
Multi-device Power-saving
An Investigation in Energy Consumption Optimisation

Jean-Marc Andreoli and Guillaume Bouchard
Xerox Research Centre Europe, Grenoble, France

Keywords: Energy Consumption Modelling, Sequential Decision Processes, Exact Multi-dimensional Optimisation.

Abstract: We are interested here in the problem of optimising the energy consumption of a set of service offering de-
vices. Our target is a printing device infrastructure as typically found in a medium or large office, where all
the devices are connected to the network, and clients can submit jobs to individual devices through that net-
work. We formulate a cost optimisation problem to find a trade-off between the energy consumption of the
infrastructure and the cost of allocating jobs to devices. The latter cost results from the potential gap between
the expectation of the clients and the quality of the service delivered by the devices. We present a model of
some of the typical constraints occurring in such a system. We then present a method to solve the optimisation
problem under these constraints, and conclude the paper with some experimental results.

1 INTRODUCTION

1.1 Description of the Problem

We are interested here in the problem of optimising
the operation of a set of service offering devices. Our
target is a printing device infrastructure as typically
found in a medium or large office, where all the de-
vices are connected to the network, and clients can
submit jobs to individual devices through that net-
work. In the sequel, we use that target application
to illustrate our approach, although it may apply to
other contexts as well. Our goal is to design a con-
troller which processes jobs (service requests) and ad-
justs devices (service providers) in some optimal way
which minimises the total cost of operation of the in-
frastructure. There are two main sources of control-
lable cost:

• Each device has a specific energy consumption
profile which defines several operations modes,
each with its own consumption rate and transition
cost to other modes. Typically, a device can be
either in “working” mode, when it is performing
some work for a client (printing), or in one of sev-
eral “waiting” modes, where it is simply waiting
for a new job to arrive. The waiting modes have
different energy consumption patterns. We look at
the simple case where there are only two waiting
modes:ready andsleep. In ready mode, the
energy consumption rate is higher than insleep

mode, but when a new job is assigned to the de-
vice, the wake up energy consumption is lower.
To control the energy consumption cost, we as-
sume that the controller has the ability to switch
at any time any device inready mode tosleep
mode.

• Each client is characterised by an assignment util-
ity function which indicates, for each device and
job, the adequacy of assigning that job to that de-
vice, from the point of view of the client. For ex-
ample, if the job is in colour and device B is black
and white only or does not support the full palette,
while device A does, the client estimates the cost
incurred by assigning the job to B instead of A.
This amounts to quantifying the loss of quality of
the printed document, the cost of which depends
on the intended use of the document. Similarly,
if the job has a high resolution beyond the reach
of device B but within that of A (loss of quality,
again), or if B is physically much further from the
client than A for collection (loss of time). Full
elicitation of the utility function of each client is
not realistic. Instead, we assume that each job
comes together with a cost menu, i.e. a mapping
which specifies for each device the client estimate
of the cost of assigning that job to that device. To
control the assignment cost, we assume that the
assignment of each job is performed by the con-
troller when presented the cost menu of the job.

232 Andreoli J. and Bouchard G..
Multi-device Power-saving - An Investigation in Energy Consumption Optimisation.
DOI: 10.5220/0004042002320237
In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2012), pages 232-237
ISBN: 978-989-8565-21-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

• The total cost of operation of the device infras-
tructure depends on the energy consumption char-
acteristics of the infrastructure on the one hand, on
the client assignment utility functions on the other
hand, and, of course, on the actual demand, i.e.
the sequence of jobs. Demand is intrinsically non
deterministic, and may evolve over time, but we
assume here that it is governed by some stationary
stochastic process which can be learnt from obser-
vation over a sufficiently long period of time.

We seek to develop a controller which is in charge of
both assigning devices to jobs and dynamically set-
ting timeouts, in such a way as to minimise the total
cost of operation, i.e. the sum of the energy consump-
tion cost and the job assignment cost.

