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Abstract: Real-time collision detection in dynamic scenarios is a hard task if the algorithms used are based on 
conventional techniques of computer vision, since these are computationally complex and, consequently, 
time-consuming. On the other hand, bio-inspired visual sensors are suitable candidates for mobile robot 
navigation in unknown environments, due to their computational simplicity. The Lobula Giant Movement 
Detector (LGMD) neuron, located in the locust optic lobe, responds selectively to approaching objects. This 
neuron has been used to develop bio-inspired neural networks for collision avoidance. In this work, we 
propose a new LGMD model based on two previous models, in order to improve over them by 
incorporating other algorithms. To assess the real-time properties of the proposed model, it was applied to a 
real robot. Results shown that the LGMD neuron model can robustly support collision avoidance in 
complex visual scenarios. 

1 INTRODUCTION 

Many animals extract salient information from 
complex, dynamic visual scenes to drive behaviours 
necessary for survival. Insects are particularly 
challenging for robotic systems: they achieve their 
performance with a nervous system that has less 
than a million neurons and weighs only about 0.1 
mg. By this reason, some of these insects provide 
ideal biological models that can be emulated in 
artificial systems. These models have the potential to 
reproduce complex behaviours with low 
computational overhead by using visual information 
to detect imminent collisions caused either by a 
rapidly approaching object or self-motion towards 
an obstacle.  

In locusts, the Lobula Giant Movement Detector 
(LGMD) is a bilaterally paired motion sensitive 
neuron that integrates inputs from the visual system, 
responding robustly to images of objects 
approaching on a collision course (Gray, John R , et 
al., 2001) (Rind, 1987) (Gabbiani, et al., 1999) 
(Gray, et al., 2010). This neuron is responsible for 
triggering escape and collision avoidance behaviours 
in locusts. The first physiological and anatomical 
bio-inspired model for the LGMD neuron was 
developed by Bramwell in (Rind and Bramwell, 
1996). The model continued to evolve (Blanchard, et 

al., 2000) (Yue and Rind, 2006) (Stafford, et al., 
2007) (Meng, et al., 2010) and it was used in mobile 
robots and deployed in automobiles for collision 
detection. These connectionist models have shown 
that the integration of on and off channels and feed-
forward inhibition can account for aspects of the 
LGMD neuron looming sensitivity and selectivity 
when stimulated with approaching, translating and 
receding objects.  

However, further work is needed to develop 
more robust models that can account for complex 
aspects of visual motion (Guest and Gray, 2006). In 
this article, we are interested in understanding the 
LGMD models previously proposed by (Yue and 
Rind, 2006) as well as the achieved properties of the 
model described at (Meng, et al., 2010). Thereby, we 
are interested in integrate the two previous LGMD 
models, (Yue and Rind, 2006) and (Meng, et al., 
2010), in order to take the advantage of noise 
immunity proposed in (Yue and Rind, 2006) and 
direction sensitivity proposed in (Meng, et al., 
2010).  

In a previous study, we implemented the models 
from (Yue and Rind, 2006) and (Meng, et al., 2010) 
and submitted them to relevant simulated visual data 
sets. This step enabled us to understand some of the 
literature models limitations in relation to obstacle 
detection and avoidance.  
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With this knowledge, we propose a new model 
to cope with the limitations showed by the models 
implemented ((Yue and Rind, 2006) and (Meng, et 
al., 2010)). The proposed model was validated over 
a set of different visual scenarios. In order to the 
LGMD network be used as a robust collision 
detector for real robotic applications, and based on 
(Yue and Rind, 2006), it was proposed a mechanism 
to enhance the features of colliding objects. The 
model from (Yue and Rind, 2006) favours grouped 
excitation, which normally indicates the presence of 
an obstacle, and ignores isolated excitation, which 
can be the result of noise present in the captured 
image, with selective passing coefficients. The 
model (Yue and Rind, 2006) has the capability to 
filter out the isolated excitations through the 
excitation gathering mechanism, allowing that only 
parts of the captured image with bigger excitatory 
spatial areas can contribute to the excitation of the 
LGMD cell. Besides this extraordinary capability of 
noise reduction, when computationally 
implemented, the neural network based on (Yue and 
Rind, 2006) generated false collision alarms when 
stimulated with receding objects. Based on (Meng, 
et al., 2010), we have modified the LGMD model, so 
that it could distinguish approaching from receding 
movements. 

