
AXIOM: A Model-driven Approach to Cross-platform Application
Development

Xiaoping Jia and Chris Jones
School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL, U.S.A.

Keywords: Model-driven Engineering, Domain-specific Languages, Mobile Application Development.

Abstract: The development and maintenance of mobile applications for multiple platforms is expensive. One approach
to reducing this cost is model-driven engineering (MDE). In this paper, we present AXIOM, a model-driven
approach for developing cross-platform mobile applications. Our approach uses a domain specific language
(DSL) for defining platform-independent models (PIM) of mobile applications. It also defines a multi-phase,
customizable transformation process to convert platform-independent models into native applications for target
mobile platforms. Our approach could significantly reduce the development cost and increase the product
quality of mobile applications. A prototype tool has been developed to demonstrate the feasibility of the
approach. The preliminary findings are promising and show significant gains in development productivity.

1 INTRODUCTION

In recent years, there has been tremendous growth in
the popularity of mobile applications targeting smart
phones and tablets. With the ever-improving capabil-
ities of these devices, mobile applications are becom-
ing increasingly sophisticated and complicated, while
also having to address challenging constraints and re-
quirements, such as responsiveness, limited memory
and low energy consumption. Furthermore, there are
currently several competing mobile platforms on the
market, including Google’s Android and Apple’s iOS.
For mobile application developers, it is highly desir-
able for their applications to run on all major mobile
platforms. Although these competing platforms are
similar in capability, they differ significantly in pro-
gramming languages and APIs, making it expensive
to port a mobile application to different platforms.

An appealing approach to cross-platform develop-
ment is model-driven engineering (MDE). In MDE,
software systems are built by first defining platform-
independent models (PIMs), which capture the com-
positions and core functionalities of the system in a
way that is independent of implementation concerns.
The PIMs are then transformed into platform-specific
models (PSMs), from which the native application
code for each platform can be generated. MDE shifts
the development focus away from writing code (Selic,
2003) and toward the development of models, such as
those in UML and its profiles.

Despite its potential benefits and proven success
in large-scale industrial applications (Object Manage-
ment Group, 2011), MDE faces significant challenges
to its widespread adoption including: limitations of
UML (France et al., 2006; Henderson-Sellers, 2005);
inadequate tool support; model transformation com-
plexity; and apparent incompatibility with popular
Agile software development methodologies such as
eXtreme Programming (XP) and Scrum.

The Agile and MDE approaches to software de-
velopment are each oriented toward different kinds
of software. For example, MDE often targets ma-
ture middleware platforms with widely adopted com-
mon standards such as JEE, .NET, and SOA. In con-
trast, applications developed using Agile techniques
often fit certain well-understood patterns, such as be-
ing web-based and database-driven, and using an n-
tier MVC architecture. It would be beneficial if the
strengths of these two approaches could be combined
and their shortcomings mitigated.

In this paper, we present a novel model-driven ap-
proach to cross-platform mobile application develop-
ment using a domain specific language (DSL), called
AXIOM (Agile eXecutable and Incremental Object-
oriented Modeling). Our approach defines a frame-
work for describing the PIMs, design decisions, and
implementation details of applications. We also pro-
vide tools to carry out the transformation of PIMs into
native implementations across multiple platforms. A
prototype tool has been developed to demonstrate the

24 Jia X. and Jones C..
AXIOM: A Model-driven Approach to Cross-platform Application Development.
DOI: 10.5220/0004022500240033
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 24-33
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



feasibility of the approach. The prototype currently
targets mobile applications in general with an empha-
sis on the Android and iOS platforms in particular.

2 APPROACHES TO
PLATFORM-INDEPENDENCE

Platform-independence is not a new goal and the cost
savings that can be realized through such indepen-
dence have long been recognized. The advent of high-
level languages signified an early means of provid-
ing such platform-independence through the use of
greater abstractions. Languages such as C and C++
were only partially successful in achieving platform-
independence because of the decision to leave some
runtime aspects of the language, such as integral
datatype sizing (Kernighan and Ritchie, 1988; El-
lis and Stroustrup, 1990), up to compiler providers.
This allowed the same source code to be compiled for
many different target platforms, but did not guarantee
that all of the runtime semantics would be consistent
across those platforms.

Languages based on virtual machines (VMs), like
Java (Gosling et al., 2000), provide true platform-
independence by specifying a well defined, standard-
ized runtime environment. Higher-level languages
are converted into VM instructions, which are then
executed on the target platform using the native in-
struction set. Because both the language and the VM
are governed by specifications the behavior of the ap-
plication across different platforms tends to be more
consistent than when using languages without such
comprehensive specifications.