1.2 Related Work

Dynamic power management has been the topic of
numerous investigations (Benini et al., 2000) and oc-
curs in many contexts: electronic design (Wang et al.,
2011), data centre management (Raghavendra et al.,
2008; Urgaonkar et al., 2010), wireless sensor net-
works (Sinha and Chandrakasan, 2001). The prob-
lem we tackle in this paper shares many concepts
with DPM. As DPM, we seek the optimal control
of the energy consumption of a set of hardware de-
vices with controllable energy consumption regimes,
under a stochastic flow of service requests, each of
which being satisfied by a controllable subset of de-
vices (actually, exactly one device per request in our
case). However, unlike many DPM studies, our as-
sumptions derive from a rarely studied, although quite
frequent configuration, where requests come together
with soft allocation constraints in the form of cost
menus, and the devices can at any time be dynami-
cally reprogrammed for energy optimisation. Our so-
lution relies on a very generic technique for sequen-
tial decision problems, known as Markov Decisions
Processes (MDP), widely investigated in the litera-
ture (Bertsekas, 2005; Bäuerle and Rieder, 2011), and
which is also used by many other DPM solutions.
We assume the simplest flavour of MDPs, where the
stochastic demand is assumed known in advance, typ-
ically learnt from the observation of past sequences.
We focus instead on the problem of simultaneously
optimising the set of devices at each step of the deci-
sion process, allowing the revision of the energy con-
sumption regime of all the devices each time a request
is submitted.

2 PROBLEM MODELLING

2.1 Parametrisation

At any time, a device has amodewhich is either
ready or sleep. Each devicek=1:K is characterised
by:

• ak: cost rate inready mode;ak: cost rate insleep
mode; we haveak < ak and we letak = ak−ak;

• b̌k: cost of jump fromready to sleep; b̂k: cost of
jump fromsleep to ready;

Let gk(x,τ) the overhead cost of maintaining devicek
in ready mode during up toτ time units over a period
of x time units. We have:

gk(x,τ) =def I[x< τ]akx+ I[x≥ τ](akτ+ b̌k)

The device infrastructure receives job requests in se-
quence. For then-th request in the sequence, letXn ∈
R
+ be the time elapsed since the previous request; let

Jn be the total information available about the associ-
ated job (both about its content and its client); and let
Cn be the client cost menu which is theK-dimensional
vector whosek-th component fork=1:K holds the
client estimate of the cost of assigning jobJn to de-
vicek.

• We assume that the random variableOn =
(XJC)1:n, which captures all that has been ob-
served just after then-th request, can be determin-
istically summarised by a single state variableZn,
called the demand state, which may live in an ar-
bitrary spaceZ , and which satisfies the following
Markov condition

p(On|On−1) = p(XnZn|Zn−1)p(Jn|Zn)p(Cn|Zn)

Thus, stateZn summarises all the information of
the past demand which has an impact on the fu-
ture demand. The choice of a good demand state
spaceZ and model satisfying the Markov assump-
tions depends on the characteristics of the actual
demand.

• We further assume that the distributions
p(ZnXn|Zn−1) and p(Cn|Zn) are known and
stationary (independent ofn). We introduce
distributionsP,Q, which are the drivers of the
demand process, as follows1:

p(XnZn|Zn−1) = P(XnZn|Zn−1)
p(Cn|Zn) = Q(Cn|Zn)

1P is a joint distribution and we use the same symbolP
to denote the marginals and conditionals.

Multi-device�Power-saving�-�An�Investigation�in�Energy�Consumption�Optimisation

233

• Finally, we assume that job execution time is neg-
ligible. So we do not try to model it, nor the
queueing effect which may result from it on de-
vices. This is a natural assumption for the kind of
device infrastructures we are targetting, where de-
vices are far from full utilisation and spend most
of their time waiting for jobs.

2.2 Formulation as a Sequential
Decision Process

The state of the system at any time is given by a pair
〈σ,z〉 where the control stateσ is the subset of indices
of the devices inready mode andz∈ Z denotes the
demand state of the infrastructure. We seek to build
a controller which takes as input the stream of job re-
quests, maintains the state of the system and uses it to
make decisions at each new job:

• First, the controller must choose the indexk of the
device to which the job is assigned. We assume
here that jobs are immediately assigned upon re-
ception.

• Then, just after the assignment, the controller
must choose a family(τk)k∈σ of non negative
timeouts, whereσ is the control state at that time,
and eachτk denotes the sleep schedule for device
k ∈ σ i.e. the time after which devicek is to be
switched tosleep mode if no job has been re-
ceived in between.

Thus, the problem is formulated as the optimisation of
a sequential decision process. We consider the opti-
misation at infinite horizon with discount factorγ. Let
V !〈σ,z〉 andV〈σ,z〉 be the optimal cost to go associ-
ated with state〈σ,z〉, respectively before and after an
assignment. The optimality equation is given in Fig-
ure 1.

• Equation (1) concerns the total cost of assigning,
in state〈σ,z〉, a job with cost menuc to a devicek:
it consists of the client assignment costck speci-
fied in the cost menu, plus, if devicek is in sleep
mode (i.e. k 6∈ σ), the wake up cost to lift it to
ready mode, plus the cost to go after assignment
from the new state〈σ∪{k},z〉 in which k is now
in ready mode. The demand state is unchanged
because we ignore job execution time, so the job
is assumed to be completed immediately after as-
signment.

