
 

 

Self-ad-MCNHA-SLOS 
A Self-adaptive Minimum-Cost Network Hardening Algorithm based on Stochastic 

Loose Optimize Strategy 

Yonglin Sun, Yongjun Wang and Yi Zhang 
College of Computer Science, National University of Defense Technology (NUDT), Changsha, P.R. China 

Keywords: Minimum-cost Network Hardening, Stochastic Loose Optimize, Self-adaptive, Network Vulnerability, 

Attack Graph. 

Abstract: Given a network, it inevitable contains various vulnerabilities, which could be exploited by malicious 

attackers. It is an effective way to harden a network by searching and remedying those critical 

vulnerabilities. That is the so-called Minimum-Cost Network Hardening (MCNH) problem, but there 

haven’t any effective enough method to address this problem yet, especially, when facing large-scale 

network. We proposed Self-ad-MCNHA-SLOS, an algorithm using Stochastic Loose Optimize Strategy 

(SLOS) and self-adaptive parameter adjustment method ingeniously, to meet the problem. Experiment 

results show that it has the merits of high-efficiency, controllable, asymptotically optimal, and suitable for 

large-scale network. 

1 INTRODUCTION 

Networks changed and are changing people’s life, 

anyone and anything could be tied together by the 

Internet to share the benefits of interconnected and 

information sharing. However, the neglect of 

security in the history of network techniques 

development is becoming a nightmare. Drived by 

economic interests, hacker industry chains create 

uncountable malwares and attack techniques 

threatening to legitimate users continuously by 

finding and exploiting vulnerabilities in networks, 

network security is becoming more and more serious. 

Network vulnerability means those exploitable 

defects existing in network environment, which 

could be exploited by adversaries to do harm to the 

network and its users, such as software bugs, 

protocol defects, security policy conflicts, 

unreasonable network structure, etc. MCNH is based 

on network vulnerability association analysis and 

target for finding minimum-cost hardening plan for 

those critical resources. (Jha, 2002) proposed the 

most original concept of MCNH based on state 

attack graph. Since then, several teams addressed 

this problem and made significant improvements but 

still unsolved. 

The MCNH problem contains 3H questions: how 

to determine the whole space of possible hardening 

plans, how to determine the cost of a hardening plan, 

and how to find the effective minimum-cost 

hardening plan. Attack graph can be used to 

determine the whole plan space and the validity 

criteria of plan, since it can reflect the exploit-

dependence relations among all of the vulnerabilities 

existing in given network. Usually, the costs of plans 

are assumed to be known for the complexity and 

subjectivity of plan cost evaluation. As to the third H, 

we assume there are N nodes in a given network, 

then, the scale of vulnerabilities is O(N), and the 

scale of possible plans is 2O(N), it is NP hard to find 

the effective minimum-cost hardening plan. It will 

become unfulfillable to solve this problem 

accurately, when facing large-scale network 

environment. 

We proposed Self-ad-MCNHA-SLOS to find 

minimum-cost plans (Min-Plan) iteratively from an 

array of stochastic sparse sub-spaces (Sparse-Space) 

of the whole possible hardening plan space (Plan-

Space), and updates the approximate optimal 

hardening plan (Approx-Opt-Plan) according to the 

validity of those Min-Plans judged by the validity 

judgment function (Valid()). It also uses the history 

validity information of those Min-Plans to adjust the 

parameter (density) of the hardening plan generator 

(GeneratePlan()) to make sure those Sparse-Spaces 

converge quickly to the optimal hardening plan 

372 Sun Y., Wang Y. and Zhang Y..
Self-ad-MCNHA-SLOS - A Self-adaptive Minimum-Cost Network Hardening Algorithm based on Stochastic Loose Optimize Strategy.
DOI: 10.5220/0004022803720378
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 372-378
ISBN: 978-989-8565-24-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

 

(Opt-Plan). In this way, it can make sure the 

Approx-Opt-Plan obtained by iterations of limited 

steps closes enough to the Opt-Plan. Testified both 

by theoretical analysis and experiments evaluation, 

Self-ad-MCNHA-SLOS has the merits of high-

efficiency, controllable and asymptotically optimal, 

and is very suitable for large-scale network 

environment. 