The combination of high-level languages with a
standardized runtime environment provides a power-
ful foundation on which platform-independent appli-
cations can be built. This approach can be further re-
fined through the use of domain-specific languages
(DSLs), which expose domain-specific concepts to
developers, thus providing a high level of abstrac-
tion and expressiveness within that domain. DSLs
are available for specific domains like mobile and
web development. Figure 1 describes several differ-
ent ways in which DSLs, VMS and native instructions
can interact.

DSLs can be external, meaning that their syntax is
not the same as the host language, or internal, where
they share the host language. This flexibility allows
for DSLs that can be transformed into higher-level
languages, directly into VM instructions, or even into
native code for the target platform. DSLs based on
languages like Ruby or Groovy are internal and ul-
timately generate high-level language code based on

Figure 1: Approaches to platform-independence.

the host language. The benefit to this approach is that
the DSL can take advantage of the power of its host
language, including its compiler and associated opti-
mizations.

A second approach is to provide a DSL that ul-
timately produces native VM instructions. This pro-
vides a mechanism that allows for the power of a DSL
along with potential optimizations for a particular VM
instruction set. However, the process of converting
the DSL code into VM instructions involves the same
effort as writing a compiler, potentially making it a
more expensive approach than allowing the DSL to
produce high-level language code for which a com-
piler already exists.

A third approach is to use a DSL that produces na-
tive code for the target platform. The same drawbacks
exist for this approach that exist for the conversion to
VM instructions. However, done well, the potential
power and optimizations realized by converting di-
rectly to the native instruction set can prove valuable.
This approach may also be used when few, if any,
compilers exist for a target platform, such as might
be the case with specialized hardware or chipsets.

3 UML AS A BASIS FOR MDE

DSLs have also been used in the form of model-
ing notations, the best-known of which is UML (Ob-
ject Management Group, 2010), which, along with
OCL (Object Management Group, 2003b), seeks to
provide a common language for describing software
models. The Object Management Group’s (OMG)
approach to model-driven engineering, MDA (Object
Management Group, 2003a), relies on UML mod-
els that are then consumed and transformed into ex-
ecutable code.

Unfortunately, MDE in general and MDA in par-
ticular, has not seen the same industry adoption rates
as Agile approaches like XP or Scrum. Some reasons
for this may include:

� A lack of adequate tool support in creating, main-
taining and understanding the complex models
derived from UML and related OMG standards.
Visual models make complex structures compre-

AXIOM:�A�Model-driven�Approach�to�Cross-platform�Application�Development

25



hensible, but are difficult and time consuming to
create and maintain without strong tool support.

� The difficulty in the interchange of visual models
across different tools using the XMI (Object Man-
agement Group, 2007) standard for UML inter-
change. One study of some of the most commonly
used UML tools showed that the success rate of
attempted model interchanges amongst these tools
was less than 5% (Lundell et al., 2006).

� The lack of executability in UML models leads to
long development cycles. UML models are thus
ill-suited for Agile development processes and are
generally used only for heavyweight processes.

� A lack of modeling resources comparable to the
extensive frameworks and libraries available to
Agile approaches. Most models must be de-
veloped from scratch rather than being built on
known, proven, and previously adopted solutions.

4 AXIOM: DSL-BASED MDE

We propose to leverage the power of a DSL based on
the dynamic language, Groovy, to provide a new ap-
proach to model-driven engineering. Our approach
is called AXIOM (Agile eXecutable and Incremental
Object-oriented Modeling). AXIOM retains the key
elements of MDE such being model-centric and us-
ing using transformations to convert the models into
executable code, but differs in the specifics. Whereas
MDA relies on MOF (Object Management Group,
2006) metamodels to facilitate the transformation of
UML models into executable code, AXIOM instead
provides a modeling DSL written in a dynamic lan-
guage. AXIOM supports a limited subset of UML in
the form of class diagrams and state charts as a means
if visualizing the DSL models. This allows it to main-
tain some of the most powerful aspects of MDD such
as model visualization, while also being easily acces-
sible to existing designers and developers who are fa-
miliar with UML and its notation.

AXIOM uses the dynamic language, Groovy, as
its core modeling language and defines a DSL specif-
ically for modeling mobile applications. The DSL
provides an abstraction of the features and capabilities
supported by the Android and iOS platforms. The aim
of the DSL is to provide an abstract way of accessing
the complete native API of each platform, and not just
a limited subset of the API (often known as the low-
est common denominator). By using a DSL, AXIOM
also allows platform-independent models to be exe-
cutable. This shortens development time and allows
for the early detection and remediation of errors and

anomalies. Because AXIOM is Groovy-based, it has
access to a rich set of modeling elements and frame-
works that UML alone does not provide.

