
Create a Specialized Search Engine 
The Case of an RSS Search Engine 

Robert Viseur 
Université de Mons, Faculté Polytechnique, 20, Place du Parc, 7000 Mons, Belgium 

Keywords: API, Atom, Crawler, Indexer, Mashup, Open Source, RSS, Search Engine, Syndication. 

Abstract: Several approaches are possible for creating specialized search engines. For example, you can use the API 
of existing commercial search engines or create engine from scratch with reusable components such as open 
source indexer. RSS format is used for spreading information from websites, creating new applications 
(mashups), or collecting information for competitive or technical watch. In this paper, we focus on the study 
case of an RSS search engine development. We identify issues and propose ways to address them. 

1 INTRODUCTION 

RSS and Atom syndication formats are widely 
spreading in companies for technological or 
competitive watch. Unfortunately dedicated RSS 
and Atom search engines are not common, and 
famous Feedster worldwide search engine stopped 
some years ago. In this paper we focus on RSS and 
Atom search engine development. We identify 
issues et ways to address them. 

2 BACKGROUND 

2.1 Custom Search Engine 

A search engine roughly consists of a crawler, an 
indexer and a user interface (Chakrabarti, 2002). 

The crawler may seem simple to develop. 
However, it must be able to avoid bot traps, optimize 
bandwidth consumption, target wished web contents 
and respect the robots.txt protocol (Chakrabarti, 
2002; Thelwall and al., 2005). Indexer must 
implement inverted index and support boolean 
operators for offering fast, accurate and 
customizable search (Chakrabarti, 2002; Viseur, 
2010).  

Fortunately some components (for example open 
source libraries and softwares) can be reused: large 
scale full search engine (e.g.: Nutch, Yacy), crawler 
(e.g.: wget), fulltext databases (e.g.: MySQL, 
PostgreSQL) or indexers (e.g.: Xapian, Whoosh, 

Lucene and other Lucene ports such as Zend Search, 
PyLucene or Lucene.Net) (Christen, 2011; 
McCandless, 2010; Viseur, 2010; Viseur, 2011). 

Moreover it is possible to design custom search 
engines using reusable components and commercial 
search engines API inputs. That is the principle of 
open architectures. It is however needed to respect 
contracts terms of the open source and API licences 
(Alspaugh and al., 2009; Thelwall and Sud, 2012). 

2.2 Search Engines API 

Commercial search engines such as Google, Bing 
(and before MSN Search) or Yahoo! offer API to 
access their services (Foster, 2007; McCown and 
Nelson, 2007). The search engine API must be used 
to build new applications consuming search engine 
data such as meta-search engines (e.g.: merging 
results from several engines, offering graph 
representation of results, etc.). 

Moreover, some search engines offer specific 
syntax for finding RSS feeds. For example Bing 
allows to search for RSS or Atom feeds by using 
“feed:” and “hasfeed:” operators (Bing, 2012). The 
first one gives list of RSS or Atom feeds. The 
second one offers list of web pages linking to RSS 
or Atom feeds. Those operators can be mixed with 
keywords, and “loc:” (or “locations:”) geographic 
or “language:” language operators for more 
accurate queries.  

The API have some advantages. The developer 
using API do not have to maintain the search engine 
infrastructure (crawler, indexer, etc.), and can focus 

245Viseur R..
Create a Specialized Search Engine - The Case of an RSS Search Engine.
DOI: 10.5220/0004051302450248
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 245-248
ISBN: 978-989-8565-18-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

on new and innovative features. Commercial search 
engines index huge number of pages. Google thus 
indexes more than 8 billions pages (Boughanem and 
al., 2008). Moreover the search engine geographic 
coverage became very wide, and is still wider by 
combining several search engines results sets.  

However the API have some disadvantages. 
Differences (e.g.: hit counts, ordering, etc.) are 
observed between Web User Interfaces and 
Application Programming Interfaces (Mayr and 
Tosques, 2005; Kilgarriff, 2007; McCown and 
Nelson, 2007). The access to the API can be 
restricted. The number of requests can be limited by 
user, by day or by IP address (Foster, 2007; 
Kilgarriff, 2007). The search engine companies can 
also charge a fee. It is the case for Google and 
Yahoo! (code.google.com; developer.yahoo.com). 
The technologies and the results formats can change 
over time. For example Google migrated its API 
from SOAP to JSON, and stopped its SOAP API 
and the first JSON API.  

