
A Survey of Infeasible Path Detection

Sun Ding, Hee Beng Kuan Tan and Kai Ping Liu
Division of Information Engineering, Block S2, School of Electrical & Electronic Engineering,

Nanyang Technological University, Nanyang Avenue, 639798, Singapore, Singapore

Keywords: Survey, Path Infeasibility, Symbolic Evaluation, Program Analysis, Software Testing.

Abstract: A program has many and usually an infinite number of logic paths from its entry point to its exit point. Each
execution of the program follows one of its logic paths. Regardless of the quality of the program and the
programming language used to develop it, in general, a sizable number of these paths are infeasible — that
is no input can exercise them. Detection of these infeasible paths has a key impact in many software
engineering activities including code optimization, testing and even software security. This article reviews
methods for detecting infeasible paths and proposes to revisit this important problem by considering also
empirical aspect in conjunction to program analysis.

1 INTRODUCTION

Control flow graph (CFG) is the standard model to
represent the execution flow between statements in a
program. In the CFG of a program, each statement is
represented by a node and each execution flow from
one node to another is represented by a directed
edge, where this edge is out-edge of the former node
and the in-edge of the latter node. Each path through
the CFG from the entry node to the exit node is a
logic path in the program. In order for an execution
to follow a path in the CFG, the input submitted to
the program must satisfy the constraint imposed by
all the branches that the path follows. An infeasible
path is a path in the CFG of a program that cannot
be exercised by any input values. Figure 1 shows an
infeasible path p = (entry, 1, 2, 3, 4, 5, 6, exit) in a
CFG. This is because we cannot find any input x
satisfying x ≥ 0 and x < 0 jointly.

The existence of infeasible paths has major
impact to many software engineering activities.
Code can certainly be optimized further if more
infeasible paths can be detected during the process
of optimization. In software testing, the structural
test coverage can be much accurately computed if
infeasible paths can be detected more accurately. In
the automated generation of structured test cases,
much time can be saved if more infeasible paths can
be detected. In code protection, it can also help in
code deobfuscation to identify spurious paths
inserted during obfuscation. In software verification,

detecting and eliminating infeasible paths will help
to enhance the verification precision and speed.
There are many more areas like security analysis
(Padmanabhuni and Tan, 2011), web application
verification (Liu and Tan, 2008, 2009), database
application design (Ngo and Tan, 2008) that can be
helped by the detection of infeasible paths.

To detect infeasible paths in real programs, one
needs to deal with complex data structures and
dependency. Additional effort is required to formally
present them in symbolic expressions or constraints
for further verification by heuristics, predefined
rules or even standard theorem provers. If the
verification returns negative results (e.g.: “Invalid”
answer from theorem provers), the path is then
considered as infeasible. Such verification model is
undecidable in general. But it is still possible to have
practical approaches that are not theoretically
complete to detect infeasible paths.

The purpose of this article is to familiarize the
reader with the recent advances in infeasible paths
detections and its related applications. Concepts and
approaches will be introduced informally, with
citations to original papers for those readers who
preferring more details. Information about tools and
implementation is also introduced. The paper is
organized as below: the literals for infeasible paths
detection is reviewed in section2. Information of
tool implementation is introduced in section 3. We
discussed remaining problems and future challenges
in section4. Section 5 summarizes the entire paper.

43Ding S., Beng Kuan Tan H. and Ping Liu K..
A Survey of Infeasible Path Detection.
DOI: 10.5220/0003986400430052
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 43-52
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: An infeasible path.

2 DETECTION OF INFEASIBLE
PATH

During software developing or testing, infeasible
path detection usually appears as an essential step
for the final project goal. A variety of methods have
been proposed. Based on the ways that they detect
infeasible paths, we classify them into six types: (1)
data flow analysis; (2) path-based constraint
propagation; (3) property sensitive data flow
analysis; (4) syntax-based approach; (5) infeasibility
estimation; (6) generalization of infeasible paths.
These methods differ in their detection precision,
computational cost and relevantly suitable
applications. We review these methods by
introducing their main features, strength and
weaknesses and the related applications.

2.1 Data Flow Analysis

Classic Data flow analysis is a technique over CFG
to calculate and gather a list of mappings, which
maps program variables to values at required
locations in CFG. Such list of mappings is called
flow fact. A node with multiple in-edges is defined
as a merge location, where flow facts from all of its
predecessor nodes are joined together. Due to the
joining operation, a variable may be mapped to a set
of values instead of a single value. If a node has
multiple out-edges (predicate node), each of these
out-edges is defined as a control location. Flow fact

is split and traversed to the successor nodes at
control locations. Due to the splitting operation, a
variable may be mapped to an empty set of values
(Khedker et al., 2009).

