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Abstract: This paper presents an integrated robotic system capable of learning and executing manipulation tasks from
a single human user’s demonstration. The system capabilities are threefold. The system learns tasks from
perceptual stimuli, models and stores the information in the form of semantic knowledge. The system may
employ the model achieved to execute task in an way similar to the example shown and adapt the motion
to robot own constraints in terms of physical limits and interferences. The system integrates perception and
action algorithms in order to autonomously extrapolate the context in which to operate. It robustly changes its
behavior according to the environment evolution. The performances of the system have been verified through
a series of tests. The tests run on the Kuka youBot platform and all the tools and algorithms are integrated into
Willow Garage ”Robotic Operating System” (ROS).

1 INTRODUCTION

Robot programming by demonstration (PbD) is a very
large research topic, it includes areas such as human-
robot interaction, machine learning, machine vision
and motor control. Here we present an approach to
perform domestic activities teached through exam-
ples. We focused on the following aspects: the ability
to learn manipulation activities, to detect relevant in-
formation and to figure out a related symbolic model;
the integration of algorithms for perception and ac-
tion into a single architecture; to map tasks execution
to robot operational space; to manage and balance the
robot constraints (obstructions, manipulation and vi-
sual field) with respect to the environment changes.
To achieve this functionality we integrated several
components, such as: object recognition (Lai et al.,
2011), grasping (Ciocarlie et al., 2010), laser range
localization and navigation (Marder-Eppstein et al.,
2010), computer vision (Malbezin et al., 2002), skele-
ton tracker and perception (Beetz et al., 2010). We
dedicated a particular effort to achieve an effective
integration that manages all reciprocal constraints.
We chose to adopt an interoperable platform among
the set of available platforms (Pangercic et al., 2010;
Rusu et al., 2009). We use the software ROS (Robot
Operating System) (Quigley et al., 2009), a couple of
Microsoft Kinect cameras (Khoshelham, 2011) and
the Kuka youBot (Bischoff et al., 2011). The sys-
tem observes a human setting and clearing a table up

and learns how to do it autonomously. It creates a
symbolic deterministic model of the shown activities
and uses this model to replicate similar tasks in dif-
ferent contexts. Our system learns through One-Shot-
Learning (only one demonstration).

2 PLATFORM DESCRIPTION

The platform employs a Kuka youBot opportunely
modified. Figure 1 shows the overall setup of the
robot. The platform consists of an omni-directional
wheeled base (1), an onboard pc and a 5-DOF arm (2)
with a two-fingers gripper. The platform is integrated
with laptop (3) and two Microsoft Kinect cameras.

Figure 1: Photo of the modified platform.

The gripper shape (4) was modified to improve
the grasp of the objects and to maximize the reach-
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able workspace. A bottom camera (5) operates as
a laser to locate the robot in the environment and to
avoid the obstacles. A top camera (6) detects objects,
user motions, and table markers. A laptop was added
to increase computing power. The laptop communi-
cates with the platform via EtherCAT and with the
two cameras via USB connections.

Figure 2: Photo of the robot working environment.

Figure 2 shows the robot working environment.
The edges of the environment are real walls that limit
workspace and facilitate the laser mapping task. The
map of the work environment is provided to the robot
as 2D format. In the map there are operating surfaces,
the one in the top left represents the ”table” e the other
in the bottom right represents the ”sink”. The box
in the bottom left is an additional barrier inserted to
improve the asymmetry of the scenario and to make
more robust the localization algorithms which will be
described later. The household objects that will be
manipulated to perform the actions are the bowl, and
the glass.

3 SOFTWARE OVERVIEW

The several modules, that compose our platform, need
to communicate one another. To satisfy these needs
we use ROS. The platform organizes its activities into
phases. Two major phases have been identified: Learn
and Perform. In the Learn phase the robot observes
the user and learns how to perform tasks. Voice com-
mands are used to instruct the robot which elements
to focus on. In the Perform phase the robot executes
a goal. The Figure 3 shows how, using ROS, these
phases have been integrated into a unique architec-
ture.

In the Learn phase, several modules provide in-
formation about the objects, the tables and the human
interaction. The Audio module (7) gets voice com-
mands given during the demonstration. The Learner
module (a), in the Cognition manager, stores action
parameters, such as position, object type, etc. into the
objects’ Knowledge DB (b). The Learner removes

details from demonstration that are not relevant for
the execution of the task. The result is represented as
a simple map encoding actions that the platform can
perform. The Learner scans the demonstration and
creates a symbolic sequence of actions. To facilitate
the recognition of actions, the Knowledge DB (b) also
provides the Learner with information on the objects’
meshes. User inputs are only necessary for the initial
demonstration.

In the Perform phase, the Performer (c) instanti-
ates high level solutions that solve a given goal. It
uses the perception to determine initial conditions and
plans the best policy to perform actions. Then the
Sensorimotor manager maps these solutions on the
platform, by transforming the requested actions into
executable motions. For implementation details see
(Di Fava et al., 2012).

At lower level, several modules concur to fur-
nish two basic functionalities: Perception and Action.
Each module comprises different nodes.