AXIOM supports customizable model transfor-
mations and code generation. It permits both kinds
of MDE: completely generative, where all of the
code comes from the model, and partially generative,
where nearly complete code is generated with some
parts to be completed manually. The model transfor-
mations can be customized through the use of annota-
tions on the model as well as developer-customizable
code templates for patterns and idioms. The aim is to
allow the generated code to be optimized for perfor-
mance and other quality requirements through tech-
niques supported by native platforms including multi-
threading, memory management, and application life-
cycle management.

It should be noted that while we emphasize the
development of mobile applications for our initial re-
search and in this paper, AXIOM is by no means lim-
ited to such applications. As we will see, AXIOM’s
basic DSL-centric approach is suited to a variety of
applications.

5 AXIOM INTENT MODELS

Applications are first defined as platform-independent
intent models using AXIOM’s DSL. Intent models de-
scribe the core functions, user interfaces, and interac-
tions of the application in a way that is completely de-
void of references to implementation-specific aspects
of any platform. The intent model is composed of
two core perspectives: the interaction perspective, vi-
sualized using UML state diagrams, and the domain
perspective, visualized using UML class diagrams.

Consider a simple application that associates users
with roles, perhaps as part of a broader application
security component. We want the ability to associate
each user with multiple roles, from which they will
ultimately derive their application privileges. To pro-
vide these capabilities we must be able to manage
both user and role information as well as manage the
associations of users to roles. In the next few sections
we examine how AXIOM represents the key elements
of this simple application.

5.1 Interaction Perspective

The interaction perspective describes the user inter-
face and the application’s behavior in response to user
and system events. Figure 2 shows the interaction
perspective of our simple application with the corre-
sponding AXIOM DSL shown in Figure 3.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

26



Figure 2: Graphical depiction of interaction perspective.

app(name:’Configure User Role’) {
def roles = [ ... ]
def users = [ ... ]

ListView(id:user) {
roles.each {role -> Section(title:role) {
users.findAll{it.role == role}.each {
user -> Item(text:user.name,
next: [event:Selection,
target:detail, data:user])}}}

}

View(id:detail, title:’User Details’) {
entry(data) = {user = data}
Panel(orientation:’horizontal’) {
Label(text:’Name’)
Text(id:name_value,text:data.name)

}
Panel(orientation:’horizontal’) {
Label(text:’Roles’)
Selection(id:role_value,
options:roles, selected:user.role)

}
Panel(orientation:’horizontal’) {
Button(id:btn_cancel, text:’Cancel’,
next:[event:Click, target:user])

Button(id:btn_save, text:’Save’,
next:[event:Click, target:user,
guard:isValid(), action: {
user.name = name_value.text
user.role = role_value.selected

}])
}

}
}

Figure 3: Partial DSL of interaction perspective.

The interaction perspective defines the composition
of the two screens. The first screen is a list view with
several sections. The names ListView, Section, and
Item in the model refer to the UI elements. The sec-
ond screen is a view containing several types of logi-
cal UI controls including labels, buttons, a text field,
and a selection. The logical UI controls in the in-
tent model only define their intended functions and
not the actual widgets that implement these functions.

Figure 4: Graphical depiction of domain perspective.

@Entity
class User {
String username
String password

@Relation
hasMany = [memberOf : Role];

}

@Entity
class Role {
String name

@Relation
hasMany = [member : User];

}

Figure 5: Partial DSL of domain perspective.

The names View, Panel, Label, Button, Text, and
Selection in the model also refer to the UI elements.
Each view in the UI corresponds to a state in the in-
teraction model. Transitions are defined as the next
attribute of the UI control that triggers the transition.
Optional guard conditions and actions can also be de-
fined on the transitions.

5.2 Domain Perspective

The domain perspective describes business entities.
These are typically persistent and are transferred and
referenced among different parts of the application.
Figure 4 shows the domain perspective for our simple
example with the corresponding AXIOM DSL shown
in Figure 5.

AXIOM’s domain perspective is defined using a
notation that is based on the GORM (Rocher et al.,
2009) framework. GORM provides for persistence
and relationship management between persistent ob-
jects. This makes it suitable for defining both stan-
dalone domain objects as well as for incorporating
persistence when required.