2 RELATED WORK 

MCNH is based on attack graph, (Swiler, 2001) first 

proposed the attack graph model. (Sheyner, 2002) 

studied the automation of attack graph generation 

and analysis. (Ammann, 2002) first proposed 

attacker’s ability monotonic assumption to improve 

the efficiency of attack graph construction. (R. P. 

Lippmann, 2005) proposed network security 

assessment and hardening method based on attack 

graph. (Ou, 2005) proposed a method with 

computational complexity between O(N2) and O(N3) 

to construct single-objective attack graph, and found 

the phenomenon of circle-included attack paths. 

(Ingols, 2006) implement a prototype system to 

generate multiple-prerequisite attack graph for large-

scale enterprise network using raw data collected 

from real network environment. (Chen, 2009) 

proposed an algorithm to generate multi-objective 

attack graph. Besides, researchers have also 

proposed various methods to enhance the 

intelligibility and usability of attack graph for its 

complicated (Mehta, 2006); (Lippmann, 2007); 

(Homer, 2008). 

As for MCNH, (Jha, 2002) proposed the original 

concept of MCNH based on state attack graph, their 

work is to looking for the minimum safety measure 

set to guarantee the safety of the key information 

assets of a given network. Since then, (Noel, 2003) 

proposed MCNH measure set based on attribute 

attack graph, however, it can’t be applied to large 

attack graph with circles. Though (Wang, 2006) 

used one-pass search strategy to avoid logic loops in 

attack graph, it still can’t be applied to large-scale 

attack graph. (Homer, 2008) proposed an automatic 

network configuration management method to help 

for making network configuration decision in an 

iterative approach, but it still not efficiency enough 

when attack graph is moderate large. (Chen, 2008) 

proposed an accurate method to calculate optimal 

hardening plan based on Binary Decision Diagrams 

(BDD) and an approximate one based on greedy 

strategy, the former is better than Lingyu Wang’s 

method, but still a method for small-scale network, 

while the latter one is theoretically appropriate for 

large-scale network, but their experiment results are 

not enough to testify its good performance.  

MCNH is actually a minimum-cost satisfiability 

problem (MinCostSAT). MinCostSAT, as a Boolean 

Satisfiability (SAT) problem, is to minimize the cost 

of the satisfying assignment, and is suitable for 

Automatic Test Pattern Generation (ATPG), FPGA 

Routing, AI Planning, etc. (Fu, 2006). (Li, 2004) 

have done in-depth research on optimization 

algorithms for the MinCostSAT in his PhD thesis. 

However, these algorithms for the MinCostSAT is 

not suitable for the minimum-cost network 

hardening problem. 

3 SLOS 

SLOS is come from Stochastic Loose Optimize 

Principle (SLOP). If a set named Universe is 

partitioned to 2 parts: Low and High, and the ratio of 

element numbers of Low and Universe is PL, then, 

the probability of an element selected stochastically 

from the Universe belongs to Low is PL, and to High 

is 1-PL. If repeat the selection N times, then, the 

probability of selected an element from the Low is 

1-(1-PL)N. No matter how many elements in the 

Universe, and how tiny the PL is, we can ensure the 

probability of the above selection success is close 

enough to 1, as long as the N is moderate big. 

As Figure 1 shown, the proof of SLOP is very 

simple. 

Premise: 

|Low|/|Universe| = PL; 

r1, r2, … , rN∈Universe; 

r1, r2, … , rN is an array of random numbers. 

Conclusion: 

P({ r1, r2, … , rN }∩Low≠∅) = 1-(1-PL)N, 

where P(event) means the probability of the event happens. 

Proof: 

∵  r1, r2, … , rN∈Universe, and they are random numbers. 

∴  P(r1∈Low) = P(r2∈Low) = … = P(rN∈Low) = PL. 

∴  P(r1∉ Low) = P(r2∉ Low) = … = P(rN∉ Low) = 1-PL. 

and, ∵  the set of events r1∉ Low, r2∉ Low, … , rN∉ Low are 

stochastic independence. 