Figure 2: Infeasible path detection with data flow analysis.

Data flow analysis is a common approach for
detecting infeasible paths. In this type of approach,
each control location would be checked when they
are traversed. An infeasible path is detected when
any variable is mapped to an empty set of values at a
control location. In Figure 2, suppose we only
consider the flow fact about variable sum. Here sum
is an integer variable initialized as 0. Therefore the
flow fact is initialized as [0, 0] after node1. The
flow fact is traversed transparently through node2,
node3 and reaching node5, after which it is split as
two: one as [0, 0] flowing to node6 and the other as
an empty set flowing to node7. It is then concluded
that any path passing through (1, 2, 3, 5, 7) is
infeasible. Approaches based on data flow analysis
are often useful for finding a wide variety of
infeasible paths. In the above example, the checking
at node5 can detect a family of infeasible paths,
which all containing the sub part (1, 2, 3, 5, 7).

However, classic data flow analysis scarifies the
detection precision, which causes some infeasible
paths wrongly identified as feasible. It is important
to note that the flow fact computed at a control
location L is essentially an invariant property ― a
property that holds for every visit to L. Therefore
two things will cause the loss of the detection
precision: First, the correlated branches are ignored

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

44

and flow facts are propagated across infeasible
paths. Second, by the joining operation at merging
location, flow facts from different paths are joined,
leading to further over-approximation (Fischer et al.,
2005). To explain this point, consider the example
program shown in Figure 2. The flow fact of
variable i is initialized as [0, 0]. After passing
node3, it is split as two: one as [0, 0] on the TRUE
branch and the other as an empty set on the FALSE
branch. However by simply keeping track of all
possible variable values at node5, the two different
flow facts are joined. The flow fact from node5
flowing to node6 is over-approximated as [0, 0].
Hence we cannot directly infer that node4 cannot be
executed in consecutive iterations of the loop.
Therefore path such as (entry, 1, 2, 3, 4, 5, 6, 2, 3, 4)
cannot be inferred as infeasible, which actually is.
The most typical and well cited method for detecting
infeasible paths based on data flow analysis is from
Gustafsson et al. (2000, 2002, and 2006).
Approaches based on data flow analysis are path
insensitive.

Other similar methods include work from
Altenbernd (1996), detecting infeasible paths by
searching for predicates with conflict value range
while traversing CFG in an up-bottom style. This
method depends on knowing execution time of each
basic block in advance. The basic block refers to a
piece of continuing nodes except predicate nodes. At
each merge location, only the in-edge with longest
execution time will be remained for further
consideration. All flow facts will be checked at each
control location. Those branches that with variables
mapped to an empty value set will be detected as
infeasible and excluded for further consideration.
Dwyer et al. (2004) proposed to adopt data flow
analysis approach to check consistency violation in
concurrent systems. They construct a Trace-Flow
Graph (TFG), which is a modified version of CFG
for concurrent systems. Variables in TFG are
mapping to a set of possible system properties like
sequence of event calling, synchronization of critical
section. A consistency violation is found when a
corresponding path is identified as infeasible in the
TFG.

Approaches based on data flow analysis do not
require providing a prepared set of paths. It searches
for infeasible paths directly based on CFG. So they
are often applied to estimate the maximum execution
time for a procedure, called WCET: worst-case
execution time (Ermedahl, 2003) which is essential
in designing real time systems. Firstly they help
tighten the estimated result of WCET analysis by
removing the influences from infeasible paths in the

case that these paths are the longest ones. Secondly,
they are useful in deriving loop upper bound in
WCET analysis.

2.2 Path-based Constraint Propagation

Path-based propagation approaches apply symbolic
evaluation to a path to determine its feasibility.
These methods carry a path sensitive analysis for
each individual path in a given path set by
comparing with approaches based on data flow
analysis. Through symbolic evaluation, they
propagate the constraint that a path must satisfy and
apply theorem prover to determine the solvability of
the constraint. If the constraint is unsolvable, the
path is then concluded as infeasible. These methods
have high precision of detection but with heavy
overhead. They are usually applied in code
optimization and test case generation in which
accuracy is essential. Figure 3 gives a general
overview of these methods.

In propagating constraint along a given path,
either backward propagation (Balakrishnan, 2008) or
forward propagation strategy (Ball and Rajamani,
2002) could be adopted to extract the path constraint
under the supported data types. Forward propagation
traverses the path from entry to exit and performs
symbolic execution on every executable statement.
Intermediate symbolic values are stored for
subsequent use. It can detect infeasible paths early
by detecting contradicting constraints early. It is also
more straight forward and thus easier to implement,
especially in the case of dealing with arrays or
containers like List and HashMap. (Tahbildar and
Kalita, 2011). However the storage of intermediate
values may grow very fast and cause this strategy
not scalable for large program. Backward strategy
applies a bottom-up traversing manner by collect
path constraint first and later only search for values
correlated with path constraint. The space of the
intermediate storage is largely reduced.