Each entity describes the properties and relation-
ships of a domain object. This allows for the precise
definition of the entity’s properties. GORM supports
both field and cross-field validations on its properties
although we have not yet incorporated that notation
into AXIOM.

Entities can also have relationships, indicated by
the @Relation annotation. The nature of each rela-

AXIOM:�A�Model-driven�Approach�to�Cross-platform�Application�Development

27



tionship is used to manage the lifecycle and validation
required to maintain it. Each such relationship defines
a role name, which is used to define additional proper-
ties of the entity, as well as its cardinality and naviga-
bility. Cardinality is reflected using single- or multi-
valued properties defined using GORM’s hasOne and
hasMany property names respectively. Navigability is
defined by the presence or absence of a property that
allows for navigation to the reciprocal entity in the re-
lationship. In this example each entity has a reference
to the other associated with its hasMany property, in-
dicating that these entities support bi-directional nav-
igability.

We assume that any class annotated by @Entity
will be persisted although the precise persistence
mechanism is not encoded within the model. That de-
cision will be made during the structural transforma-
tion phase of the AXIOM’s transformation process.

5.3 Intent Models and Transformations

Intent models are declarative and capture the intent of
applications completely. They are also executable for
the purpose of demonstration and validation. How-
ever, intent models must be informed by additional
decisions in order to produce high quality and finished
applications:

� Structural. These include architecture and de-
sign decisions such as choice of platform, lan-
guage, framework, API; the use of architecture
and design patterns and implementation idioms
and related techniques. These decisions typically
have a significant impact on the code that is ulti-
mately generated as well as on the organization of
that code. This is particularly true when a multi-
tier architecture is desired or when specific non-
functional requirements must be satisfied. Struc-
tural transformations are discussed in more detail
in Section 6.1.

� Refining. These include decisions about vari-
ous aspects of the application such as styles and
themes. This might also include intra-class deci-
sions such as algorithm selection. In general these
decisions, while significant, do not have as great
an impact on the generated code as the structural
decisions although they can certainly affect how
well the finished application meets its require-
ments. Refining transformations are discussed in
more detail in section 6.2.

Structural and refining decisions almost always af-
fect the platform-specific model. While structural de-
cisions typically have a much broader impact on the
finished application than refining decisions, they both

Figure 6: AXIOM transformation process.

Figure 7: Evolution of AXIOM AMTs.

serve to narrow the range of possible implementations
that meet the functional, non-functional and platform
needs. All structural and refining decisions are made
during the transformation process.

6 AXIOM TRANSFORMATION
PROCESS

A critical component of MDE is model transforma-
tion, which converts the abstract PIM of an applica-
tion into executable code. The structural and refin-
ing decisions are introduced during AXIOM’s three-
phase transformation process that includes: structural
transformation, refining transformation, and code
generation as shown in Figure 6.

All AXIOM models are represented as abstract
model trees (AMTs) corresponding to the logical
structure and elements of the models. For example,
each UI view and logical UI control in the intent
model is represented as a node in the AMT. The AMT
is similar to an AST, but allows for cross-node rela-
tionships and references. Each node in the AMT sup-
ports attributes both in the form of simple name-value
pairs as well as more complex types such as collec-
tions and closures.

Each phase in an AXIOM model transformation
reconfigures the AMT. Figure 7 illustrates the changes
introduced by each phase of the transformation pro-
cess.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

28



6.1 Structural Transformations

The structural transformation phase applies architec-
ture and design rules to the intent model and may alter
both the structure of the AMT as well as the attributes
of its nodes. This yields a new AMT that can be struc-
turally different from the original intent model. Struc-
tural decisions often impact the macro-organization
of the components in the application and their in-
teractions. The structural transformations are rule-
based and generally reusable. The result of the struc-
tural transformation is a design model that is function-
ally isomorphic to the original intent model, but that
also defines the macro-organization of the application
driven by the platform-specific technology and API.
The design model can be mapped to a design of the
application with the modules, classes and their rela-
tions determined.

Some common examples of structural decisions
include target language and platform, framework se-
lection, and code distribution. Thus transforming the
intent model into an iOS-based mobile application
will yield very different code than transforming it into
a JEE-based web application. Similarly, the decision
for a web application to run within a single JEE con-
tainer will yield different code than one that will be
deployed into different physical tiers.

6.2 Refining Transformations

During the refining transformation phase, the struc-
ture of the design model AMT is preserved but the
attributes of the nodes may be changed. This re-
sults in an output tree that is not only function-
ally isomorphic to the original intent model, but that
is also structurally isomorphic to the design model.
Refining transformations decorate the design model
with additional platform-specific elements to address
intra-class, micro-organizational decisions. The re-
sulting implementation model maintains the macro-
organization of the design model, but includes all the
necessary details needed to generate high quality, effi-
cient code. The decorations applied during the refin-
ing transformation phase are usually not application
specific, and are highly reusable.