∴  P({ r1, r2, … , rN }∩Low =∅) 

= P((r1∉ Low)∩(r2∉ Low)∩…∩(rN∉ Low)) 

= P(r1∉ Low)×P(r2∉ Low) ×…×P(rN∉ Low) 

= (1-PL)N 

∴  P({ r1, r2, … , rN }∩Low≠∅) 

= 1- P({ r1, r2, … , rN }∩Low =∅) 

= 1- (1-PL)N.  

Figure 1: Proof of the stochastic loose optimize principal. 

SLOS is a strategy for state space searching 

which could be used to find an approximate solution 

Self-ad-MCNHA-SLOS - A Self-adaptive Minimum-Cost Network Hardening Algorithm based on Stochastic Loose
Optimize Strategy

373

http://portal.acm.org/author_page.cfm?id=81100513501&coll=DL&dl=ACM&trk=0&cfid=30162693&cftoken=16912216
http://www.stormingmedia.us/authors/Lippmann__R__P_.html
http://www.stormingmedia.us/authors/Lippmann__R__P_.html


 

 

of NP-hard problem quickly. The basic idea is: 

select an array of states from the whole state space 

to form a stochastic state sub-space, named Sparse-

Space, and the distance between the optimal state of 

the Sparse-Space and the optimal state of the whole 

space will become smaller gradually with the scale 

of the Sparse-Space increasing, according to 

concerned partial order. If the scale of the whole 

state space is too large to be traveled in limited time, 

SLOS could be used to find an approximate optimal 

state in a Sparse-Space, and the approximate optimal 

state is better and better with the scale of Sparse-

Space increasing. That is, we could find an 

approximate solution of a NP-hard problem in a 

Sparse-Space with moderate scale, when computing 

resource is limited. 

MCNH comes down to a state space searching 

problem with double constraint conditions, that is, 

the Opt-Plan must be both validity and with 

minimum cost. The validity depends on the plan 

itself, while, the judgment of the minimality need to 

search the hardening plan space. We used the SLOS 

iteratively both in the MNCHA-SLOS and the Self-

ad-MCNHA-SLOS to ensure the Approx-Opt-Plan’s 

validity and approximate minimality. 

Table 1: Symbols and their meanings. 

Plan Network Hardening Plan 

Approx-Opt-Plan Approximate Optimal Plan 

Opt-Plan Optimal Plan 

Plan-Space Network Hardening Plan Space 

Sparse-Space 
Subspace of the Plan-Space contains Some 

Stochastic Plans 

Valid-Space 
Subspace of the Plan-Space contains all of 

the Valid Plans 

Superior-Space 
Subspace of the Plan-Space contains those 

Superior Plans 

Goal-Space 
Subspace of the Plan-Space contains those 

Plans both Valid and Superior 

Rand() Random number generator 

Valid() A Function to judge the Validity of Plan 

Cost() A Function to compute the cost of Plan 

GeneratePlan() Plan Generator 

density 
Mathematical Expectation of the 1-density of 

Plan 

UpdateDensity() The Updater of the density 

NSparse The Scale of Sparse-Space 

Niterate Iterate times 

PValid The Ratio of Valid plans 

PSuperior The Ratio of Superior plans 

PGoal 
The Probability of the Approx-Opt-Plan in 

Goal-Space 

 

4 MCNHA-SLOS 

4.1 Basic Appointments and Concepts 

Appointment 1. The costs of network hardening 

plans are given. 

Appointment 2. The hardening plan space (Plan-

Space) and hardening plan’s validity judgment 

function (Valid()) are given. 

Appointment 3. Symbols used in this article with 

their meanings in Table. 1. 

4.2 Algorithm Description 

Basic Thought. Use the SLOS iteratively to meet the 

two measures: minim-cost and validity, select the 

minimum-cost Plan, noted as Min-Plan, in a NSparse 

scale Sparse-Space in every iteration, and update the 

Approx-Opt-Plan according to the Min-Plan’s 

validity, ensure the probability of the Approx-Opt-

Plan belongs to the Goal-Space is close to 1 by 

Niterate times iterations. It could be easily proved that 

the probability of the Approx-Opt-Plan belongs to 

the Goal-Space is PGoal, as formula (1) shown, by 

Niterate times of iterations on NSparse scale Sparse-

Spaces. 
 