• Equation (2) concerns the cost of setting time-
outs (τk)k∈σ for the devices inready mode in
state〈σ,z〉, when the next job arrives after time
x in a demand statez′: it consists of the cost
gk(x,τk) of the energy consumption until timex
of each devicek in ready mode with timeoutτk,

plus the discounted cost to go from the new state
〈{k ∈ σ|x < τk},z′〉 where the control state con-
sists exactly of those devices inσ for which the
timeout was not reached at timex (i.e. τk > x).

If functionsV andV ! satisfy Equations (1) and (2),
then the optimal policy for the controller can be for-
mulated as follows:

• When receiving a job with cost menuc in state
〈σ,z〉, assign it to the devicek which minimises
the minimisation objective of Equation (1).

• Just after assignment in state〈σ,z〉, set timeouts
(τk)k∈σ which minimise the minimisation objec-
tive of Equation (2).

3 SOLVING FOR OPTIMALITY

We are looking for a solution inV ! ,V to the system of
Equations (1) and (2). We follow the general proce-
dure ofvalue iteration, which alternates updates toV !

from V using Equation (1) and updates toV from V !

using Equation (2). We assume that the demand state
spaceZ is finite, so the overall state space is finite and
bothV ! ,V can be represented as finite dimension vec-
tors. The update using Equation (1) is quite straight-
forward: minimisation can be done by enumeration
(of the devices), and the integral is turned into a sum,
assuming distributionQ is discrete. The update us-
ing Equation (2) is more involved, as it requires solv-
ing aK-dimensional optimisation. Unfortunately, the
optimisation objective has no good properties, such
as convexity or smoothness, which would make it
amenable to standard optimisation techniques. Fur-
thermore, it is important to reach a global optimum
and not just a local one. The rest of this section is
devoted to solving the optimisation in Equation (2).

3.1 Transformation of the Objective

Although the optimisation in Equation (2) occurs in
the (up to)K-dimensional space of possible timeouts,
it can in fact be turned into a sequence of (up to)
K uni-dimensional optimisations. To show this, we
introduce two side functionsV◦〈t,σ,z〉 andv〈t,σ,z〉
wheret is a positive scalar, andσ,z is a state. It can
then be shown that the solution inV to Equation (2)
can be obtained by solving the system of equations in
V◦,v,V shown in Figure 2. In that system, all the op-
timisations in the space of timeouts are captured by a
single operator↓, defined for any functionf on posi-
tive scalars by

↓ f (τ) = min
t≥τ

f (t)

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

234

V !〈σ,z〉 =

∫
c
min

k
[ck+ I[k 6∈ σ]b̂k+V〈σ∪{k},z〉]dQ(c|z) (1)

V〈σ,z〉 = min
(τk)k∈σ

∫
xz′
[∑
k∈σ

gk(x,τk)+ γV!〈{k∈ σ|x< τk},z
′〉]dP(xz′|z) (2)

Figure 1: The optimality equations for the system.

V◦〈t,σ,z〉 =

∫
xz′
(−gσ(x, t)+ γI[t ≤ x]V !〈σ,z′〉)dP(xz′|z) (3)

v〈., /0,z〉 = V◦〈., /0,z〉 (4)

v〈.,
6= /0
σ ,z〉 = ↓((min

k∈σ
v〈.,σ\{k},z〉)−V◦〈.,σ,z〉)+V◦〈.,σ,z〉 (5)

V〈σ,z〉 = v〈0,σ,z〉+
∫

x
gσ(x,0)dP(x|z) (6)

Figure 2: Solving Equation (2) by a sequence of unidimensional optimisations.

In words, this operator returns the greatest monotonic
(non decreasing) lower bound off . It is the only op-
erator in Figure 2 which involves a non discrete opti-
misation. In more details, we have

• Equation (3) computes a functionV◦ fromV ! . We
use the notationgσ as a short hand for∑k∈σ gk.

• Then Equations (4) and (5) inductively compute
a functionv from V◦. Eq. (4) yields the values
of v at σ = /0, while Eq. (5) yields the values of
v at σ 6= /0 based on its values atσ \ {k} for each
k∈ σ. Hence, functionv can be entirely computed
in K iterations of updates using initially Eq. (4)
and then repeatedly Eq. (5).

• Finally, Equation (6) yieldsV by taking the values
of v at t = 0.

The main problem with this transformation is that,
while V,V ! can be represented as the finite dimen-
sion vectors of their values, since they have a finite
domain, that is not the case ofV◦ andv as these func-
tions have an argument which lives in a continuous
space. The traditional solution to this problem is to
approximate such functions by linear combinations of
suitably chosen basis functions. We take a different
approach here, which does not rely on approximation.