Examples of refining transformations include al-
gorithm selection, visual layout and theme. This
means that while it may be a functional requirement
that a given list of items be sortable, we can refine the
approach to emphasize the characteristics of one sort
algorithm over another. This becomes critical when
we consider that we must make different time-space
tradeoffs based on the target platform.

6.3 Code Generation

During the code generation phase, the implementa-
tion model is converted into native source code for
the target platform. Code generation is based on a
set of platform-specific templates that are application-
independent and reusable. The code generation is
completely automated and highly customizable.

7 BENEFITS

AXIOM has several notable benefits for software
development. First, the DSL provides higher lev-
els of abstraction that enable the construction of the
platform-independent intent models while also per-
mitting a high degree of expressiveness. Because the
DSL is written in Groovy, modelers gain instant ac-
cess to existing Java-based frameworks and libraries,
which saves the effort that would otherwise be re-
quired to model them. The DSL also grants the AX-
IOM intent models a degree of executability that fa-
cilitates rapid development and verification, an ap-
proach that aligns perfectly with the principles of
modern Agile approaches, which emphasize a rapid
turnaround from concept to completion.

Second, the fact that AXIOM is encoded in a tex-
tual model rather than a graphical one ensures a de-
gree of tool independence; all that is required is a text
editor. Related problems such as concurrent model
development, model versioning, and model merging
can be addressed through existing source code con-
trol systems.

Third, even though the models look more like a
programming language, AXIOM supports a limited
subset of UML models, thus retaining some of the vi-
sual expressiveness of UML.

Finally, the AXIOM transformation rules and tem-
plates can be used across entire families of applica-
tions and technologies rather than being specific to
a particular application domain as is often the case
with many model compilers. In addition, while many
model compilers are “black box” in the sense that a
change to the generated code often requires a change
to the compiler’s code, AXIOM attempts to take a
“white box” approach by externalizing the various
transformation rules and templates. This approach al-
lows for the reuse of the templates and transformation
rules across different applications rather than binding
them to only a single application.

AXIOM also has some limitations. First, AXIOM
only honors a subset of the available UML diagrams,
specifically class diagrams and state charts. Other
UML diagrams may provide additional benefits, but

AXIOM:�A�Model-driven�Approach�to�Cross-platform�Application�Development

29



Figure 8: Screen shots of generated application on iOS.

are currently unrecognized. Second, AXIOM cannot
easily make up for the limitations of a given platform,
a challenge for any MDE approach. Finally, AXIOM
deviates from the standard OMG definition of MDA
by using a DSL for its representation rather than a
MOF-based metamodel.

8 THE PROTOTYPE AND
PRELIMINARY RESULTS

A proof-of-concept prototype tool has been devel-
oped to demonstrate the feasibility of AXIOM. The
prototype targets two popular mobile platforms: An-
droid and iOS. AXIOM models can be transformed
into native implementations in Java for Android
and Objective-C for iOS. The generated application
source code is then compiled using the native SDKs
on the target platform to produce executable appli-
cations. The design of the generated code follows
the common MVC architecture. Figure 8 shows the
screen shots of the iOS application generated from the
sample application described in Figure 2. An Android
implementation can also be generated.

Using the prototype tool, we conducted prelimi-
nary analyses to assess the effectiveness of AXIOM.
Using a small set of working examples (n = 29), we
compared the sizes of the AXIOM intent models and
the generated source code on both iOS and Android
platforms. Our assumptions are that: a) developer
productivity measured in lines-of-code per person-
hour (LOC/PH) is roughly constant regardless of lan-
guages used; and b) the native applications produced
by the prototype tool are comparable in size and com-
plexity to the same applications developed manually.
An admittedly subjective review of the code gener-
ated by AXIOM is that it is consistent with industry
best-practices such as separation of concerns and the

corresponding creation of appropriate abstraction lay-
ers.

Under these assumptions the reduction in the size
of the AXIOM intent models compared to the size of
the generated applications would translate into a sig-
nificant reduction in development time, hence an in-
crease in development productivity. Based on our pre-
liminary studies, shown in Table 1, the median size (in
LOC) of the AXIOM intent models is 7% of the size
of the generated applications for Android and about
10% of the size of the generated applications for iOS.