On the other side, the LGMD model proposed by 
(Meng, et al., 2010) is not immune to the presence of 
noise levels in the captured image, which can leads 
it to produce false collision alerts in the presence of 
noise. However, as it was said before, this model is 
able to detect the direction of movement in depth. 
Taking the advantages of each model (Yue and 
Rind, 2006) (Meng, et al., 2010), we decided to 
propose a new LGMD model that is more robust in 
collision detection. The model here proposed was 
tested on simulated and non-simulated environments 
and, through the obtained results, it can be 
concluded that it works very efficiently in both 
scenarios. In relation to the real performance of the 
proposed method, a collision avoidance is judge by 
the evaluation of a real robot moving around in a 
real environment and avoiding real obstacles (of 
different shapes, sizes and colours) and processing 
captured images (containing real noise, blur, 
reflections, etc). In our perspective, the new 
proposed method increases the precision of obstacle 
detection, in a way that this model is robust to the 
presence/absence of high noise levels in the captured 
image, as well as is able to detect the movement 
direction of the visual stimulus. Besides that, when 
tested in a real environment, the results were very 
satisfactory. For a better understanding of the work 

developed, the paper was organized in the following 
way: in section 2, we make a detailed description of 
the proposed LGMD neural network model. In 
section 3 are presented some experimental results on 
simulated and recorded video data. In this section we 
also present the experiments carried out with a robot 
DRK8000 to test the stability of this model in 
relation to collision detection in real scenarios. 
Finally, in section 4 we make the conclusions of the 
work here described. 

2 THE PROPOSED NEURAL 
NETWORK MODEL FOR 
LGMD 

The biological inspired neural network here 
proposed is based on previous models described on 
(Blanchard, et al., 2000) (Yue and Rind, 2006) 
(Stafford, et al., 2007) (Meng, et al., 2010). The 
modified neural network is shown on Figure 1. 

 
Figure 1: Schematic illustration of the proposed LGMD 
model. There are five groups of cells and five single cells: 
P layer: photoreceptor cells; E layer: excitatory cells; I 
layer: inhibitory cells; S layer: summing cells; NR layer: 
noise-reduction cells; A cell: approaching cell; R cell: 
receding cell; D cell: direction cell; FFI cell: feed-forward 
inhibition cell. LGMD cell: represents the LGMD 
biological neuron. 

The LGMD neural network here proposed is 
composed by five groups of cells: photoreceptor 
cells (P layer), excitatory cells (E layer), inhibitory 
cells (I layer), summing cells (S layer) and noise 
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reduction cells (NR layer). Besides that, it is 
composed by five single cells: the direction sensitive 
system, composed by the approaching cell (A cell), 
the receding cell (R cell) and the direction cell (D 
cell), the feed-forward inhibition cell (FFI cell) and 
the LGMD cell. 

A grayscale image of the camera current field of 
view, represented has a matrix of values (from 0 to 
255), is the input to a matrix of photoreceptor units 
(P layer). This layer calculates the absolute 
difference between the luminance of the current and 
the previous input image, mathematical represented 
by the following equation: ( , ) = ( , ) −	 ( , )   (1)

Where Pf is the output of the P layer at frame f, 
Lf and Lf-1 are the captured luminance at frames f and 
f-1, respectively. The output of the P layer is the 
input of two layers: the excitatory (E) and the 
inhibitory (I) layers. To the excitatory cells of the E 
layer, the excitation that comes from the P layer is 
passed directly to the retinotopic counterpart. The 
inhibition layer (or I layer) receives the output of the 
P layer and applies a blur effect on it, using:  ( , ) = 1 9 δ(x + i, y + j)   (2)δ(x, y) = ( , )   (3)

Where If is the output of the I layer at frame f, 
and Pf-1 is the output of the P layer at frames f-1. 
Then, the output of the I layer passes to the summing 
layer, in a retinotopic mode. 