(1 (1 ) ) (1 (1 ) )Sparse iterate
N N

Goal Superior ValidP P P       (1) 
 

The pseudo-code of the MCNHA-SLOS is shown in 

Figure 2. 

 

Figure 2: Pseudo-code of the MCNHA-SLOS. 

4.3 Algorithm Analysis 

It is obvious that accurate solving the MCNHP need 

to search the whole Plan-Space to find the Opt-Plan, 

and the theoretical complexity is 2n, while, the 

MCNHA-SLOS only need Niterate×NSparse times 

checking to ensure the Approx-Opt-Plan meet the 

user’s expectation, as formula (1) shown. If the scale 

of the Plan-Space n is moderate big, those accurate 

solving method will inevitable failure, under the Von 

 Begin: 
Approx-Opt-Plan ← 2

n
-1; 

for round = 1 to Niterate; 

 Min-Plan ← Approx-Opt-Plan; 

 for count = 1 to NSparse; 

  Plan = Rand(t)%2
n
; 

  if( Cost(Plan) < Cost(Min-Plan) ) 

 Min-Plan ← Plan; 

 if( Valid(Min-Plan) ) 

  Approx-Opt-Plan ← Min-Plan; 

Output: Approx-Opt-Plan; 

End. 

SECRYPT 2012 - International Conference on Security and Cryptography

374



 

 

Neumann architecture. While, according to formula 

(1), PValid is fixed for a given goal of a given network, 

PSuperior is given by user, therefore, no matter how 

tiny the PSuperior and the PValid, there are moderate 

Niterate and NSparse to ensure the PGoal is close to 1, 

unless the Goal-Space is empty. We can also find 

from the formula (1) that the NSparse is mainly to 

control the distance between the Approx-Opt-Plan 

and Opt-Plan, while, the Niterate is mainly to ensure 

the validity of the Approx-Opt-Plan. 

Generally speaking, the MCNHA-SLOS 

transforms the accurate problem solving of 2n scale 

to approximate problem solving of Niterate×NSparse 

scale, and transforms an couldn’t accomplishable 

problem of finding the optimal solution in limited 

time to an accomplishable problem of finding a 

satisfying approximate optimal solution in limited 

time, and is able to control the precision of the 

solving process according to the available 

computing resource and the user’s expectation.  

5 Self-ad-MCNHA-SLOS 

According to a mass of experiments, we find some 

interesting phenomenon. Given a network and a goal, 

if fix the Niterate, the probability of the Approx-Opt-

Plan is nontrivial valid reducing with the NSparse 

increasing; if give NSparse a relative big or tiny value, 

the changing of Niterate has not significant impact on 

the probability of the Approx-Opt-Plan is nontrivial 

valid, however, if give NSparse a suitable value, the 

impact will be significant, and the suitable values of 

the NSparse for different goals are various. 

For a given network and a given goal, the 

probability of a stochastically selected Plan has a 

positive correlation relationship with the 1-density 

of its binary representation, that is, the more 

vulnerabilities of a Plan contains, the higher of the 

probability of the Plan is valid, besides, those valid 

Plans definitely have a 1-density lower bound, since 

the Plan (0)2 is invalid for any goal of any network. 

The increasing of NSparse, actually, is reducing the 

probability of those Min-Plans selected from each 

Sparse-Space, because the cost of a Plan also has a 

positive correlation relationship with the 1-density 

of the Plan’s binary representation. When the NSparse 

becomes big enough, those Min-Plans will be 

invalid with high probability, therefore, the impact 

of the increasing of Niterate to the probability of the 

Approx-Opt-Plan is valid will be insignificant. 