Similarly, Kennedy’s relative power met-
ric (Kennedy et al., 2004), rL, also based on LOC,
measures the impact of AXIOM on developer pro-
ductivity. Kennedy’s relative power metric is given
by:

rL =
IN(P)
IA(P)

(1)

where IN and IA are the lines of native and AX-
IOM code respectively that are required to implement
application P.

These early results suggest a potentially signif-
icant increase in productivity when compared with
manually developed applications using standard de-
velopment tools on native mobile platforms.

9 RELATED WORK

9.1 Model-driven Engineering

There are different approaches to MDE. Some of
these closely follow the MDA standard while others
amend either the MDA process or its deliverables.

AndroMDA (Bohlen et al., 2003) is an open-
source, UML-based, template-driven MDA frame-
work. It accepts UML models in an XMI format and
uses them for code generation. AndroMDA is not a
modeling environment and is thus limited by the qual-
ity of the XMI output produced by other tools.

The Eclipse Foundation provides UML-based
technologies that support MDD in terms of both
model construction and model transformation. These
projects include Generative Modeling Technologies
(GMT) (The GMT Team, 2005) and the ATL Trans-
formation Language (ATL) (The ATL Team, 2005).

Executable UML (xUML) is an approach to
software development that uses UML models as
the primary mechanism by which applications are
built (Mellor and Balcer, 2002). Like AXIOM, xUML
advocates the benefits of UML executability. One sig-
nificant challenge of xUML is that the process of writ-
ing a model compiler may require as much effort as

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

30



Table 1: LOC of intent model vs. generated code.

(n = 29) AXIOM iOS Android AXIOM as % of rL compared to
iOS Android iOS Android

Median 19.5 168.0 279.0 10.3 7.0 8.6 14.3

Average 27.2 222.1 328.5 11.5 7.7 8.2 12.1

Minimum 8.0 126.0 77.0 5.8 3.2 15.8 9.6

Maximum 98.0 539.0 646.0 31.9 15.2 5.5 6.6

producing the original models. There are examples
of publicly available xUML compilers such as xUml-
Compiler (xUML Compiler, 2009), but each compiler
targets a specific set of technologies for its code gen-
eration processes.

There have also been attempts to introduce
more formalism into MDE. Examples include Al-
loy (Jackson, 2002), UML Specification Environ-
ment (USE) (Gogolla et al., 2007; Kuhlmann and
Gogolla, 2008), Z (Clarke et al., 1996; Hamil-
ton et al., 1995) and its object-oriented extensions
like MooZ (Meira and Cavalcanti, 1990), Object-
Z (Smith, 2012), OOZE (Alencar and Goguen, 1991),
Z++ (Lano, 1991), and ZEST (Cusack and Rafsan-
jani, 1992).

The overall process of MDE has also been ex-
amined for ways to improve on its ability to deliver
applications. Continuous Model Driven Engineering
(CMDE) as defined by eXtreme model-driven design
(XMDD) (Margaria and Steffen, 2008) uses process
modeling as its means of eliciting the necessary re-
quirements and behavior. Agile Model Driven Devel-
opment (AMDD) (Ambler, 2009) shares the notations
and tools commonly used in MDD but retains code as
the central focus of the development effort. AMDD
has been executed in combination with the MIDAS
framework (Cáceres et al., 2004; Cáceres et al., 2003)
as a means of implementing web-based applications.

Each of these approaches takes a slightly different
approach to MDE and thus has its own challenges.
Many of the approaches are deeply rooted in UML
and thus suffer from UML’s shortcomings including
the lack of first-class support for UI design. Ap-
proaches that rely on the creation of custom model
compilers or transformations simply shift the devel-
opment burden from the application and its models
to the transformation framework. Most formal ap-
proaches were never designed for MDE and thus do
not provide true model executability. Approaches that
change the overall MDD process either lose model-
centricity or are rooted in notations that deviate from
mainstream UML.

AXIOM encourages the development of exe-
cutable models using a DSL that supports interac-

tion, UI and domain design while also retaining the
widely adopted graphical notation associated with
UML class and state diagrams.

9.2 DSL-based Development

One approach for cross-platform mobile application
development is to use languages and virtual machines
that are common across different platforms, such as
HTML and While this approach is adequate for cer-
tain types of applications, it has known shortcomings
and limitations. Canappi (Convergence Modelling
LLC., 2011) uses a DSL to define and generate cross-
platform mobile applications as front-ends to web ser-
vices. Unlike AXIOM, it allows neither access to na-
tive APIs nor customizable code generation.