Based on the underlying domain theories of the
constraint solver or theorem prover (Robinson and
Voronkov, 2001), constraint solving determines the
solvability of the propagated constraint. The power
and precision of path-based constraint propagation
methods depend on the power of constraint solver.
Hence, they are sound except on those cases in
which existing constraint solvers have problems
(e.g., floating point problems).

As mentioned by Williams (2010) recently,
though constraint resolution is very efficient most of
the time, it is actually NP-complete and it is
undecidable to know which kind of constraint will

A�Survey�of�Infeasible�Path�Detection

45

Figure 3: An overview of path-based constraint propagation method.

Figure 4: An illustration of the path-based constraint propagation method.

take “too long” to be solved. Therefore it is not
always possible for these methods to determine the
feasibility of a path automatically. Furthermore
every time execution the constraint solver, there is a
risk of causing the timeout exception.

Figure 4 illustrates an example of path-based
constraint propagation methods in general. Consider
the target path p = (entry, 1, 2, 3, 6, 7, exits). After
propagation along the path using backward
propagation strategy, the constraint finally becomes
((x<2) AND (x+1)>7). The resulting constraint is
submitted to a constraint solver for evaluation. As
the result is unsolvable, therefore, this path is
identified as infeasible.

Among the path-based constraint propagation
methods, Bodik et al. (1997) observed that many
infeasible paths were caused by branch correlation
and data flow analysis based approaches are overly
conservative to handle them. Starting from a
predicate node, they address this problem by
backward propagation along a path to accumulate
path constraint and consecutively evaluating the
constraint with predefined rules. The path traversed
is identified as infeasible if the associated constraint

is determined by the predefined rules as unsolvable.
If the constraint is determined by the predefined
rules as solvable, the path is identified as feasible. If
the solvability of the constraint cannot be
determined by the predefined rules, the feasibility of
the path is therefore undetermined. Goldbeg et al.
(1994) approached the problem with proposed a
more general model. For each targeting path, its
infeasibility is determined by the corresponding path
constraint. The path constraint is the conjunction of
each branch condition along the path after
substituting every referenced variable’s definition.
An independent constraint solver named KITP is
invoked to evaluate the path constraint. If the path
constraint is evaluated as unsolvable, then the path is
identified as infeasible. Goldbeg et al. explicitly
specified a domain, on which that constraint solver
KITP could work. The domain limits the considered
data types as Integer and Real and limits the
constraint type as linear.

By equipping different constraint solvers, other
approaches are able to detect infeasible paths with
constraints over other domains. Ball and Rajamani
(2001) used a binary decision diagram (BDD) as the

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

46

prover to identify infeasible paths for Boolean
programs. Zhang and Wang (2001) used an ad-hoc
SMT solver to detect infeasible paths with path
constraints over both Boolean and numerical linear
domains. Bjørner et al. (2009) detected infeasible
paths over the domain of String by using a SMT
solver called Z3 (2008) which is able to manipulate
and process those string functions in path
constraints.

The advantage of the path-based constraint
propagation approaches is the precision with which
we can detect infeasible program paths. The
difficulty in using full-fledged path-sensitive
approaches to detect infeasible paths is the huge
number of program paths to consider. In summary,
even though path-based constraint propagation
methods are more accurate for infeasible path
detection, they suffer from a huge complexity.

Constraint propagation methods are often used in
areas requiring high accuracy like test case
generation and code optimization. In test case
generation, paths will be firstly evaluated their
infeasibility. Infeasible paths will be filtered away
from test data generation to save resources and time.
For example, Korel (1996) checked the path
infeasibility before generating test case at the last
predicate to avoid unnecessary computation. Other
similar examples are like work from Botella et al.
(2009), and work from Prather and Myers (1987). In
code optimization, def-use pairs along those
infeasible paths are eliminated for enhancing the
efficiency of code (Bodik, 1997).

2.3 Property Sensitive Data Flow
Analysis Approach

Both data flow analysis and constraint propagation
approach have strength and weakness. This section
introduces the hybrid approach that combine both of
them together under the framework of partial
verification. The latter refers to the verification
against a list of given properties to check instead of
verifying all system properties. Property is an
abstract term covering variables, functions or special
data structures like pointer in C/C++.