3.2 Solution Space

Given a demand statez, letF o be thefiniteset consist-
ing of the initial functionsV◦〈.,σ,z〉 for all possible
control stateσ. What we are looking for is a function
spaceF with the following properties:

• Finite Representability: functions in F can be
represented by some finite parametric structures;

• Pointwise Computability: for any scalarx and
function f in F given by its parametric represen-
tation, the scalarf (x) can be computed;

• Stabilityby the operators of Figure 2:

(A)

∀ f ∈ F o f ∈ F
∀ f ,g∈ F min(f ,g) ∈ F
∀ f ∈ F ,g∈ F o ↓(f −g)+g∈ F

A function space satisying all these requirements is
called asolution space, since it can be used to update
exactlyV fromV ! using the updates given in Figure 2.
Now, the main formal result of our study is the follow-
ing proposition.

Proposition 1. If F o satisfies some minimal condi-
tions, then a solution space can be constructed.

The conditions onF o for Proposition 1 to hold are
the following, where∆F o denotes the set of functions
of the form f −g with f ,g∈ F o.

• There is a procedureEVAL which, given a scalar
t and a functionf in F o, returns the scalarf (t).
This includest = +∞, in which case the returned
value is the limit (assumed finite) off (t) whent
tends to infinity. In other words, the initial func-
tions must at least be pointwise computable.

• There is a procedureBEHAVIOUR which, given a
functionh in ∆F o, returns the table of variations
of h, i.e. a finite interval partition(Ai)i∈I of R+,
and for eachi ∈ I , an indicatorsi ∈ {−1,1} with
si positive (resp. negative) meaning thath is non
decreasing (resp. non increasing) on intervalAi .

When these conditions hold, the solution space
promised by Proposition 1 is the function spaceF ∗

defined as follows: F ∗ is the space of functions

Multi-device�Power-saving�-�An�Investigation�in�Energy�Consumption�Optimisation

235

g f g f g
(a)

gfg+cfg+c'f g

T

(b)

Figure 3: Computing (a): min(f ,g) and (b):↓(f −g)+g given f −g (blue curve); the result (indicated at the top) is piecewise
identical to eitherf or g plus a scalar.

which are piecewiseF o-plus-constant, i.e. of the
form ∑i∈I 1Ai (fi + r i1) where(Ai)i∈I is a finite inter-
val partition ofR+, (fi)i∈I is a family of functions in
F

o, and(r i)i∈I is a family of scalars, called theoffsets.
1A whereA is any interval ofR+ is the characteristic
function ofA, which returns 1 for the scalars inA and
0 elsewhere.1 is the constant function which always
return 1. Let’s sketch the proof thatF ∗ is a solution
space:

• F ∗ is finitely representable. Indeed, a function
in F ∗ is entirely described by the bounds of its
underlying (finite) interval partition, and for each
interval, the corresponding element inF o (which
is finite) and corresponding offset.

• F ∗ is pointwise computable. Given a functionf
in F ∗ and a scalarx, the valuef (x) is computed
by first determining the interval of the underlying
partition of f to whichx belongs (this consists in
a sequence of comparisons with the bounds of the
intervals) and then using procedureEVAL with the
function inF o corresponding to that interval, and
adding its offset.

• Finally F ∗ satisfies the stability conditions(A).
The first condition is obvious. The intuition for
the proof of the other two conditions can be read
on Figure 3. Essentially, iff ,g are any functions,
and f − g, represented by the blue curve on the
figure, is reasonably well-behaved, then min(f ,g)
and↓(f − g)+ g are piecewise equal to eitherf
or g+ r1 wherer is a scalar. If the table of vari-
ations of f − g is known, as provided by proce-
dureBEHAVIOUR, then the exact bounds at which
min(f ,g) and↓(f −g)+g alternate between the
two cases can be computed precisely (as well as
the values ofr), by simple bi-section2 on each in-

2We mention here bisection, because it is the simplest

k<1 c>0 k>1 c>0

k<1 c<0 k>1 c<0

Figure 4: Different shapes of the functionsψ+ cψ′ in the
case of Weibull demand with shape parameterκ.

terval of monotonicity off − g using procedure
EVAL . Technically, what is needed in the proof is
the property above for↓(1[0,T)(f − g))+ g for T
scalar or infinite, as shown in the figure.