WebDSL and Mobl (Visser et al., 2010; Hammel
et al., 2010) are two DSLs that target web and mo-
bile applications specifically. WebDSL is similar to
Ruby’s Rails and Groovy’s Grails in that it allows for
the rapid development of applications using a custom
DSL. However, neither Mobl nor WebDSL addresses
the model-driven aspect of the development process.
Thus while the DSL code may indeed be ultimately
transformed into executable code, the models them-
selves are not executable and are not considered major
artifacts of the software development process.

AXIOM is partly based on the ZOOM (Liu and
Jia, 2010; Jia et al., 2007; Jia et al., 2008) project as
well as on OMG’s MDA. AXIOM retains some key
parts of UML, such as state and class diagrams, but
unlike MDA, AXIOM defines a domain-specific mod-
eling notation and a transformation framework that is
not based on MOF.

10 FUTURE WORK

Our research into the AXIOM approach is in its early
stages yet, but the preliminary results are promising.
We intend to continue refining the approach so that it
can work with even more complex models. One key
area of work that remains is the further development

AXIOM:�A�Model-driven�Approach�to�Cross-platform�Application�Development

31



of the rule-based transformations and the associated
templates. In particular these transformations must
be able to handle cases where given functionality is
supported to different extents on different platforms.
Some of those challenges have already been encoun-
tered and addressed in the user interface, but other
such challenges remain such as the implementation
of persistence.

Another area that remains to be addressed is the
introduction of non-functional requirements into the
models and the various decisions that advise the struc-
tural and refining transformations. Such architectural
concerns are central to the ability to model and trans-
form an application for a particular platform. For ex-
ample, it would be desirable for the model transfor-
mations to choose algorithms that are appropriate for
each target platform’s memory and persistent storage
characteristics.

These enhanced models will be used to drive com-
parative experiments to determine if the early bene-
fits seen in the preliminary results continue to man-
ifest as the scale and complexity of the applications
increases, particularly in the areas of developer pro-
ductivity, generated source code quality, and the run-
time performance, efficiency and defect densities of
the executable application.

11 CONCLUSIONS

AXIOM is a model-driven approach for developing
high quality, cross-platform applications. We have
successfully demonstrated its feasibility in develop-
ing cross-platform mobile applications for Android
and iOS platforms. AXIOM uses a DSL to provide
a high level abstraction of mobile platforms. Applica-
tions are represented as intent models using the DSL
and are then augmented with structural decisions and
refined with other platform-specific elements during a
multi-phase transformation process to produce source
code for native applications.

The potential benefits of AXIOM include signif-
icant cost savings in software development owing to
dramatic increases in productivity. AXIOM supports
executable models, which enable iterative and incre-
mental development and allow early validation of the
applications. Product quality can be significantly im-
proved due to the reduced amount of hand-written
code. The highly customizable transformation pro-
cess offers a high degree of control over code genera-
tion.

Our preliminary findings in terms of the potential
gains in productivity are promising. We intend to fur-
ther enhance the prototype tool to provide more com-

prehensive support of mobile platforms. This will en-
able us to conduct more extensive comparative stud-
ies and experiments using AXIOM. We plan to collect
and analyze data in a number of different aspects, in-
cluding developer productivity, the source code qual-
ity of generated applications, and the performance, ef-
ficiency and defect density of generated applications.

REFERENCES

Alencar, A. J. and Goguen, J. A. (1991). OOZE: An object
oriented Z environment. In ECOOP’91, pages 180–
199.

Ambler, S. (2009). Agile model driven
development (AMDD): The key to
scaling agile software development.
http://www.agilemodeling.com/essays/amdd.htm/.

Bohlen, M., Brandon, C., et al. (2003). AndroMDA.
http://www.andromda.org/docs/index.html.

Cáceres, P., Daz, F., et al. (2004). Integrating an Agile Pro-
cess in a Model Driven Architecture.

Cáceres, P., Marcos, E., et al. (2003). A mda-based ap-
proach for web information system development. In
Proceedings of Workshop in Software Model Engi-
neering.

Clarke, E. M., Wing, J. M., et al. (1996). Formal methods:
state of the art and future directions. ACM Computing
Surveys, 28:626–643.

Convergence Modelling LLC. (2011). Canappi.
http://www.canappi.com/.

Cusack, E. and Rafsanjani, G.-H. B. (1992). Zest. In Ob-
ject Orientation in Z, Workshops in Computing, pages
113–126. Springer.

Ellis, M. A. and Stroustrup, B. (1990). The Annotated C++
Reference Manual. Addison Wesley.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.
(2006). Model-driven development using UML 2.0:
Promises and pitfalls. Computer, 39(2):59–66.