With a given list of properties, methods of this
type have similar routine with approaches using
classic data flow analysis except two modifications.
First the flow fact is updated at location L only when
L contains properties correlated operations. Second
at merge locations, equal values for the same
property from different flow facts will be merged as
one; but different values for the same property from
different flow facts will be separately recorded

instead of joining them together. Same with
approaches using classic data flow analysis,
infeasible paths would be detected if any property is
mapped to an empty value set at a control location.
To illustrate this, let us go back to the example in
Figure 2. Suppose variable sum and i are specified as
the two properties. At the TRUE branch of node5,
sum is mapped to an empty set. A family of
infeasible paths containing (1, 2, 3, 5, 7) are detected
as efficient as using classic data flow analysis.
However at node5, the flow facts for i will be
recorded separately: fnode3 and fnode4 .Therefore, this
time, we are able to detect infeasible paths such as
(entry, 1, 2, 3, 4, 5, 6, 2, 3, 4) because only fnode4
will be considered in the consecutive iterations of
the loop.

Among this type of approaches, one well cited
work is from Das et al. (2002). They proposed a
method called ESP, whose main idea is introduced
in the last paragraph, to enhance the precision of
data flow analysis while also guaranteeing the
verification could be controlled in polynomial time.
They later extended ESP to a more abstract and
general model. Work from Dor et al. (2004)
extended ESP for better performance over C/C++,
especially for better cooperating with pointer and
heap. Other similar work may include work from
Fischer et al. (2005) and Cobleigh et al. (2001).

The advantage here is that this type of methods
achieves a good balance between precision and
scalability. However, it brings difficulty in
specifying properties accurately. There is also a risk
of detection failure because of losing a precise
tracking of some properties, which having complex
data structures.

2.4 Syntax-based Approach

Many infeasible paths are caused by the conflicts
that can be identified from using solely syntax
analysis. Syntax-based approaches take advantage
from these characteristics. They define syntax for
such conflicts as patterns or rules. Syntax analysis is
applied to detect infeasible paths through using rules
or recognizing patterns.

The more noticeable recent method is proposed
by Ngo and Tan (2007, 2008). They identified the
four syntactic patterns, identical/complement-
decision pattern, mutually-exclusive-decision
pattern, check-then-do pattern, looping-by-flag
pattern. These patterns model the obvious conflicts
between the value of a variable set and the value of
the same variable asserted by the predicate of a
branch or between predicates of branches, in a path.

A�Survey�of�Infeasible�Path�Detection

47

For example, the predicates at branches (2, 3) and
(4, 5) in Figure 1 are x ≥ 0 and x < 0 respectively.
These two predicates have obvious conflict and can
be detected from syntax analysis. Hence, the path p
= (entry, 1, 2, 3, 4, 5, 6, exit) in Figure 1 is clearly
infeasible. Based on the four patterns identified, they
developed a method to detect infeasible paths from
any given set of paths. Through the use of these
patterns, the method can avoid the expensive
symbolic evaluation by just using solely syntax
analysis to detect infeasible paths through
recognizing these patterns. In opposing to other
methods, their methods were proposed as an
independent method. They have also conducted an
experiment on code from open-source systems and
found their method can detect a large proportion of
infeasible paths.

Among those earlier syntax-based approaches,
one well cited work is from Hedley and Hennell
(1985). They proposed to use heuristics rules to
detect four types of infeasible paths: infeasible paths
caused by consecutive conditions, infeasible paths
caused by inconsistency between test and definition,
infeasible paths caused by constant loop control
variable, and infeasible paths caused by constant
loop times. These rules are quite efficient as they
solely based on syntax analysis. Later experiment
from Vergilio et al. (1996) showed that by a fast
scan, Hedley and Hennell’s rules were able to
correctly identify nearly half paths as infeasible in a
path set with 880 sample paths.

The advantage of syntax-based approaches is that
they can avoid the expensive symbolic evaluation by
applying solely syntax analysis to achieve some
efficiency. However, these methods may report a
small number of infeasible paths that are actually
feasible as they just based on syntax analysis alone.
That is, they suffer from the possibility of reporting
false-positive results.

Syntax-based approaches detect infeasible paths
from a set of paths, so they rely on well-constructed
paths set. They are often used for a fast scan during
the early testing stage. They are also used as the first
step for code optimization or coverage estimation to
avoid the influence of infeasible paths during the
later analysis.

2.5 Infeasibility Estimation Approach

Early researchers have found the problems caused
by infeasible paths and it was very hard to achieve a
satisfied detecting result. Therefore they managed to
build statistical metrics to estimate the number of
infeasible paths in a given procedure based on

certain static code attributes. The most famous work
is from Malevris et al. (1990). They stated that “the
number of predicates involved in a path being a
good heuristic for assessing a path’s feasibility”. The
greater the number of predicates exist in a path, the
greater the probability for the path being infeasible.
They further concluded a regression function fq=Ke–

λ q to represent the above relationship, in which K
and λ are two constants, q stands for the number of
predicate nodes involved in a given path, while fq
stands for the possibility of this path being feasible.
Later, Vergilio et al. (1996) validated the above
results over a broader selection of programs and
extended the work to involve in more static code
attributes, such as: number of nodes, number of
variables and number of definitions.

