structureE = e+σϕ(N), where
e< ϕ(N), is insecure against cryptanalysis. Adding
multiples of ϕ(N) either toe or to d is called Ex-
ponent Blinding and it is widely used especially in
case of encryption schemes or digital signatures im-
plemented in portable devices such as smart cards
(Schindler and Itoh, 2011). We show that an exten-
sion of de Weger’s attack from public keyse< ϕ(N)
to E > ϕ(N) is possible if the security parameterσ
satisfiesσ ≤ N

1
2 . This attack is efficient since the

continued fraction algorithm runs in polynomial time
in logN. With a 1024-bit RSA modulusN, the At-
tack Algorithm takes as little as 10ms to factor N.
Moreover, we provided a rigorous proof for the max-
imum value ofσ that our attack will succeed, namely
σ≤N

1
2 . However, from a theoretical point of view, if

|p−q| is slightly larger thanN
1
4 , then the attack will

work up toσ < N, sinced≃ N
1
2

√
1+N

≃ 1. Hence, to

achieve security against our attack, it is recommended
thatσ to be chosenσ≃ N.

None of the attacks discussed in this paper found
a weakness in the construction of the RSA cryptosys-

tem itself. The reason that we were able to demon-
strate a successful attack is because users make bad
security decisions. Choosing a small secret keyd, for
instance, is a bad security decision. As we have seen,
some users make their decisions as a form of trade-
off between security and computational costs. These
users are not better off than those who possess a per-
ception of futility regarding security.
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