If we could find the suitable NSparse quickly for 

different goals in different networks, it will 

significantly improve the efficiency of the MCNHA-

SLOS, however, the NSparse is a relative stable 

number mainly used to control the computation 

complexity. Fortunately, we find a substitutable way 

to adjust the 1-density of Sparse-Spaces according to 

the history validity statistic of those Min-Plans to 

make sure the sequence of Sparse-Spaces are 

convergent to the Opt-Plan. There are still two 

important problems to address, one is how to 

generate those Sparse-Spaces according to different 

required 1-density, and the other is how to update 

the 1-density according to the history validity 

information of those Min-Plans. Intuition tell us, if 

Min-Plans are valid continuously, we should lower 

the 1-density, while, if Min-Plans are invalid 

continuously, we should increase the 1-density, and 

the lower’s preconditions should be weaker than the 

increase’s, since we want to got the minimum-cost 

valid Plan. 

Based on the above considerations, we proposed 

Self-ad-MCNHA-SLOS shown in Figure 3, 

Compared with the MCNHA-SLOS, it add a special 

function GeneratePlan(density) to generate 

stochastic Plans and a function UpdateDensity() to 

adjust the density dynamically in each iteration, 

where the density is the parameter to control the 1-

density of Plans of GeneratePlan(density) generated, 

and its range is (0,1] and is assigned 0.9 to be its 

initial value. 

 

Figure 3: Pseudo-code of the Self-ad-MCNHA-SLOS. 

GeneratePlan(density) is defined as formula (2). If 

fixed the density to 0.5, it will become Rand(t)%2n 

as in MCNHA-SLOS. 
 

1 2 2( , ) ( ... ) ,

1 ( )%10 10,
,

0 ( )%10 10.

, ( 1) .

n

i

Sparse

GeneratePlan t density x x x

if Rand t density
where x

if Rand t density

where t round N i



 
 

 

   

 

(2) 

 

And we define the UpdateDensity() as formula (3), 

where the upFlag is to record the count of those 

Min-Plans continuously invalid and the downFlag is 

to record the count of continuously valid, and both 

 Begin: 
Approx-Opt-Plan ← 2

n
-1; 

density = 0.9; 

for round = 1 to Niterate; 

 Min-Plan ← Approx-Opt-Plan; 

 for count = 1 to NSparse; 

  Plan = GeneratePlan(density) 

  if( Cost(Plan) < Cost(Min-Plan) ) 

 Min-Plan ← Plan; 

 if( Valid(Min-Plan) ) 

  Approx-Opt-Plan ← Min-Plan; 

 density = UpdateDensity(); 

Output Approx-Opt-Plan; 

End. 

Self-ad-MCNHA-SLOS - A Self-adaptive Minimum-Cost Network Hardening Algorithm based on Stochastic Loose
Optimize Strategy

375



 

 

of them are assigned 0 to be their initial value. 

Where the UpTraction and DownDrang are the 

upper limit of the upFlag and the downFlag 

respectively, if any one of the two variables reached 

its upper limit, the density will be updated according 

to the formula (3), and both of the two variables will 

be assigned 0 again. Generally speaking, the upFlag 

like a traction to increase the density, while the 

downFlag like a drang to lower the density, and the 

direction of the state space searching could be 

dynamically adjusted by suitable UpTraction and 

DownDrang. 
 

, , ,( )

0.1 ,

0.1 .

upFlag UpTraction downFlag DownDrangUpdateDensity

density if upFlag UpTraction

density if downFlag DownDrang

 
 

 

 
(3) 

6 EXPERIMENT 

To testify and evaluate algorithms proposed above, 

we generate simulative networks and build their 

attack graphs using our Network Modeling and 

Demonstrating System (Net-MDs) and Network 

Vulnerability Analyzing System (Net-VAs), as 

Figure 4 and Figure 5 shown. To be concise, we 

assigned every vulnerability’s remedy cost 1, 

therefore, the cost of hardening plan only depend on 

the total vulnerabilities it contains. Besides, as 

shown in Figure 4, the single target refers to the 

server circled by the bold red loop, and the multiple 

targets refers to 4 servers circled by red loops. 

 

Figure 4: Simulative network generated by Net-MDs. 

 

Figure 5: Attack Graph Generated by Net-Vas. 