The advantage of such metrics is that they are
easy to implement and provide a fast way to predict
path infeasibility within a confidence level (Vergilio
et al., 1996). However, it is a method of rough
estimation rather than accurate detection. The
accuracy of the regression function also biased over
different test programs and different programming
language.

2.6 Generalization of Infeasible Paths
Approach

When a path is infeasible in a CFG, all other paths
that contain the path are also clearly infeasible.
Based on this simple concept, Delahaye proposed to
generate all infeasible paths from a given set of seed
infeasible paths (Delahaye et al, 2010). It provides a
convenient way to generate error seeded models for
further testing, especially for legacy programs or
combined as a component in regression testing.

3 TOOLS IMPLEMENTATION

In most program optimization, software analysis and
testing tools, infeasible path detection usually
appears as an important component. Best to our
knowledge, there is no independent tool particularly
designed for it. In this section, we introduce related
existing tools based on above approaches. We also
brief the implementation details of the methods
described in last section to help those who want to
detect infeasible paths in their own applications.

We select 14 relevant tools and analysze them in
this section. These tools are summarized in Table 1.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

48

Table 1: Useful Tools for Implementation.

Name Description Link Supported Language

Code analysis and optimization
Soot A Java Optimization

Framework.
http://www.sable.mcgill.ca/soot/ Java

CodeSufer Code analyser www.grammatech.com/products/codesurfer/ C/C++
Pixy Code and security analyser for

PHP
http://pixybox.seclab.tuwien.ac.at/pixy/ PHP

Automated Test Case Generation
CUTE Test case generation for C/C++ http://cute-test.com/wiki/cute/ C/C++
jCute Test case generation for JAVA http://cute-test.com/wiki/jcute/ JAVA
CREST Test case generation for C http://code.google.com/p/crest/ C
Pex Structural testing framework for

.Net
http://research.microsoft.com/en-us/projects/pex/ C#, C++, VB.net

eToc Path selection with genetic
algorithm and test case
generation for C/C++, Java

http://www.informatik.hu-
berlin.de/forschung/gebiete/sam/Forschung%20und
%20Projekte/aktuelle-forschung-und-
projekte/softwarekomponenten-entwicklung/eodl-
projects/etoc/etoc

Java, C/C++

Theorem Prover
Z3 SMT prover http://research.microsoft.com/en-

us/um/redmond/projects/z3/
C/C++

Lp_Solver Linear constraint solver http://lpsolve.sourceforge.net/5.5/ C/C++, JAVA, PHP,
Matlab

BLAST Lazy abstraction software
verification

http://mtc.epfl.ch/software-tools/blast/index-epfl.php C

Verification and Error detection
ESC-Java Error checking for annotated

Java program
http://secure.ucd.ie/products/opensource/ESCJava2/ Java

SLAM Verify critical properties for
C/C++

http://research.microsoft.com/en-us/projects/slam/ C/C++

LCLint Static analysis for C/C++ http://www.splint.org/guide/sec1.html C/C++

3.1 Data Flow Analysis Approach

The most completed work is from Gustafsson et al.
(2000, 2002, and 2006). In order to detect infeasible
paths over complex programs, they decompose a
program into several linked scopes. The latter is a
set of program statements within a call of one
procedure or an execution of a loop iteration. It is
statically created so that calls to a function or a loop
at different call sites will be marked and analyzed
separately. This brings in higher precision but more
expensive computation cost. The scope graph is
hierarchical representation of the structure of a
program which is used to describe the interaction
relationships between scopes. Data flow analysis
based on abstract interpretation will be performed
over each scope separately to compute the live
variables set. A recorder is created to store the
infeasible paths detected within each scope. Among
the work of Gustafsson et al., only primary data
types are mentioned. There has been no
corresponding open source toolkit published. For
readers planning to code based on this type of

approach, they could utilize existing data flow
analysis framework to find out variables mapped to
an empty value set at certain control locations and
detect infeasible paths accordingly. For example, the
sub package Spark in Soot can perform intra or inter
data flow analysis over Java procedures. Other
available toolkits are, for example, CodeSufer for
C/C++, Pixy for PHP.