More generally the use of commercial search 
engines have some disadvantages. Operators can 
change over time, and even disappear. The 
“linkdomain” operator offered by Yahoo! or the 
“near” operator offered by Altavista are examples 
(Romero-Frias, 2009; Taboada and al., 2006; 
Turney, 2002). Problems of liability can occur with 
some operators. For example, Google recognized 
that “link” operator is not accurate (McCown and 
Nelson, 2007b). The results can slighly differ from 
an engine to another one (Véronis, 2006). Results 
can also be influenced by commercial partnerships, 
and geographic bias are observed (Thelwall and al., 
2005; Véronis, 2006). 

The limitations of the search engines and their 
API can be overcome by using results from several 
search engines. Meta-search engines can thus be 
feed by API or by components grabbing results from 
search engines Web User Interfaces (Srinivas and 
al., 2011). Grabbing results sets is not always 
allowed by search engines. Those ones are often able 
to detect and block automatic querying tools 
(Thelwall and Sud, 2012).  

Given these limitations developing a custom 
search engine could be interesting (Kilgarriff, 2007; 
Thelwall and al., 2005). But you should overpass 
some difficulties such as the crawler development or 
the indexer configuration.  

2.3 RSS Specifications 

The RSS is a specification based on XML written in 
1999 by Netscape (Gill, 2005; Lapauze and Niveau, 

2009). This format allows to easily publish 
information such as news or classified ads. With a 
dedicated reader the users receive new contents in 
real time and no longer need to manually scan 
websites. The RSS files are called “feeds”. A RSS 
feed typically includes a set of items with properties 
such as “title”, “description” and “link”.  

The RSS is used by newspapers or portal editors 
for widely spreading their contents. Companies use 
it for staying informed about competitors or 
technological changes. Developers can create new 
applications called mashups by aggregating data 
from API and RSS feeds, or index feeds collections 
for creating news search engines (Gulli, 2005; 
Jhingran, 2006; Samier and Sandoval, 2004).  

RSS feeds are useful, and providing tools for 
effective search is important. 

The use of RSS feeds nevertheless raises several 
difficulties. The RSS feeds are sometimes not 
well-formed (i.e it is not formed as defined in its 
specification). Moreover some properties are not 
normalized or sometimes users do not respect 
specification (e.g.: date and time specification of 
RFC 822). There are several RSS specifications 
(Gill, 2005). The first version from Netscape was 
numbered 0.90. The 0.91 specification quickly 
followed. In June 2001, Userland company released 
another 0.91 specification incompatible with that 
one from Netscape. The RSS-DEV Working Group 
published 1.0 version based on Netscape 0.90 and 
RDF format in late 2002. Between 2001 and 2003 
Userland offered several specifications. The last one 
was numbered 2.0.1.  

In 2004 Google supported new specification 
called Atom and later proposed it as a standard. The 
Atom Publishing Protocol became an IETF standard 
in October 2007. 

3 DESIGN 

We developed RSS search engine prototype based 
on following principles.  

Bing search engine API is a useful tool for 
gathering RSS feeds due to the operators allowing 
accurate requests. However we saw that the features 
of search engine API were not stable over time. 
Furthermore the analyse of RSS feeds by 
commercial search engines is often poor. For 
example freshness or contents (e.g.: podcast) are not 
taken into account. It seems better to use feeds lists 
from Bing as complements to the URL discovered 
by the crawler. The link with search engine is thus 
weak and the tool can more easily evolve. A deep 

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

246



 

analyse can then be processed: feed freshness 
(updates), podcast inclusion, etc.  

Crawler is a tricky tool. Fortunately we do not 
have to develop a large scale crawler but a specific 
crawler (Prasanna Kumar and Govindarajulu, 2009). 
That one does not need to process deep exploration 
of websites. We propose to design the robot so that it 
passes as quickly as possible from one homepage to 
another (“jumping spider”). The aim is to explore 
the web as fast as possible (for finding RSS and 
Atom feeds), and save bandwidth. We know feeds 
are generally linked from homepage with RSS 
button or LINK HTML tag (Lapauze and Niveau, 
2009; W3C, 2006). As suggested before feeds list 
may be fill by crawler and search engine API. 