4 IMPLEMENTATION

Navigation. During the initial environmental config-
uration the robot can recognize the context (tables po-
sitions, robot start position and objects on furniture)
and adapt its behavior to diminish fault risk, it is done
in the starting procedure. First, the robot relocates
itself (through marker in the low camera field of vi-
sion). Then it locates the furniture and save its posi-
tion, following the explorer algorithm: 1. Navigate
to the workspace center; 2. start pivoting until a ta-
ble/sink marker is detected; 3. if a marker is found,
navigate to the table/sink; 4. approach table/sink; 5.
return furniture position in map frame. The naviga-
tion is used to autonomously navigate among table
and the sink. This process is composed of four phases:
1. localization: the robot uses a hybrid system com-
bining AMCL (Fox et al., 1999) and a vision-aided lo-
calization system based on landmarks; 2. global nav-
igation with path planning, combining A* and DWA
algorithms (Fox et al., 1997), and obstacle avoidance
based on a costmap; 3. second localization to im-
prove accuracy; 4. table/sink approach: implemented
through a simple visual control loop, during this phase
the platform is moved in a known position in the ta-
ble/sink marker frame.

Grasping and Manipulation. We implemented ROS
services to pick, place and store objects onboard. This
gives the possibility to move objects among the furni-
ture with the arm free and without obstruing the vi-
sion system. On the other hand, the robot is blind
when manipulating objects on its body, this makes
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Figure 3: Implemented system architecture. Four macro-blocks interact each other. Each one containing modules, and relative
nodes. The two blocks on the top (Cognition manager and Sensorimotor manager) represent the high-level functionalities
of control. These blocks interact each other and control the low-level modules of Action and Perception. The active phase
determines which module at low-level has to operate. The phase association is reported in parentheses: Learn (L) and Perform
(P).

Figure 4: Dexterous workspace with its center is shown in
blue. The bowl pre-grasp point on the edge is shown in
green. It can be seen how the two points are superimposed,
combining arm and base movements. The gripper frame is
also drawn with x axis pointing downward.

the system chattering sensitive during navigation. We
chose to divide the grasp procedure in three phases
(poses for every phase has been computed with the
Graspit! Simulator (Miller and Allen, 2004)): ap-
proach (pre-grasp position), alignment (grasp pose)
and grasp (gripper closure). We assumed only a
movement along the gripper x axis among pre-grasp
and grasp positions. To study the grasp problem, we
computed the manipulator dexterous workspace and
we performed cuts at grasp and pre-grasp heights for
every object, obtaining the planar workspaces. The
actual grasp movement is implemented as a point-to-
point trajectory, with the arm controlled in position.

Approaching for Fine Manipulation. Using pre-
grasp and grasp information, we implemented an arm-
base coordination policy. The pre-grasp pose is com-
puted in the frame of the robot arm using a visual-
aided algorithm. For what concerns the base move-
ments during manipulation, we implemented a Maxi-
mum dexterity policy, by moving the base to have the
pre-grasp pose in the center of the dexterous worspace
(Figure 4).

5 TESTS

We validated the platform behavior with different
types of tests. In all experiments we estimated the
objects pose, without making any assumption on their
orientations or positions.

Coming to the goodness of the explorer algorithm,
we computed the probability of success. We carried
out 10 tests placing the table in different positions.
The robot also started from different positions, always
with a visible marker. The system detected the table
in 8 of 10 tests (80%). The failures are due to the table
closer than the camera minimum range or to too much
inclination between the markers and the camera.

After having determined the prerequisite for suc-
cess, we arranged a new set of experiments to estimate
the accuracy of localization. Only the robot initial po-
sition changed in these tests, while the table remains
in the same position. The results of 20 tests show a
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variance of 8�10�4 [m2] for x, 2:3�10�3 [m2] for y,
2:9�10�3 [rad2] for the yaw. Even having collected
few samples, error distribution fits quite well with a
Gaussian (p � 0:2). Considering a range of values
µ+3s for the localization, with accuracy (p� 0:003),
the platform has to maintain a distance greater than 9
cm along x and 15 cm along y from the target position
to avoid collisions.

Then we examined the accuracy of the table ap-
proach procedure. Both table and robot position
changed between tests. The results of 10 tests show a
variance of 1:12� 10�4 [m2] for x, 1:14� 10�4 [m2]
for y, 4:4� 10�4 [rad2] for the yaw. Considering a
range of values µ+ 3s for the localization, the plat-
form has to maintain a distance about 3 cm along x
and y, taking into account a yaw error slightly greater
than 3 degrees, to approach the table without colli-
sions. An error of 3 cm does not invalidate the plat-
form capability of grasping (Figure 4).

The last set of experiments determines the good-
ness and the accuracy of objects grasping. We carried
out 10 tests placing the object in different areas of
the table and starting the robot always with the table
markers visible. The arm grasps the object in 9 of 10
tests (90%). The tests show a variance of 3:2�10�7

[m2] for x, 2:4�10�5 [m2] for y. Considering a range
of values µ+ 3s for the object recognition, we can
estimate that the error made in recognizing an object
falls within the limits of about 0:17 cm along x and
1:48 cm along y. The error obtained, being smaller
than the opening wideness of the gripper ( 2:3 cm),
does not invalidate the grasp capability of the plat-
form. No phase is secure/robust, but the consequen-
tiality of phases ensures a progressive refinement that
avoids collisions and gives capability to grasp.

6 CONCLUSIONS AND FUTURE
WORK

We presented and validated a learning by demonstra-
tion system. It integrates action and perception algo-
rithms to learn and execute household tasks adapting
them to its physicality. We validated every module
efficiency and integration through a series of experi-
mental tests. We plan to adapt the system to be con-
trollerd with biometric readings to use the robot as an
auxiliary body for the human user and to have arm
movements learned through demonstrated examples
(Avizzano, 2012).
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