3.2 Path-based Constraint Propagation
Approach

Approaches based on constraint propagation and
solving often appear in tools of automated test case
generation. The typical example is concolic testing
(Sen et al., 2005). Before test data is generated, the
target path will be tested its infeasibility by
submitting the path constraint to theorem prover. If
it is infeasible, the last predicate condition will be
reversed to stand for a new path containing the
opposite branch. The details could be found in the
following tools: CUTE and jCUTE which are
available as binaries under a research-use only
license by Urbana-Champaign for C and JAVA;

A�Survey�of�Infeasible�Path�Detection

49

CREST, which is an open-source solution for C
comparable to CUTE; Microsoft Pex, which is
publicly available as a Microsoft Visual Studio 2010
Power Tool for the NET Framework.

Readers, who are interested in implementing this
type of approaches in their own application, can first
apply those data flow analysis tools to propagate
along a path and generate path constraint in
symbolic expressions. Later the constraint could be
submitted to theorem provers. Available tools of the
latter include Z3, which is a SMT solver from
Microsoft; Lp_Solver, which is an open source
linear constraint solver under GNU license; BLAST,
which is a prover often used to verify abstract
program.

3.3 Property Sensitive Data Flow
Analysis Approach

Das et al. (2002) proposed a tool called ESP, which
is a research project for partial verification under
Microsoft. ESP is able to construct CFG and
perform property sensitive analysis in either intra-
procedure or inter-procedure mode. The verification
for given properties at control location is handled by
its build-in rules for primary data types in C/C++.
But the tool provides interface to replace the build-in
rules with standard theorem provers for more
complex analysis. There are also several other tools
based on this type of approaches, which are like
ESC-Java, SLAM, LCLint.

3.4 Syntax-based Approach

Syntax-based approach is easy to implement because
the heuristics are concluded from code and
expressed in a straight forward style for
implementation. Ngo and Tan (2007) implemented
an automated test case generation system called
jTGEN for automated test data generation for Java.
The system consists of an infeasible path detector
that based on heuristic code-patterns, a code parser
based on Soot, a path selector and a test case
generator based on eToc. The system uses a genetic
algorithm to select a set of paths. These paths are
checked against heuristic code patterns and only
feasible paths will be remained for test case
generation.

4 LIMITATION OF CURRENT
SOLUTIONS

Software grows fast in both size and complexity in

current trend, more paths and constraints are
encountered in the detection of infeasible paths,
therefore using traditional symbolic evaluation based
approaches for infeasible path detection encounter
scalability issue. For methods of path sensitive
analysis, there is a need to limit the number of the
targeting paths. The simplest way is to set an upper
bound to limit the paths number. Possible effort
could be applying intelligent method like genetic
algorithm to guide the path selection (Xie et al.,
2009): by choosing proper fitness function, only
paths with high suspicion of infeasibility would be
remained for further processing. Another attempt is
from Forgács and Bertolino (1997) who utilized
program slicing: By reducing a program to a slice of
the variables and statement concerned, the detection
of infeasible paths is therefore made simpler.

Theoretically, it is believed that program
complexity will highly raise the difficulty of
detecting infeasible path. Because the path may
contains long data dependency, complex data types,
side-effect functions, and non-linear operators. It
will be with high cost to develop a general model to
cover them. It is also not possible to determine the
infeasibility of all cases. As infeasible path detection
could be viewed as a type of model abstraction and
verification. Snifakis recently suggested (Edmund et
al. 2009) that general verification theory would be of
theoretical interest only. By contrast, a
compositional study for particular classes of
properties or systems would be highly attractable.

5 POTENTIAL PRATICAL
SOLUTION

Detection of infeasible paths remains an important
problem in software engineering. Current methods
are still far to serve this important need effectively.
Most of the current methods do not put much
emphasis on the characteristics of infeasible paths in
real system code. We propose a revisiting of this
problem by examining, identifying and taking
advantages of these characteristics as much as
possible.

Theoretically, constraints imposed by branches
that a path follows can be in any form. Therefore, it
is unsolvable to determine the infeasibility of a path
in general. However, theoretical limitation does not
always imply practical limitation. Despite the
theoretical limitation, one might still develop a good
practical solution if there are useful practical
characteristics one can take advantage.

More specifically, we propose to investigate the

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

50

characteristics of constraints imposed by the
branches that may lead a path in real system code to
be infeasible. If one can empirically identify
interesting characteristics that majority of these
constraints are possessing, one might be able to take
advantage from them to establish good practical
methods to improve on both the precision and the
proportion of infeasible paths that can be detected by
current methods. Clearly, systematic experiment
instrumented with both automated and manual
evaluation to examine the proportion of infeasible
paths that a method can detect is very difficult.
However, researchers should still consider spending
effort on this to provide the lacking empirical
quantitative information on the proportion of
infeasible paths that a method can detect.

If these practical methods can be invented and
implemented to detect majority of the infeasible
paths, it will provide major benefit to many related
important applications such as code optimization,
structural testing and coverage analysis.