Feed reader used from gathering feed content 
must be able to understand several open and 
sometimes standard formats, and to implement 
“liberal parsing” (in order to understand feeds with 
invalid tokens). The analyse of feed content will also 
include freshness measure (based on date), use as 
podcast, language detection (by using 3-gram 
frequencies of known languages) and geolocalisation 
(by using domain name extension or locating IP 
server address). IP address mapping can be 
processed with HostIP tool (Gao and al., 2006). The 
indexation will be made with an easily hostable 
Lucene port. Lucene sorts results by extending 
well-known TF-IDF method (McCandless, 2010). 

4 PROTOTYPE 

Our prototype allows to quickly collect RSS and 
Atom URL from some URL seeds. A first 
indexation test worked fine. It is able to process 
searches by keyword, by language and by country. 
Queries can also be targeted for podcasts and for 
recently updated feeds only.  

 
Figure 1: Query WUI. 

We used standard RSS and Atom reader 
supporting liberal parsing and able to read a part of 
not-well formed feeds. New feeds can be found by 
fast crawl or by using search engine API (“weak 
link”).  

5 FUTURE WORKS 

The crawler could be improved in order to allow to 
focus more precisely the links that it grabbed. For 
example, the jumping spider could automatically 
detect the URL geographic location or the topic of a 
page, and filter collected feeds (see Gao and al., 
2006). Such an automatic detection of news sources 
would simplify the supply of a news search engine 
with relevant feeds. 

The RSS feeds are used for various goals. Search 
for news feeds or for classified ads (e.g.: car or 
house sales) are distinct use cases. Training 
classification tools for detecting type of feed could 
allow to offer new search criterion. Other metadata 
could be used and grabbed from commercial search 
engine API. One example is the weight of a website 
that can be estimated by number of pages (“site:” 
operator in most of search engines).  

Important expressions (entities) could be 
extracted from text contained in the feeds. The 
feasibility should be studied because some entities 
extractors use part-of-speech tagging tools which 
could be affected by the shortness of feeds contents. 
Entities extraction could allow to highlight popular 
tags and trends, or design query expansion feature 
based on entities associated to a results set (see 
Lohmann and al., 2009; Xu and Croft, 1996). 

Newspapers often use to propose several feeds 
for different topics (Gill, 2005). It would be useful to 
group RSS by domain name in the results set. 
However some contents such as press releases can 
be published on several feeds and websites. 
Detection of duplicate contents and measures of 
similarities could be useful to suggest similar feeds, 
or on the contrary a short list of very different but 
relevant feeds (see Prasanna Kumar and 
Govindarajulu, 2009).  

REFERENCES 

Alspaugh, T. A., Asuncion, H. U., Scacchi W., 2009. 
Intellectual property rights requirements for 
heterogeneously-licensed systems. In 17th IEEE 
International Requirements Engineering Conference 
(RE’09), pp. 24–33, Augustus 31 - September 4, 2009. 

Bing, 2012. Advanced Operator Reference, MSDN 
(msdn.microsoft.com). Read: February 3, 2012. 

Boughanem, M., Tamine-Lechani, L., Martinez, J., 
Calabretto, S., Chevallet, J.-P., 2006, Un nouveau 
passage à l’échelle en recherche d’information. In 
Ingénierie des Systèmes d'Information (ISI), 11 (4), pp. 
9-35. 

Chakrabarti,   S.,    2002.    Mining   the   Web,     Morgan- 

Create�a�Specialized�Search�Engine�-�The�Case�of�an�RSS�Search�Engine

247



 

Kaufmann Publishers. 
Christen, M., 2011. Web Search by the people, for the 

people. RMLL 2011, Strasbourg (France). 
Foster, J. C., 2007. Automating Google searching. In 

Long, J., Google Hacking for Penetration Testers. 
Syngress. 

Gao, W., Lee, H. C., Miao, Y, 2006. Geographically 
focused collaborative crawling. In Proceedings of the 
15th International Conference on World Wide Web, 
Edinburgh, Scotland, May 23-26, 2006), ACM Press, 
New York pp. 287-296.  