We designed a series of experiments to analyze 

the parameters of the Self-ad-MCNHA-SLOS for 

finding the best parameter setting principles, and 

compared and evaluated the traits and performance 

of the MCNHA-SLOS and the Self-ad-MCNHA-

SLOS (see Appendix). In the end, We find: 1. 

UpTraction(Niterate/e), DownDrang(1) and NSparse(7) 

are good parameters for Self-ad-MCNHA-SLOS; 2. 

Self-ad-MCNHA-SLOS can significantly improve 

MCNHA-SLOS’s performance. 

We also compared the Self-ad-MCNHA-SLOS 

with (Feng Chen, 2009)’s approximate method 

weighted-Greedy in same environment, since those 

accurate methods aren’t able to deal with large-scale 

network, radically. Due to the complicity of the 

weighted-Greedy is firmed as |C|×|L| for a given 

goal and given n-valid attack path length n, where C 

denotes all of the initial attributes and L denotes all 

of the n-valid attack path, we assign appropriate 

values to Niterate to ensure that Niterate×NSparse 

approximate to |C|×|L| for the purpose of comparing 

the accuracy of the two approximate hardening plans: 

Greedy-Plan and Approx-Opt-Plan. We observe the 

costs of the two approximate plans, respectively, in 

four simulated networks: Net1 with 200 nodes and 

10 vulnerabilities, Net2 with 200 nodes and 20 

vulnerabilities, Net3 with 200 nodes and 30 

vulnerabilities and Net4 with 200 nodes and 40 

vulnerabilities. 

 

Figure 6: Comparison of the Self-ad-MCNHA-SLOS and 

the weighted-greedy. 

As Figure 6 shown, the cost of Greedy-Plan is 

lower than the average cost of Approx-Opt-Plans 

when network scale is small but significant bigger 

when network scale is moderate big. Besides, the 

average cost of Approx-Opt-Plans generated by Self-

ad-MCNHA-SLOS relative stable while the cost of 

Greedy-Plan generated by weighted-Greedy increase 

obviously with the network scale, on condition that 

the Self-ad-MCNHA-SLOS spends equivalent 

computing resource with the weighted-Greedy. The 

above results illustrate that the Self-ad-MCNHA-

SLOS is more efficient than the weighted-Greedy, 

especially when facing large-scale network. 

According to the above experiments, the Self-ad-

MCNHA-SLOS could make those Sparse-Spaces 

converge quickly to the Opt-Plan by adjusting the 

SECRYPT 2012 - International Conference on Security and Cryptography

376



 

 

parameter density, therefore, it could get an Approx-

Opt-Plan very close to the Opt-Plan by limited 

amount of searches in the Plan-Space. The merits of 

high-efficiency, controllable, and asymptotically 

optimal, ensure that it could make full use of 

available computing resource to find possible better 

result, therefore very suitable for large-scale network. 

7 CONCLUSIONS 

In this paper, we proposed the Self-ad-MCNHA-

SLOS to address the MCNH problem using SLOS 

and self-adaptive parameter adjust strategy. It could 

find an approximate optimal hardening plan close 

enough to the optimal hardening plan by limited 

amount of searches, and has the merits of high-

efficiency, controllable and asymptotically optimal, 

therefore, can make full use of available computing 

resource to find possible better result, and is very 

suitable for large-scale network environment. 

Considering the Self-ad-MCNHA-SLOS’ ability of 

transforming NP-hard problem to P-hard iterations, 

we will study the generalization of the algorithm to 

solve more hard problems in future. 

ACKNOWLEDGEMENTS 

This paper is supported by the National High 

Technology Research and Development Program of 

China (863 Program) under Grant 

No.2009AA01Z432, the National Natural Science 

Foundation of China under Grant No.60873215 and 

the Hunan Provincial Natural Science Foundation of 

China under Grant No.s2010J5050. 

REFERENCES 

S. Jha, etc., 2002. Two Formal Analyses of Attack Graphs. 

In CSFW’02, 15th IEEE Computer Security 

Foundations Workshop. 