6 CONCLUSIONS

We have reviewed existing methods for the
detection of infeasible paths. We have also discussed
the strengths and limitations of current methods.
Noticeably, all the existing methods cannot detect
majority of the infeasible paths efficiently. Most of
the existing methods were proposed under other
approaches to solve another problem such as code
optimization or test case generation, in which the
detection of infeasible paths has great impact.

REFERENCES

Altenbernd, P., 1996. On the False Path Problem in Hard
Real-Time Programs. In Real-Time Systems,
Euromicro Conference, pp. 0102-0102.

Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Wei,
O. and A. Gupta, 2008. SLR: Path-Sensitive Analysis
through Infeasible-Path Detection and Syntactic
Language Refinement. In Static Analysis, vol. 5079,
pp. 238-254.

Ball, T. and Rajamani, S. K., 2002. The SLAM project:
debugging system software via static analysis.
SIGPLAN Not., vol. 37, pp. 1-3.

Ball, T., and Rajamani, S. K., 2001. Bebop: a path-
sensitive interprocedural dataflow engine. Presented at
the Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software
tools and engineering, Snowbird, Utah, United States.

Bodik, R., Gupta, R. and Soffa, M. L., 1997. Refining data
flow information using infeasible paths. SIGSOFT

Softw. Eng. Notes, vol. 22, pp. 361-377.
Bjørner, N., Tillmann, N. and Voronkov, A., 2009. Path

Feasibility Analysis for String-Manipulating
Programs. Presented at the Proceedings of the 15th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems: Held as
Part of the Joint European Conferences on Theory
and Practice of Software, York, UK.

Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov,
N., Mouy, P., Roger, M. and Williams, N., 2009.
Automating structural testing of C programs:
Experience with PathCrawler, in Automation of
Software Test, ICSE Workshop, pp. 70-78.

Cobleigh, J. M., Clarke, L. A. and Ostenveil, L. J., 2001.
The right algorithm at the right time: comparing data
flow analysis algorithms for finite state verification.
Presented at the Proceedings of the 23rd International
Conference on Software Engineering, Toronto,
Ontario, Canada.

Concolic testing. Retrieved from: http://en.wikipedia.org/
wiki/Concolic_testing

Edmund, M., Clarke, E., Allen, E. and Joseph, S., 2009.
Model Checking: Algorithmic Verification and
Debugging. In Communications of the ACM, Vol. 52,
pp. 74-84.

Das, M., Lerner S., Seigle, M., 2002. ESP: path-sensitive
program verification in polynomial time. SIGPLAN
Not., vol. 37, pp. 57-68.

Delahaye, M., Botella, B. and Gotlieb, A., 2010.
Explanation-Based Generalization of Infeasible Path.
Presented at the Proceedings of the 2010 Third
International Conference on Software Testing,
Verification and Validation.

Dor, N., Adams, S., Das M. and Yang. Z., 2004. Software
validation via scalable path-sensitive value flow
analysis. SIGSOFT Softw. Eng. Notes, vol. 29, pp. 12-
22.

Dwyer, M. B., Clarke, L. A., Cobleigh, J. M. and
Naumovich, G., 2004. Flow analysis for verifying
properties of concurrent software systems. ACM
Trans. Softw. Eng. Methodol., vol. 13, pp. 359-430.

Ermedahl, A., June, 2003. A modular tool architecture for
worst-Case execution time Analysis. PHD thesis,
Uppsala University, Dept. of Information Technology,
Uppsala University, Sweden.

Fischer, J., Jhala, R. and Majumdar, R., 2005. Joining
dataflow with predicates. SIGSOFT Softw. Eng. Notes
30, vol. 5, pp. 227-236.

Forgács, I. and Bertolino, A., 1997. Feasible test path
selection by principal slicing. SIGSOFT Softw. Eng.
Notes, vol. 22, pp. 378-394.

Goldberg, A., Wang, T. C. and Zimmerman, D., 1994.
Applications of feasible path analysis to program
testing, presented at the Proceedings of the 1994 ACM
SIGSOFT international symposium on Software
testing and analysis, Seattle, Washington, United
States.

Gustafsson, J., 2002. Worst case execution time analysis
of Object-Oriented programs. In the proceedings of
Proceedings of the Seventh International Workshop on

A�Survey�of�Infeasible�Path�Detection

51

Object-Oriented Real-Time Dependable Systems, San
Diego, CA , USA, pp. 0071-0071.

Gustafsson, J., Ermedahl, A., Sandberg, C. and Lisper, B.,
2006. Automatic derivation of loop bounds and
infeasible paths for WCET analysis using abstract
execution. Presented at the Proceedings of the 27th
IEEE International Real-Time Systems Symposium.