Gill, K. E., 2005, Blogging, RSS and the information 
landscape: a look at online news. In WWW 2005 
Workshop on the Weblogging Ecosystem, May 10-14, 
2005, Chiba (Japan). 

Gulli, A., 2005. The Anatomy of a News Search Engine, 
In WWW 2005, May 10–14, 2005, Chiba (Japan). 

Jhingran, A., 2006. Enterprise Information Mashups: 
Integrating Information, Simply. In VLDB 2006, 
September 12-15, 2006, Seoul (Korea). 

Kilgarriff, A., 2007. Googleology is Bad Science. In 
Computational Linguistics, 33(1), pp. 147-151. 

Lapauze, J., Niveau, S., 2009. Agrégation de flux RSS. In 
RICM5, 6 novembre 2009.  

Lohmann, S., Ziegler, J., Tetzlaff, L., 2009. Comparison 
of Tag Cloud Layouts: Task-Related Performance and 
Visual Exploration. In Proceedings of the 12th IFIP 
TC 13 International Conference on Human-Computer 
Interaction: Part I. 

McCandless, M., Hatcher, E., Gospodnetic, O, 2010. 
Lucene in Action, Manning Publications; 2 edition 
2010. 

Mayr, P., Tosques, F., 2005. Google Web APIs - an 
instrument for Webometric analyses?. In Proceedings 
of the ISSI 2005 conference. 

McCown, F., Nelson M. L., 2007a. Search engines and 
their public interfaces: which apis are the most 
synchronized?. In WWW '07 Proceedings of the 16th 
international conference on World Wide Web, 

McCown, F., Nelson M. L., 2007b. Agreeing to disagree: 
search engine and their public interface. In JCDL'07, 
June 18-23. 

Prasanna Kumar J., Govindarajulu P., 2009. Duplicate and 
Near Duplicate Documents Detection: A Review. In 
European Journal of Scientific Research, Vol. 32, 
Issue 4, pp. 514-527. 

Romero-Frias, E., 2009, Googling companies - a 
webometric approach to business studies. In The 
electronic journal of business research methods, Vol. 
7(1), pp. 93-106. 

Samier, H., Sandoval, V., 2004. La veille sur les weblogs. 
In Actes du colloque VSST, Toulouse, October 2004. 

Srinivas, K., Srinivas, P. V.S., Govardhan, A., 2011. Web 
service architecture for meta search engine. In 
International Journal of advanced computer science 
and applications, Vol. 2 n°10, pp.31-36. 

Taboada, M., Anthony, C., Voll, K., 2006. Methods for 
creating semantic orientation dictionaries. In 
Proceedings of Fifth International Conference on 
Language  Resources  and  Evaluation  (LREC  2006), 

Genoa, Italy, pp. 427-432. 
Thelwall, M., Vaughan, L., Björneborn, L., 2005. 

Webometrics. In: Annual Review of Information 
Science and Technology, 39, pp. 81-135. 

Thelwall, M., Sud, P., 2012. Webometric research with the 
Bing Search API 2.0. In Journal of Informetrics, 6(1), 
pp44-52. 

Turney, P. D., 2002. Thumbs up or thumbs down? 
Semantic orientation applied to unsupervised 
classification of reviews. In Proceedings of the 40th 
Annual Meeting of the Association for Computational 
Linguistics (ACL'02), Philadelphia, Pennsylvania, 
2002, p. 417-424. 

Véronis, J., 2006. Etude comparative de six moteurs de 
recherche, Université de Provence, 23 février 2006. 

Viseur, R., 2010. Introduction to libre fulltext technology. 
In RMLL 2010, Bordeaux (France), July 6-11, 2010. 

Viseur, R., 2011. Développement d'un moteur de 
recherche avec Zend Search. In RMLL 2011, 
Strasbourg (France), 11-14 juillet 2011. 

W3C, 2012. Use <link>s in your document. In W3C 
(www.w3.org), November 24, 2006 (read: March 13, 
2012). 

Xu, J., Croft, B. C., 1998. Query expansion using local 
and global document analysis. In SIGIR'96, Zurich.  

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

248