3.3 An Example

Consider the case where the demand state space is fi-
nite, and, for a given demand statez, distributionP
givenz is the independent product of a Weibull distri-
bution3 and a multinomial:

dP(xz′|z) = πz′κxκ−1exp(−xκ)dx

where∑z′ πz′ = 1. It is easy to show that, up to some
scaling factors, the functions inF o (and hence those
in ∆F o) are of the formψ(.;z)+ cψ′(.;z), where

way to obtain a root of a uni-dimensional function using
only a zero-order oracle like procedureEVAL . If higher or-
der oracles are available, then of course more refined meth-
ods can be used instead.

3Observe that the scale parameter of the Weibull is taken
to be 1, thus fixing the time unit.

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

236

ψ(t;z) =
1
κ

γ(
1
κ
, tκ)

ψ′(t;z) = exp(−tκ)

For a givenc, functionψ(.;z)+ cψ′(.;z) can assume
the different shapes, depending onκ andc, shown in
Figure 4 and has the following characteristics (when
κ 6= 1):

• It is continuous, has valuec at 0, and has a limit at
infinity given by 1

κ Γ(1
κ) whereΓ is the complete

Gamma function.

• It is monotonically increasing ifc≤ 0, otherwise

it has a single local optimum, att∗ = (1
cκ)

1
κ−1 ,

which is a maximum ifκ > 1 and a minimum if
κ < 1.

• It is concave ifc≤ 0 andκ < 1, otherwise it has a
single inflection point solution of the simple poly-
nomial equation 1− 1

κ +
1
cκ t − tκ = 0.

All this information is sufficient to implement proce-
duresBEHAVIOUR, EVAL , and even higher order ora-
cles thanEVAL .

3.4 Experimental Validation

The conditions required for Proposition 1 to hold
essentially depend on distributionP in the demand
model. They actually hold for a wide range of dis-
tributions, and we have derived solutions for various
standard distributions (Exponential, Weibull, etc.).
We have also conducted experiments both on simu-
lated and real data, which cannot be reported here for
lack of space. They are available on demand from the
authors. Essentially, in our experiments, we compare
the TRANSFERpolicy obtained by the algorithm pro-
posed here, which minimises the overall cost of the
infrastructure, to theSELFISHpolicy, where each job
is assigned the device which minimises only the cost
for the client (as given in the cost menu). Unsurpris-
ingly, the TRANSFER policy always performs better,
and the gain can be arbitrarily high depending on a
characteristic of the demand called thetransfer loss
defined as

Q+ =def min
z

∫
c
c+dQ(c|z)

where, for any cost menuc, we letc+ = mink,ck>0ck
(it is assumed, without loss of generality, that the
smallest value in a cost menu is always 0, soc+ is
the second smallest).

4 CONCLUSIONS

In this paper, we have studied the tradeoff between
the client cost of job assignment and the energy con-
sumption of the devices in a framework in which a
controller mediates the interaction between client and
devices. The kind of system we target is different
from the typical jobshop, for which optimisation is
a well studied topic. Instead, we target infrastructures
in which

• devices spend most of their time waiting for jobs,
and the controller can set the energy level at which
they do that;

• clients set device assignment constraints, and the
controller can override some of them at a price.

The role of the controller is to find a tradeoff between
the price of overiding client constraints and the idle
energy consumption of the devices. We propose a se-
quential decision process model of the system as well
as a method to achieve the optimal solution.

REFERENCES

Bäuerle, N. and Rieder, U. (2011).Markov Decision Pro-
cesses with Applications to Finance. Springer Verlag.

Benini, L., Bogliolo, A., and De Micheli, G. (2000). A
survey of design techniques for system-level dynamic
power management.IEEE Transactions on very large
scale integration systems, 8(3):299–316.

Bertsekas, D. (2005).Dynamic Programming and Optimal
Control. Athena Scientific.

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z.,
and Zhu, X. (2008). No “power” struggles: Coordi-
nated multi-level power management for the data cen-
ter. Operating systems review, 42(2):48–59.

Sinha, A. and Chandrakasan, A. (2001). Dynamic power
management in wireless sensor networks.IEEE De-
sign & Test of Computers, 18(2):62–74.

Urgaonkar, R., Kozat, U., Igarashi, K., and Neely, M.
(2010). Dynamic resource allocation and power
management in virtualized data centers. InProc.
of IEEE/IFIP Network Operations and Management
Symposium, pages 479–486, Osaka, Japan.

Wang, Y., Xie, Q., Ammari, A., and Pedram, M. (2011). De-
riving a near-optimal power management policy using
model-free reinforcement learning and bayesian clas-
sification. InProc. of 48th Design Automation Con-
ference, pages 41–46, San Diego, CA, U.S.A.

Multi-device�Power-saving�-�An�Investigation�in�Energy�Consumption�Optimisation

237