The summing layer (or S layer) receives the 
output from the E and I layers and performs the 
followin operation:  ( , ) = ( , ) −	 I ∙ ( , ),( , ) = ( , ) and ( , ) 	≥ 0   (4)

Where Pf is the output of the P layer at frame f, If 
the output of the I layer at frame f and Istr (a scalar, 
set to be 0.35) represents the inhibition strength.  

Based on (Yue and Rind, 2006), it was added a 
new mechanism for the LGMD neural network to 
filter the background noise. This mechanism, 
implemented in the NR layer, takes clusters of 
excitation in the S units to calculate the input to the 
LGMD membrane potential. These clusters provide 
higher individual inputs then the ones of isolated S 
units. The excitation that comes from the S layer is 
then multiplied by a passing coefficient Cef, which 
value depends on the surrounding neighbours of 
each pixel, calculated as follows:  

( , ) = 19 δ(x + i, y + j) (5)

δ(x, y) = ( , ) (6)

The final excitation level of each cell in the NR 
layer, at frame f (NRf), is given by: ( , ) = ( , ) ∙ ( , ) ∙ w   (7) w = ∆c +max( [ ] ) ∙ C  (8)

 
 

Cw is set to 4, and Δc is a small number (0.01), 
to prevent w from being zero, and max (|[Ce]f|) is the 
largest element in matrix |[Ce]f|.  

Within the NR layer, a threshold filters the 
decayed excitations (isolated excitations), as: 

 ( , ) = ( , ), ( , ) ∙ ≥0, ( , ) ∙ < 	  (9)

Where Cde ∈ [0, 1] is the decay coefficient and 
Tde is the decay threshold (set to 20). The decay 
threshold here used was experimentally determined. 
The NR layer is able to filter out the background 
detail that may cause excitation. Hence, only the 
main object in the captured scene will cause 
excitation. 

The LGMD potential membrane Kf, at frame f, is 
summed after the NR layer, as described in the 
following equation: 

 = = ( ( , )) (10)

Where n is the number of rows and m is the 
number of columns of the matrix representing the 
captured image.  

The A and R cells (adapted from  (Meng, et al., 
2010)) are two grouping cells for depth movement 
direction recognition. The A cell holds the mean of 
three samples of the LGMD cell:   

 = ( + + ) 3 (11)
 

The R cell shares the same structure as the A cell 
but with a temporal difference, having one frame 
delay from A. 

 =   (12)

Analyzing the equations above described, it can 
be concluded that if the object is approaching Af > Rf  
and if the object is receding, Rf > Af. 

The D cell is used to calculate the direction of 
movement. This can be represented by the following 
equation: 
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= ( ) − ( ) (13)

This cell exploits the movement direction in 
depth. It is based on the fact that a looming object 
(approaching) gets larger whereas a receding object 
gets smaller.  In a way to distinguish the movement 
direction detected by the D cell, it was added a 
threshold mechanism, TD (set to	
0.05×n×m), where n is the number of rows and m is 
the number of columns of the captured image), 
which was experimentally determined. 

 

 = 1, ≥0, 	 > > −−1, ≤ −  (14)

 

The LGMD membrane potential Kf is then 
transformed to a spiking output using a sigmoid 
transformation, 

 = (1 + )  (15)
 

Where ncell is the total number of cells in the NR 
layer and kf ∈ [0.5, 1]. The collision alarm is decided 
by the spiking of the LGMD cell.  