Gustafsson, J., 2000. Analyzing execution-time of Object-
Oriented programs using abstract interpretation. PhD
thesis, Department of Computer Systems, Information
Technology, Uppsala University.

Gustafsson, J., Ermedahl, A. and Lisper, B., 2006.
Algorithms for Infeasible Path Calculation. Sixth
International Workshop on Worst-Case Execution
Time Analysis, Dresden, Germany.

Hampapuram, H., Yang, Y. and Das, M., 2005. Symbolic
path simulation in path-sensitive dataflow analysis.
SIGSOFT Softw. Eng. Notes, vol. 31, pp. 52-58.

Hedley, D. and Hennell, M. A., 1985. The cause and
effects of infeasible paths in computer programs.
Presented at the Proceedings of the 8th International
Conference on Software Engineering, London,
England.

Khedker, U., Sanyal, A., Karkare, B., 2009. Data flow
analysis: theory and practice. Taylor and Francis.

Korel, B., 1996. Automated test data generation for
programs with procedures, SIGSOFT Softw. Eng.
Notes, vol. 21, pp. 209-215.

Liu, H. and Tan, H. B. K., 2009. Covering code behavior
on input validation in functional testing. In
Information and Software Technology, vol. 51(2), pp
546-553, 2009.

Liu, H. and Tan, H. B. K., 2008. Testing input validation
in web applications through automated model
recovery. In Journal of Systems and Software, vol.
81(2), pp. 222-233.

Malevris, N., Yates, D. F. and Veevers, A., 1990.
Predictive metric for likely feasibility of program
paths. Information and Software Technology, vol. 32,
pp. 115-118.

McMinn, P., 2004. Search-based software test data
generation: a survey: Research Articles. Softw. Test.
Verif. Reliab., vol. 14, pp. 105-156.

Moura, L. D. and Bjorner, N., 2008. Z3: an efficient SMT
solver. Presented at the Proceedings of the Theory and
practice of software, 14th international conference on
Tools and algorithms for the construction and analysis
of systems, Budapest, Hungary.

Ngo, M. N. and Tan, H. B. K., 2008. Applying static
analysis for automated extraction of database
interactions in web applications. In Information and
Software Technology, vol. 50(3), pp 160-175.

Ngo, M. N. and Tan, H. B. K., 2008. Heuristics-based
infeasible path detection for dynamic test data
generation. Inf. Softw. Technol., vol. 50, pp. 641-655.

Ngo, M. N. and Tan, H. B. K., 2007. Detecting Large
Number of Infeasible Paths through Recognizing their
Patterns. In Proceedings ESEC-FSE'07, Joint
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software

Engineering, ACM Press, pp. 215-224.
Padmanabhuni, B. and Tan, H. B. K., 2011. Defending

against Buffer-Overflow Vulnerabilities. In IEEE
Computer, vol. 44 (11), pp 53-60.

Prather, R. E. and Myers, J. P., 1987. The Path Prefix
Software Engineering. IEEE Trans on Software
Engineering.

Robinson, A. J. A. and Voronkov, A., 2001. Handbook of
Automated Reasoning vol. II: North Holland.

Sen, K., Marinov, D. and Agha, G., 2005. CUTE: a
concolic unit testing engine for C. SIGSOFT Softw.
Eng. Notes, vol. 30, pp. 263-272.

Tahbildar, H. and Kalita, B., 2011. Automated Software
Test Data Generation: Direction of Research.
International Journal of Computer Science and
Engineering Survey, vol. 2, pp. 99-120.

Vergilio, S., Maldonado, J. and Jino, M., 1996. Infeasible
paths within the context of data flow based criteria. In
the VI International Conference on Software Quality,
Ottawa, Canada, pp.310–321.

Williams, N., 2010. Abstract path testing with
PathCrawler. Presented at the Proceedings of the 5th
Workshop on Automation of Software Test, Cape
Town, South Africa.

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,
Thesing, S., Whalley, D., Bernat, G., Ferdinand, C.,
Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J. and Stenstrom, P., 2008.
The worst-case execution-time problem--overview of
methods and survey of tools. ACM Trans. Embed.
Comput. Syst., vol. 7, pp. 1-53.

Xie, T., Tillmann, N., Halleux, P. D. and Schulte, W.,
2009. Fitness-Guided Path Exploration in Dynamic
Symbolic Execution. Presented at the IEEE/IFIP
International Conference on Dependable Systems &
Networks, Lisbon.

Zhang, J. and Wang, X., 2001. A constraint solver and its
application to path feasibility analysis. International
Journal of Software Engineering and Knowledge
Engineering, vol. 11, pp. 139-156.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

52