Gogolla, M., Büttner, F., et al. (2007). USE: A UML-Based
Specification Environment for Validating UML and
OCL. Science of Computer Programming, 69:27–34.

Gosling, J., Joy, B., et al. (2000). The Java Language Spec-
ification, 2nd Edition. Addison Wesley.

Hamilton, D., Covington, R., et al. (1995). Experiences in
applying formal methods to the analysis of software
and system requirements. Industrial-Strength Formal
Specification Techniques, Workshop on, 0:30.

Hammel, Z., Visser, E., et al. (2010). mobl: the new lan-
guage of the mobile web. http://www.mobl-lang.org/.

Henderson-Sellers, B. (2005). UML - the good, the bad or
the ugly? perspectives from a panel of experts. Soft-
ware and System Modeling, 4(1):4–13.

Jackson, D. (2002). Alloy: a lightweight object mod-
elling notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

32



Jia, X. et al. (2007). Executable visual software model-
ing:the ZOOM approach. Software Quality Journal,
15(1).

Jia, X., Liu, H., et al. (2008). A model transforma-
tion framework for model driven engineering. In
MSVVEIS-2008, Barcelona, Spain.

Kennedy, K., Koelbel, C., et al. (2004). Defining and mea-
suring the productivity of programming languages.
The International Journal of High Performance Com-
puting Applications, (18)4, Winter, 2004:441–448.

Kernighan, B. and Ritchie, D. (1988). The C Programming
Language, 2nd Edition. Prentice Hall.

Kuhlmann, M. and Gogolla, M. (2008). Modeling and
Validating Mondex Scenarios Described in UML and
OCL with USE. Formal Aspects of Computing,
20(1):79–100.

Lano, K. (1991). Z++, an object-orientated extension to
z. In Proceedings of the Fifth Annual Z User Meeting
on Z User Workshop, pages 151–172, London, UK.
Springer-Verlag.

Liu, H. and Jia, X. (2010). Model transformation using a
simplified metamodel. In Journal of Software Engi-
neering and Applications, pages 653–660.

Lundell, B., Lings, B., et al. (2006). UML model inter-
change in heterogeneous tool environments: An anal-
ysis of adoptions of XMI 2. In MoDELS 2006, Gen-
ova, Italy, pages 619–630.

Margaria, T. and Steffen, B. (2008). Agile it: Thinking
in user-centric models. In Margaria, T. and Steffen,
B., editors, ISoLA, volume 17 of Communications in
Computer and Information Science, pages 490–502.
Springer.

Meira, S. R. L. and Cavalcanti, A. L. C. (1990). Modu-
lar Object-Oriented Z Specifications. In Nicholls, J.,
editor, Z User Workshop, Workshops in Computing,
pages 173 – 192, Oxford - UK. Springer-Verlag.

Mellor, S. J. and Balcer, M. J. (2002). Executable UML: A
Foundation for Model-Driven Architectures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA. Foreword By-Ivar Jacoboson.

Object Management Group (2003a). MDA guide.
http://www.omg.org/mda.

Object Management Group (2003b). UML 2.0 OCL.
http://www.omg.org/docs/ad/03-01-07.pdf.

Object Management Group (2006). OMG’s MetaObject Fa-
cility. http://www.omg.org/spec/MOF/2.0/PDF/.

Object Management Group (2007). XML
model interchange (XMI), version 2.11.
http://www.omg.org/spec/XMI/2.1.1/.

Object Management Group (2010). Unified Modeling Lan-
guage. http://www.omg.org/spec/UML/2.3/.

Object Management Group (2011). Success stories.
http://www.omg.org/mda/products success.htm/.

Rocher, G., Ledbrook, P., et al. (2009). GORM -
standalone GORM. http://www.grails.org/GORM+-
+StandAlone+Gorm.

Selic, B. (2003). The pragmatics of model-driven develop-
ment. IEEE Software, 20(5):19–25.

Smith, G. (2012). Object-Z.
http://itee.uq.edu.au/ smith/objectz.html.

The ATL Team (2005). ATL Transformation Language.
http://eclipse.org/atl/.

The GMT Team (2005). GMT Project.
http://www.eclipse.org/gmt/.

Visser, E. et al. (2010). WebDSL. http://webdsl.org/home.
xUML Compiler (2009). xUML Compiler- Java Model

compiler Based on “Executable UML” profile.
http://code.google.com/p/xuml-compiler/.

AXIOM:�A�Model-driven�Approach�to�Cross-platform�Application�Development

33