However, the spiking output kf (from equation 
(15), representative of the LGMD cell output) is not 
the final output of the neural network. It was 
implemented a spiking mechanism using an 
adaptable threshold. This threshold starts with a 
value experimentally determined, Ts (0.88) and it is 
updated at each frame, through the following 
process, 

 

Where [Tl, Tu] defines the lower and upper limits 
for adaptation (Tl is 0.180 and Tu is 0.90) , Δt is the 
increasing step (0.01), ℿ (0.72) is a threshold that 
limits the averaged spiking output sav ,between frame 
f-n to frame f-k (n is 5 and k is 2), 

 = 1− + 1  (17) 

If the sigmoid membrane potential kf exceeds the 
threshold	Ts a spike is produced, as follows: 

 = 1, 	 ≥0, ℎ  (18)
 

Finally, a collision is detected when there are nsp 
spikes in nts time steps (nsp ≤ nts), where nsp is 4 for 
the simulated experiments and 3 to real experiments 

(since captured images in real experiments present 
higher variations) and nts is 5 for all the experiments 
(values experimentally determined). 

	 = 	 1, ≥0, ℎ  (19)

The robot escape behavior is initialized when a 
collision is detected. Additionally, the spikes can be 
suppressed by the FFI cell when occurs an intense 
field movement. When the robot is turning, sudden 
changes in the visual scenario occur which can lead 
the network to produce spikes and even false 
collision alerts.  

The feed-forward inhibition cell (FFI cell) is 
very similar to the LGMD cell but the FFI cell 
receives the output from the P layer (and not from 
the NR layer), being represented by: = ∑ ∑ ( , )

 (20)

Where FFIf  is the output of the FFI cell at frame 
f and Pf-1 is the output of the P layer at frame f-1. If 
FFIf exceeds a threshold TFFI, the spikes produced 
by the LGMD cell are inhibited. The threshold TFFI 
was experimentally determined (set to 25). 

As described in this section, the proposed neural 
network for the LGMD neuron only involves low 
level image processing. So, the proposed neural 
network model is able to work in real time and, 
besides that, is independent of object classification. 

3 EXPERIMENTAL RESULTS ON 
THE PROPOSED MODEL 

In a way to test the efficiency of the LGMD neural 
network here proposed, two different data sets were 
used. The first experiment was made on a simulated 
data set and, after that, it was used a recorded video 
to prove the capacity of the LGMD neural network 
here proposed to work in a real environment. In the 
second experiment, we implemented the LGMD 
neural network in a real robot, DRK8000, located 
within a real arena. All the parameters were kept the 
same during all the experiments. 

3.1 Simulated Environment 

We develop a simulation environment in Matlab 
(MATLAB, 2011) that enables us to assess the 
effectiveness of the proposed LGMD neural 

= + ∆ , 	 > ℿ	 	( + ∆ ) ∈ [ , ]− ∆ , 	 < ℿ	 	( − ∆ ) ∈ [ , ], ℎ  (16)
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network. Objects were simulated according to their 
movement and the corresponding data was acquired 
by a simulated camera and processed by the LGMD 
neural network. Image sequences were generated by 
a simulated camera with a field of view of 60º in 
both x and y axis and a sampling frequency of 100 
Hz. The simulated environment enabled us to adjust 
several parameters, such as: image matrix 
dimensions, the camera rate of acquisition, the 
image noise level, the object shape, the object 
texture, as well as other parameters.  

The computer used in the experiments here 
described was a Laptop (Toshiba Portegé R830-
10R) with 4 GHz CPUs and Windows 7 operating 
system. Relative to the parameters used by the 
LGMD neural network, they were determined before 
the experiments. 