Steven Noel, etc., 2003. Efficient Minimum-Cost Network 

Hardening Via Exploit Dependency Graphs. In 

ACSAC’03, 19th Annual Computer Security 

Applications Conference. 

Lingyu Wang, etc., 2006. Minimum-Cost Network 

Hardening Using Attack Graphs. Computer 

Communications, Vol. 29, Issue 18, pp. 3812--3824. 

John Homer, etc., 2008. From Attack Graphs to 

Automated Configuration Management - An Iterative 

Approach. Kansas State University Technical Report. 

Feng Chen, etc., 2008. An Efficient Approach to 

Minimum-Cost Network Hardening Using Attack 

Graphs. In IAS’2008, 4th International Conference on 

Information Assurance and Security. 

Laura P. Swiler, etc., 2001. Computer-Attack Graph 

Generation Tool. In DISCEX’01, DARPA Information 

Survivability Conference &Exposition II. 

Oleg Sheyner, etc., 2002. Automated Generation and 

Analysis of Attack Graphs. In S&P’ 02, IEEE 

Symposium on Security and Privacy. 

Paul Ammann, etc., 2002. Scalable, Graph-Based Network 

Vulnerability Analysis. In CCS’02, 9th ACM 

conference on Computer and communications 

security. 

R. P. Lippmann, etc., 2005. Evaluating and Strengthening 

Enterprise Network Security Using Attack Graphs. 

Technical Report, MIT Lincoln Laboratory. 

Xinming Ou, etc., 2005. MulVAL: A logic-based network 

security analyzer. In 14th USENIX Security 

Symposium. 

Xinming Ou, etc., 2006. A scalable approach to attack 

graph generation. In CCS’06, 13th ACM conference on 

Computer and communications security. 

Kyle Ingols, etc., 2006. Practical attack graph generation 

for network defense. In ACSAC’06, 22nd Annual 

Computer Security Applications Conference. 

Feng Chen, etc., 2009. Two Scalable Approaches to 

Analyzing Network Security Using Compact Attack 

Graphs. In IEEC'09, International Symposium on 

Information Engineering and Electronic Commerce.  

Vaibhav Mehta, etc., 2006. Ranking attack graphs. In 

RAID’06, Recent Advances in Intrusion Detection . 

Richard Lippmann, etc., 2007. An interactive attack graph 

cascade and reachability display. In VizSEC ’07, IEEE 

Workshop on Visualization for Computer Security. 

J. Homer, etc., 2008. Improving attack graph visualization 

through data reduction and attack grouping. In 

VizSEC’08, 5th International Workshop on 

Visualization for Cyber Security. 

Zhaohui Fu, etc., 2006. Solving the minimum-cost 

satisfiability problem using sat based branch and 

bound search. In ICCAD’06, International Conference 

on Computer-Aided Design. 

Xiaoyu Li, 2004. Optimization Algorithms for the 

Minimum-Cost Satisfiability Problem. PhD thesis, 

North Carolina State University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Self-ad-MCNHA-SLOS - A Self-adaptive Minimum-Cost Network Hardening Algorithm based on Stochastic Loose
Optimize Strategy

377

http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235624%232006%23999709981%23637654%23FLA%23&_cdi=5624&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6be20928a5a936a293ccb45a73e83dc1
http://portal.acm.org/author_page.cfm?id=81100513501&coll=DL&dl=ACM&trk=0&cfid=30162693&cftoken=16912216
http://www.stormingmedia.us/authors/Lippmann__R__P_.html
http://portal.acm.org/author_page.cfm?id=81100176950&coll=DL&dl=ACM&trk=0&cfid=30162693&cftoken=16912216
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5175054


 

 

APPENDIX 

 

Figure A1: Comparison of DownDrang. 

 

Figure A2: Comparison of UpTraction. 

  

Figure A3: Comparison of ratios. 

  

Figure A5: Comparison of ratios, meticulously. 

  

Figure A4: Comparison of ratios. 

 

Figure A7: Comparison of density. 

  

Figure A6: Comparison of NSparse. 

 

Figure A8: Algorithms comparison. 

 

SECRYPT 2012 - International Conference on Security and Cryptography

378