3.2 Results on Simulated Data Set and 
on Real Recorded Data 

Previous to the stimulation of the LGMD model here 
proposed, several experiments have been made in 
order to verify and analyse how the image of a black 
squared object grows when it is approaching to a 
simulated camera. For that, we used synthesized 
black (0) and white (255) images, with 100 
(horizontal) by 100 (vertical) pixels of resolution. 
The object being observed was a square black filled 
rectangle (figure 2), whose properties as acquisition 
frequency, velocity, trajectory, shape, texture, noise 
level or object size could be changed.  

 The obtained results enabled us to conclude that 
the image growing depends on several factors, 
including the camera acquisition frequency and the 
object velocity, among other characteristics. 
However, the curve that approximates this growing 
is always an exponential curve, whose slope depends 
on these aforementioned factors. 

As a second step, and in the context of this study, 
we made an exhaustive analysis of the response of 
our LGMD model to a set of standard LGMD 
stimulation protocols, which allowed us to validate 
our model with respect to the biological system 
(Gabbiani, et al., 2001). In our first experiment we 
evaluated the proposed LGMD model, by using a 
looming stimulus consisting of a solid square with 
10 repetitions to each size/velocity=l/|v| pair (where 
l stands for the half length of the square object and v 
for its linear velocity). With these experiments, we 
wanted to prove that our model respects the 
properties verified by Gabbiani et al. (Gabbiani, et 
al., 1999) (Gabbiani, et al., 2001) as well as by 
Badia (Badia, et al., 2010). These properties, 

founded in the locust visual system, include a linear 
relation between the time of the peak firing rate of 
the LGMD neuron and the ratio that correlated the 
stimulus object size (l) and the stimulus linear 
velocity (v) (Gabbiani, et al., 2002).  

As a first step, we analysed the LGMD model 
here proposed using, for that, a looming stimulus in 
the form of a black square. We repeated this 
procedure to ten different l/|v| ratios, from 5 to 95 
milliseconds. Through the obtained results it was 
observed that the fit of the TTC (time-to-collision) 
of the peak firing rate, obtained through the LGMD 
neural network, versus the l/|v| ratios, is consistent 
with the biological results, showing a correlation 
coefficient (r) superior to 0.99.  

In literature, it was also reported that the LGMD 
neuron responses are largely independent of the 
stimulus texture, shape and approaching angle 
(Badia, et al., 2010) (Gabbiani, et al., 2001). The 
results obtained when we subjected our model to 
stimulus with different textures, different shapes and 
different approaching angles (as shown on Figure 2) 
to different l/|v| ratios (also from 5 to 95ms) showed 
us that the proposed model still has a linear 
relationship between the TTC of the peak firing rate 
versus the l/|v| ratios, not being affected by the 
change on the stimulus characteristics, as reported 
for the biological system.  

 
Figure 2: Artificial visual stimuli, developed in Matlab 
(MATLAB, 2011). 

In the first experiment made, to test the LGMD 
model invariance to textured objects, the correlation 
coefficient between the LGMD model responses and 
the regression line was bigger than 0.99 (r>0.99), 
meaning that the LGMD model is not sensitive to 
the texture of the objects.  Relatively to the second 
experiment, which allowed us to test the LGMD 
model invariance to object shape, the correlation 
coefficient between the model responses and the 
regression line was 0.97, approximately (r=0.9734). 
And, for the last one, in order to test the LGMD 
model invariance to different approaching angles of 
the looming stimulus, we aligned the camera at 
different angular orientations relatively to the 
projection screen. After the analysis of the obtained 
results we could conclude that, as the camera angle 
deviates from the center (0º), the correlation 
coefficient decays (for a camera angle of 33º of 
deviation, r=0.995; for a camera angle of 55º of 
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deviation, r=0.9192 and, finally, for a camera angle 
of 75º of deviation, r=0.874). Through this 
validation, we could conclude that the LGMD model 
here proposed respects the biological principles. 

After the model validation, we fed the LGMD 
neural networks proposed by (Yue and Rind, 2006) 
(Meng, et al., 2010) and the one proposed by us, 
with simulated image sequences (a representation 
can be seen on Figure 3).  

 
Figure 3: Selected frames from the simulated image 
sequence. The square object changes its size from small 
(10 by 10cm, l=5cm) to big, and moves at 100 cm/s 
(v=100cm/s). The relation l/|v| is 50 milliseconds. The 
noise level in all the image sequence is, approximately, 
500 pixels. The frame rate was 100 Hz. 

In this point, we used four different simulated visual 
stimuli: 

Stimulus 1: composed by a black approaching 
square, over a white background, with l/|v| equal to 
50 milliseconds, acquired with a frame rate of 100 
Hz, without noise added to the image sequence. 

Stimulus 2: composed by a black receding 
square, over a white background, with l/|v| equal to 
50 milliseconds, acquired with a frame rate of 100 
Hz, without noise added to the image sequence. 

Stimulus 3: composed by a black approaching 
square, over a white background, with l/|v| equal to 
50 milliseconds, acquired with a frame rate of 100 
Hz, with 500 pixels of noise added to the image 
sequence. 

Stimulus 4: composed by a black receding 
square, over a white background, with l/|v| equal to 
50 milliseconds, acquired with a frame rate of 100 
Hz, with 500 pixels of noise added to the image 
sequence. 

In addition to these four simulated visual stimuli, 
and in order to test the LGMD models in a real 
environment, we recorded a real video sequence, 
using a Sony Cyber shot digital camera 7.2 
megapixels to obtain the video clip. The resolution 
of the video images was 640 by 480 pixels, with an 
acquisition frequency of 30 frames per second. In 
Figure 4 it is represented some selected frames 

captured by the camera, showing a real approaching 
black ball.  

 
Figure 4: Selected frames from the recorded image 
sequence used in the experiment. The recorded video is 
composed by 44 frames, showing a black approaching 
ball. 

After the computational implementation of the 
LGMD models proposed in (Yue and Rind, 2006) 
and (Meng, et al., 2010), and after subject those to 
all the stimuli previously described, we verify that 
the collisions were detected, by the different LGMD 
models, at different time instants and, consequently, 
at different distances of the object (simulated or real) 
relatively to the camera. For a better understanding 
and organization of the results, we decided to call 
“LGMD model 1” to the model proposed by (Yue 
and Rind, 2006) and “LGMD model 2” to the model 
proposed by (Meng, et al., 2010). 

The results obtained are resumed in the 
following table. 

Table 1: Distances at which collision detection alarms 
were generated by the LGMD model 1 and LGMD model 
2, in five different situations tested. 

 LGMD model 1 LGMD model 2 

Stimulus 1 26 cm 14 cm 
Stimulus 2 35 cm -- 
Stimulus 3 26 cm 20 cm 
Stimulus 4 35 cm 11 cm 
Real video 24 cm 14 cm 

As we can observe on Table 1, in the 
approaching situations (stimulus 1, 3 and real video), 
the LGMD model 1 detected a collision when the 
object was located at, approximately, 24-26 cm 
relatively to the camera. This model showed its 
immunity to the noise presence since it detected a 
collision exactly at the same distance when 
stimulated with stimulus 1(absence of noise) and 3 
(presence of high noise levels). However, if we 
observe the obtained results for the LGMD model 1 
when stimulated with receding objects (stimulus 2 
and 4) it detected a false collision when the object 
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was located at 35 cm relatively to the camera, in 
both situations tested. Through these last results one 
can conclude that the LGMD model 1 is not able to 
distinguish between approaching and receding 
objects, generating false collision alerts in the 
presence of receding objects. But we can also 
conclude that this model has high immunity to the 
noise presence in the captured images. 

Relatively to the LGMD model 2 and observing 
Table 1, for the stimulus 1 and 3, this model did not 
detect collisions for the same distance. When 
stimulated with stimulus 1, it detected a collision 
when the object was located at 14 cm relatively to 
the camera and when stimulated with stimulus 3, a 
collision was detected sooner, when the object was 
at 20 cm relatively to the camera. This happened due 
to the fact that the LGMD model 2 is not immune to 
the noise presence and the noise pixels, which were 
not eliminated by this model, composed an extra 
excitation to the LGMD neural network.  

In the presence of a receding object, the LGMD 
model 2 was able to not produce false collision alerts 
when stimulated with stimulus 2. However, when we 
feed the LGMD model 2 with the stimulus 4, it 
detected a false collision when the object was 
located at 11 cm relatively to the camera. This 
happened also due to the non-immunity of the 
LGMD model 2 to the noise presence, which works 
as an extra excitation, leading to the generation of 
false collision alerts. 

After this analysis, relative to the behaviour of 
the LGMD model 1 and LGMD model 2 in different 
situations, we could extract some particular 
characteristics of both models. These results leaded 
us to produce a mixed LGMD model, combining the 
advantages of the LGMD model 1 and LGMD 
model 2. Thus, the LGMD model here proposed 
provides noise immunity, as well as a directionally 
sensitive system.  

Figure 5 shows the output from the LGMD 
model here proposed. In this figure, at each time step 
we can observe the result of different mathematical 
processing (described on section 2), corresponding 
to the layers of the proposed model, executed 
sequentially, necessary to detect, with the maximum 
precision, an imminent collision.   

The analysis of these results showed, on Figure 
5, that the LGMD neural network detected a 
collision at time -0.19 seconds, i.e., when the object 
was located at 19 cm relatively to the camera.  

In relation to the receding object, represented on 
Figure 6, as expected no collisions were detected. 

The results previously described showed the 
efficacy of the LGMD neural network  proposed  by 

 
Figure 5: LGMD model response to an approaching object 
which l/|v| set at 50 milliseconds.  Spike Rate: blue graph: 
is obtained by the ratio of the A cell value and the total 
number of cells in the NR layer. Green graph: is obtained 
by the ratio of the R cell value and the total number of 
cells in the NR layer. D cell: output of the direction cell: 1: 
approaching, 0: no significant movement, -1: receding. Ts: 
adaptative threshold represented by the red line; the gray 
points represent the sav output. LGMD: Blue graph: output 
of the LGMD cell (mathematically represented by the kf 
value). Green points: output of the LGMD cell after the 
Feed-forward inhibition. LGMD after Ts: represents the 
output of the LGMD cell after the application of the 
threshold Ts and being in account the output of the D cell. 
Collision detected: the output of this graph is one when it 
is detected four successive spikes in five successive time-
steps. In all these graphs, the zero value corresponds to the 
time of collision. 

 
Figure 6: LGMD model response to a receding object 
which l/|v| was equal to 50 milliseconds. The legend of 
this figure is similar to the one described on the figure 5.   

us. On Figure 5 and Figure 6, it is shown the LGMD 
model immunity to high noise levels, as well as the 
capability of this model in distinguish the direction 
of movement between successive frames. Then, to 
test the capability of the proposed LGMD model in a 
more realistic environment, we subjected it to the 
real video sequence, represented on Figure 4. In this 
situation, the model produced a collision alert when 
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the object was located at 28 cm relatively to the 
camera.  

3.3 Results on a Real Robot 

In order to assess the capability of the LGMD model 
here proposed in a real environment, we used a 
DRK8000 mobile robot, with a 8-bit CIF (352 by 
288 pixels) colour CMOS camera, working at 10Hz, 
having a field-of-view of 70 degrees, approximately. 
The robot was located within an arena, surrounded 
by four walls with attached objects with different 
colours, shapes, textures and sizes. The arena has 16 
m2. We used the dead reckoning process in order to 
predict the position of the robot at each time instant.  

 
Figure 7: Integrated simulation processes used in the real 
experiment. 

As Figure 7 shows, the simulation system used 
comprises four processes: The LGMD model 
module, the robot control module, the tracking 
module and the graphical user interface. The 
experiment ran in real-world time, with 10 time 
steps per second. The LGMD model module was 
composed by the different layers observed on Figure 
1, and the final output of this model comprises two 
different states: “collision detected” or “non-
collision detected”.   

The second module, the robot control module, 
consists in the reactive control structure, capable of 
controlling the robot, using only the output of the 
LGMD model module. The behaviours comprised 
by this module, can be divided in two: 1- basic 
exploratory activity; 2- collision avoidance of 
obstacles, triggered by the response of the LGMD 
module. If the robot detects an imminent collision, it 
stops, rotates and, then, continues the movement in a 
straight line. The turning speed is 1/3 of the robot 
speed for the left wheel and -1/3 of the robot speed 
to the right wheel. The robot was set to rotate during 
1 second. Finally, in relation to the tracking process, 
we used dead reckoning in order to determine the 
position of the robot at each time step and, then, use 
this information to infer about the distance at which 
the robot deviates of a potential collision/obstacle. 

In the experiment, three long robot movement 
periods (120 seconds, speed at 5, 10 and 15 cm/s) 
were conducted to test and show the mechanism of 
the collision detector in a real environment. 

After the experiment, and through the analysis of 
the dead reckoning relative to the robot movement 
during all the running time, we could extract, as well 
as characterize, the collision detections. Collision 
detections between 20cm and 100cm away from the 
wall were classified as correct, those detected closer 
than 20cm from the wall were classified as missed, 
and collisions detected at a distance over 100cm as 
false positives (see Figure 8). 

 

 

 

Figure 8: Top graph: LGMD model output, running at real 
time, for different LGMD layers, during the experiment 
with the DRK8000 robot, for a robot speed of 5 cm/s. 
Midle graph: Dead reckoning of the robot during the 
initial time steps of the experiment, for a robot speed of 5 
cm/s. Categorization of the collision detections as missed, 
correct and false positives, for three different robot 
velocities tested: 5, 10 and 15 cm/s. 

As represented on Figure 8, as the velocity of the 
robot increases, the percentage of collision 
detections classified as correct decreases, as well as 
the percentage of missed and false positives 
detections increases. The increase of missed 
collisions to higher speeds was due to the simple 
collision avoidance mechanism adopted in this 
article: the robot always turns to the same side 
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regardless the relative position of the nearby objects. 
The increase in the number of false positives to 
higher velocities is based on the fact that, at higher 
velocities, the difference between successive frames 
is higher, leading to the production of high 
excitation levels and, consequently, a bigger number 
of collision detection alarms.  

Although the difference verified in relation to 
correct collision detections between different 
velocities, the results obtained are very satisfactory, as 
the number of correct detections are always higher 
than the sum of missed and false positive detections.  

4 CONCLUSIONS 

In this paper, we propose a modified LGMD model 
based on the identified LGMD neuron of the locust 
brain. The model proved to be a robust collision 
detector for autonomous robots. This model has a 
mechanism that favours grouped excitation, as well as 
two cells with a particular behaviour that provide 
additional information on the depth direction of 
movement.  

For applications as collision detectors in 
robotics, the model proposed is able to remove the 
noise captured by the camera, as well as enhance its 
ability to recognize the direction of the object 
movement and, by this way, remove the false 
collision alarms produced by the previous models 
when a nearby object is moving away.  

Experiments with a DRK8000 robot showed that 
with these two new procedures, the robot was able to 
travel autonomously in real time and within a real 
arena. 

The results illustrate the benefits of the LGMD 
based neural network here proposed, and, in the 
future, we will continue to use and enhance this 
approach, using, for that, a combination of 
physiological and anatomical studies of the locust 
visual system, in order to improve our understanding 
about the relation between the LGMD neuron output 
and the locust muscles related to the avoidance 
manoeuvres. 
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